在线客服

工程地质学论文实用13篇

引论:我们为您整理了13篇工程地质学论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

工程地质学论文

篇1

综摄教学法的运用

综摄法又称类比思考法,其源自在我们对外部事物的学习和认识过程中,常常是在某些带有启发暗示的“指挥下”进行的,而这种“指挥”与我们的思考方法和意识关系不大,却是我们日常生活中的所见所闻密切相关[11]。因此,可以利用外物来启发思考、激发灵感解决问题。工程地质教学中,我们可以借助于学生已有的相关学科知识和日常生活经历,在此基础上开综摄法教学。在教学中锻炼学生对所面对事物的异质同化和同质异化两种思维方式。当我们面临未知的或者不熟悉的事物时,常常会采取拿性质不同的现有事物的分析和模拟方式去与之相对比,在此基础上提出设想。这种方式称之为异质同化,即根据已有的经验和知识来分析比较所面对的问题。例如,当开展某项工程的地质问题调查时,可以与医生全面诊断病人一样,先逐项检查,然后根据检查结果分析存在的病症,这样会使得技术(研究)路线明晰,而且有很强的可操作性与指导性。如何摆脱固有的思维方式和问题分析方法的桎梏,进行创造性分析和解决问题是我们需要面对的难题。因此,如何运用新的知识或从新视角进行审视、分析、研究和处理原有的资料和技术手段显得十分必要,在此基础上使得认识有新的突破,这过程即为同质异化思考方法。例如,在狭窄的海边场地进行海底隧道掘进时,一方面需要的很大的场地存放施工材料(如做衬砌),另一方面又需要相关场地堆放掘进所产生的大量岩屑废渣,那么可以通过同质异化思维,我们可以考虑在不影响地质环境的情况下,用掘进产生的废料进行人为营造陆地,同时解决了材料堆放和废料处理的问题。

篇2

坝陵河大桥离拟建贵州省镇宁至胜境关高速公路起点约21km,地处黔中山原地带。高速公路在关岭县东北跨越坝陵河峡谷,峡谷两岸地势陡峭,地形变化急剧,高差起伏大,河谷深切达400~600m。桥址区属构造剥蚀、溶蚀中低山河谷地貌。岩石建造类型以碳酸盐岩与陆源碎屑岩互层,以碳酸盐岩构成峡谷谷坡,以碎屑岩互层构成谷底及缓坡为基本特征。坝陵河流向与区域地质构造线方向(NW)基本一致。河谷西岸地形较陡,地形坡度40~70°,近河谷一带为陡崖。桥位区西岸(关岭岸)锚碇地段处于斜坡中部,出露的岩层有三叠系中统竹杆坡组第一段(T2z1)中厚层状泥晶灰岩和杨柳井组(T2y)中厚层状白云岩[1,2]。弱风化岩体直接出露于地表,微新岩体埋深30~50m。

坝陵河悬索桥主跨1068m,桥面总宽度24.5m,东岸锚碇采用重力式锚,西岸锚碇采用隧道式锚。西岸隧道式锚碇在技术设计中全长74.7m,最大埋深78m,主要由散索鞍支墩、锚室(34.7m)和锚塞体(40m)三部分组成,两锚体相距18~6.36m。锚塞体和锚室为一倾斜、变截面结构,上缘为圆形,下缘为矩形,纵向呈楔形棱台,矩形截面尺寸为10m×5.8m~21m×14.5m。西岸每根主缆缆力(P)约为270MN,水平夹角约26°。锚体中设预应力锚固系统,主缆索股通过索股锚固连接器与锚体中的预应力锚固系统连接。

悬索桥锚碇在承受来自主缆的竖向反力的同时,主要还承受主缆的水平拉力,是悬索桥的关键承载结构之一,其总体稳定性和受力状态直接影响到大桥的安全和长期使用的可靠性。坝陵河悬索桥是镇宁-胜境关高速公路的重要节点,针对该大桥施工图设计阶段,本文提出坝陵河悬索桥西岸隧道式锚碇及其边坡的工程地质力学研究建议。鉴于锚碇型式受到地形、地质条件的限制,国内外采用隧道式锚碇的大跨悬索桥为数较少[3-7],见诸文献报道的更少,本研究建议有不适当之处,请专家批评指正。

2岩体工程地质力学研究建议

2.1锚碇围岩工程地质条件研究

西岸隧道式锚碇坐落于边坡浅表弱风化~微新岩体中,弱风化~微新岩体的工程地质条件关系到锚碇隧洞的成洞条件及锚碇体系在主缆拉力荷载作用下的整体稳定状态。

边坡浅表部中存在卸荷岩体。岩体卸荷带是伴随河谷下切过程或边坡开挖过程中,由于应力释放,岩体向临空面方向发生卸荷回弹变形,能量的释放导致斜坡浅表一定范围岩体内应力的调整,浅表部位应力降低,而坡体更深部位产生更大程度的应力集中。由于表部应力降低导致岩体回弹膨胀、结构松弛,破坏岩体的完整性,并在集中应力和残余应力作用下产生卸荷裂隙。岩体应力的降低最直观的表现是导致岩体松弛和原有的裂隙发生各种变化,形成新环境下的裂隙网络。这些裂隙一部分是迁就原有构造裂隙引张扩大经改造形成[8],有一些是微裂隙扩展后的显式裂隙,也有在新的应力环境和外动力环境下形成的裂隙。在岩体卸荷、应力降低的过程中,随着新的裂隙系统的形成,也为外动力或风化营力提供了通道,加速岩体的风化和应力的进一步降低。风化岩体裂隙的增多,是岩体卸荷和风化共同造就的。

西岸锚碇边坡岩体在浅部节理裂隙发育,岩体透水性较好,渗透系数高;随着深度的增加,透水性逐渐减弱。深部的岩溶发育情况有待研究。

据初步设计阶段工程勘察资料,西岸锚碇边坡出露的灰岩和白云岩的产状为:倾向50~80°,倾角48~87°。主要发育三组优势节理:①155°∠57°;②220°∠34°;③333°∠46°。在岩层层面、不利结构面组合切割和深部岩溶发育情况下,在主缆巨大拉力下,不能够排除存在深部拉裂滑移面威胁西岸锚碇边坡整体稳定性的可能性。

锚碇围岩工程地质条件研究内容包括:

(1)研究从边坡表部至深部岩体中裂隙的分布密度及张开度变化,揭示岩体的卸荷程度,为锚碇施工期和运行期边坡岩体质量评价以及岩体质量变化趋势提供可靠基础资料;

(2)在岩层层面和不利结构面组合切割下,由于锚碇工程荷载,研究岩体中形成的潜在不稳定块体的安全度以及西岸锚碇边坡的整体稳定性;

(3)采用地球物理勘探方法,研究边坡深部溶蚀裂隙与溶蚀洞穴的分布规律及其发育特征。

2.2锚碇围岩工程力学特性研究

主悬索的巨大拉力通过索股、锚杆传人隧道中填充的(预应力)混凝土,再通过(锚塞体)混凝土与隧道岩体的摩阻力和粘结力传递给周围的岩体。隧道式锚碇在巨大主缆拉力荷载作用下,不仅要维持自身的抗拔稳定,同时还要将自身承受的主缆拉力传递到锚碇围岩中,以充分利用围岩的承载能力,使锚碇和围岩共同作用形成一个整体的承载体系。

锚碇围岩工程力学特性研究包括三个方面:

(1)锚塞体与岩体之间的抗剪摩擦力学性能[9,10]和粘结特性试验研究;

(2)锚碇下部及两锚体之间的岩体处于复杂的拉剪应力状态,研究锚碇围岩在拉剪应力下的变形及强度特性,尤其是弱风化~微新围岩在拉剪复杂应力下的变形、强度及疲劳试验研究,模拟其破坏现象和破坏过程,从而掌握其破坏机制;

(3)岩体在中度~轻度工程爆破开挖扰动下的力学性能研究。

锚碇围岩工程力学试验目的是确定锚碇边坡岩体力学参数建议值,供设计和三维数值仿真采用。建议在设计锚碇区域附近开挖一试验斜硐,采取岩样,并在硐壁打适量钻孔,进行室内岩石力学试验和原位岩石力学性质及配套的各项试验研究工作。主要包括室内岩石力学三轴剪切试验、节理(裂隙)测量、岩体变形特性(静载)试验、岩体抗剪(抗剪断)试验、岩体抗拉试验、混凝土与基岩胶结面抗剪和摩擦等试验和硐室声波普测、硐室地球物理勘探、含水量测试、钻孔声波测试、钻孔压水试验等试验研究工作。锚碇系统的摩阻力由基岩与锚碇系统接触面的正应力与摩擦系数来决定,摩擦系数一般由相似原理进行模型试验或现场测试得到。硐室地球物理勘探是查明锚碇围岩(主要是锚碇下部及两锚体之间的岩体)中的岩溶发育情况。

试验资料的整理应通过对现场和室内大量试验数据的综合分析,结合现行有关行业规范(规程)和工程经验的类比,提出西岸隧道式锚碇边坡区域岩体力学参数建议值,供设计采用。

2.3锚碇围岩渗透及抗溶蚀特性研究

坝陵河悬索桥西岸锚碇围岩为弱风化~微新的灰岩和白云岩,属于易溶蚀化岩体。锚碇边坡地段地下水主要为(节理)裂隙水、岩溶裂隙水和岩溶孔(洞)穴水。西岸隧道式锚碇锚体混凝土浇筑后,在边坡岩体中形成不透水体(阻渗体),从而改变锚碇边坡的地下水渗流场。可以预见,地下水将从锚塞体混凝土边缘绕渗,因此锚塞体与围岩的交界部位岩体更易遭到溶蚀,削弱锚塞体混凝土与围岩之间的摩阻力和粘结力。锚碇围岩渗透特性的研究应着重锚塞体与围岩的交界部位岩体的渗透性能与抵抗溶蚀的能力的试验研究。

为防治锚塞体与围岩交界部位岩体的溶蚀危害采取的工程措施,主要是加强锚碇边坡坡面的排水工程。

2.4锚碇及其围岩相互作用三维数值模拟研究

由于悬索桥安全是依靠锚碇固定桥的体系,锚碇发生移动将严重影响桥梁体系,甚至导致桥体破坏,因此研究西岸隧道式锚碇的锚块及其围岩在主动拉力作用下的稳定性、瞬时变位与长期变位是相当重要的。应建立真实反映隧道式锚碇锚体和围岩二者相互作用、考虑施工过程非线性、地质结构面影响等的三维数值仿真模型,对锚碇稳定性及变位进行预测[11]。

2.5锚碇隧道钻爆开挖及支护的施工技术试验

根据西岸隧道式锚碇为倾斜、变截面的工程特点,需研究锚碇隧道的钻爆开挖以及支护的施工技术[12-14]。在隧道式锚碇施工过程中,自始至终都要注意严格控制围岩的完整性,尽量避免对围岩产生过大的扰动。为保证主缆等硐内钢结构的使用寿命,锚碇的防水按GB50108-2001二级标准进行控制,要求较高。施工开挖后应对围岩中的塑性变形带进行挤密压浆处理,以使锚塞体混凝土与围岩紧密结合。

2.6锚碇锚固系统试验

试验目的是验证用于坝陵河大桥锚碇锚固系统的各产品力学性能是否满足设计要求。试验内容包括锚拉杆组件静载试验、疲劳试验及锚具组装件静载试验和疲劳试验[15]等。

2.7大体积混凝土浇筑防裂的施工技术研究

篇3

改革开放三十多年来,各行各业大兴土木,城市建设日新月异。要保证项目建设安全,需要对建设场地进行工程地质条件勘察,才能进入设计、施工、建设阶段。纵观世界各国的建筑工程事故,以地基基础事故为主。地基基础是建筑物的地下隐蔽工程,费用约占总造价的20%~25%,一旦出现事故不易觉察,修补处理较为困难,所需费用较高。实践证明,地基基础问题在相当程度上与工程地质问题相关,是涉及人的生命和财产安全的大问题。而土木工程专业的毕业生大多从事工程设计、施工、监理等工作,也有人进入相关领域从事工程地质勘察设计、规划和管理工作。可见,具有良好的工程地质知识对他们以后所从事的工作意义重大。

工程地质学课程的特点

工程地质学是研究人类的工程活动与地质环境相互关系的学科。它的任务是为各类工程建筑的规划、设计、施工提供地质依据,以便从地质条件上保证工程建筑的安全可靠、经济合理、使用方便、运行顺利。为大型项目工程建设提供可行性研究报告,对拟建工程场地进行工程地质条件评价,为地基基础设计提供合理建议,对于场地存在的地质问题在深入分析的基础上提出处理措施,为地基加固工程的设计和施工提供依据。同时,还要研究评价由于工程兴建引起的环境地质问题,以及可能诱发的地质灾害对工程建筑本身及周围环境的影响、如何及时消除安全隐患等问题。

对于土木工程专业而言,工程地质学是一门专业基础课程,主要培养学生阅读地质资料、查明和分析工程地质条件、解决工程地质问题的能力,工程技术人员必须能够看懂地质资料,必须清楚建设范围内的地质条件,了解可能出现的地质问题及应该采取的防治措施。只有这样,才能进行正确的设计和施工,才能有效保证建筑物的安全和稳定。为后续的土力学、基础工程等专业课程的学习奠定基础,为以后所从事的工程建设工作提供相关专业知识。课程特点表现为:(1)教学内容多,涉及多个学科。仅就土木工程专业而言,工程地质学讲授的主要内容包括矿物与岩石、地质作用和地质年代,地质构造,岩、土体的工程地质性质,地下水,地貌及第四纪松散堆积物,不良地质条件下的工程地质问题,岩体工程稳定性问题,岩土的工程地质分级分类,工程地质勘察等。该课程涉及矿物学、岩石学、构造地质学、土质学、土力学、岩石力学、动力工程地质学、区域工程地质学、工程地质勘察、地基处理等相关内容。(2)概念多,实践性强。工程地质学涉及许多名词概念及专业术语,许多理论知识比较抽象,直接理解往往有一些困难,需要通过实验、实习、实训的途径加以解决,表现出较强的实践性。(3)学时不多。一般土木工程专业只有30~40个课时。由于教学内容丰富、教学难度大,要上好这门课具有挑战性。

土木工程专业工程地质学教学现状

重视不够 工程地质学作为土木工程专业的基础性学科,学生还没有感觉到它的重要性,以为不是主要专业课程,在专业中的作用不大,导致学生不具备工程地质方面的专业技能和专业素质,对以后所从事的工作造成不良影响。

部分内容比较枯燥 初次接触本课程的学生感觉比较陌生,由于工程地质基础知识理论性较强,概念多,与工程实际联系较少,学生会感觉乏味,学习兴趣降低。

野外地质实习基地缺乏 工程地质学实践教学包括室内实验和野外实践实训教学。室内实验涉及土工方面的实验及各类矿物、岩石标本实验室、地质构造模型室等,大部分高校都有。一般地质类的工科高校都有野外固定的地质实习基地,而对于大部分土木工程专业的高校来说,野外实习基地相对比较匮乏。由于实践教学条件不足,使大部分土木工程专业的学生在短时间内具有地质学方面的感性知识往往是很困难的。

综合利用多种教学

方法和手段提高教学质量

随着社会的发展和科学技术的不断进步,多媒体、网络技术已成为人们日常学习、生活、工作交流的工具之一。传统的授课方式也在逐渐发生改变,充分利用各种教学资源,采取多种教学方法和手段提高学习兴趣和教学质量成为关键。笔者通过多年教学实践总结出以下几点。

结合专业需要优化教学内容、精选整编教材 首先,应结合土木工程专业方向和专业需要,以及土木工程专业的学生以前从未接触或很少接触过工程地质的有关知识的特点,通过本课程的学习,使学生能读懂地质资料,能够利用地质资料完成工程项目的设计、施工、监理等工作。教学内容不仅应包括工程地质的基本理论知识,同时要重点突出实践性教学环节, 要在知识覆盖面、深度、广度上下工夫,不断完善工程地质学的教学内容,保证学生在工程地质学方面的专业素质,构建优良的教学体系结构。任课教师可以根据教学内容设计优选教材。教材是教学的基础,是教育思想、教学观念、教学内容、教学方法与手段的载体,是人才培养的依据,只有使用高质量的教材才能培养出高素质的人才。由于工程地质学教材很多,且各有特点,从中选出适合土木工程专业的理想教材至关重要。一本好的工程地质学教材,不仅要涵盖工程地质领域的基础知识,还要通俗易懂、重点突出,将整个工程地质领域众多基本理论和方法浓缩成系统性和专业性兼顾的知识体系。由于土木工程专业教学计划的限制,适合自身专业特色的工程地质学教材不多,因此,授课内容不能仅仅局限于教材。优化教学的方法是在查阅大量参考文献基础上,对教材内容进行重新组织、加工精练、补充提高,及时汲取最新的研究成果和工程实例,加入工程地质勘察新技术、新规范,积极整合优秀教改成果,做到理论知识恰如其分地与具体工程实际紧密结合,使学生不出课堂就能够把主要知识点与实际工程无缝对接,在有限的时间内获取尽可能多的知识。坚持以提高学生整体素质为基础,以培养学生综合能力,特别是创新能力和实践能力为主线,对教学内容进行整合。

合理运用现代多媒体、网络技术提高教学效果 应用多媒体技术可以大大提高学生的学习兴趣与效率,增加信息量。比如,在讲“矿物与岩石”这一章节时,若仅采用传统板书教学,很难讲清楚,而且学生也难以理解、想象出各种矿物与岩石的特征,而利用多媒体将常见的矿物和岩石的真实图片放在大屏幕上讲解后,再进行室内实习,学生很容易就能识别出常见矿物与岩石标本。同理,把地质图的阅读、地质灾害的形成、预防与处理、地形地貌、地质构造、常见工程事故及处理措施、工程地质现场勘察技术等内容采用图片、声音、动画、文字、录像的形式展现出来,可使学生有身临其境的感觉。可见多媒体教学不仅可以扩大课堂教学的信息量,而且还能增强教学的直观性、主动性,提高教学质量。应构建课程教学网站,将教学内容、教学大纲、教学方法、教学课件、录像、实纲、作业练习、在线测试、交流、答疑等挂在校园网上供学生随时查阅,为学生提供一个交互、开放式的理论与实践结合的教学环境。同时,也为学生自主学习提供良好的教学平台,弥补课堂教学课时少的缺点。

将理论教学与案例教学相结合 单纯理论教学不能充分调动学生学习的积极性,因为听课时间稍长,学生就容易疲惫,导致精神不集中。只有理论与案例教学结合,才能调动学生思维能动性,使学生在不知不觉中由传统教学中的被动接受知识变为积极运用知识,有效提高学生的理论水平和实践能力。将理论知识实践化,其捷径是采用工程实例分析,即案例教学。在教学中有针对性地运用适宜的工程实例资料,通过学生的独立思考与集体协作,对具体实例进行分析、研究和讨论。案例教学具有参与性、启发性和时效性的特点。如对于常见的地震等地质灾害,先采用多媒体课件讲授地震等地质灾害的成因、发生、发展以及结果和危害等,再通过如“5.12汶川地震”等地质灾害进行案例教学,学生会对授课内容产生强烈的共鸣,并在短时间内铭记于心。

创建完善的教学实习基地,加强实践性教学环节 工程地质学是一门实践性比较强的课程,实践性教学环节是该课程的重要组成部分,良好的实习条件是教学质量的重要保证。实践教学的基本任务就是让学生亲自接触各种真实的地质现象及工程地质问题,并利用已学到的理论知识来考察、辨析它们,进而加深对课堂教学内容的理解。可根据实纲要求,安排校内实验与野外实习。校内实验主要包括实验室矿物与岩石标本观察和地质图的阅读等,是为了培养学生对常见矿物和岩石的识别能力,训练学生地质图的读图能力。实验内容为:观察标本、鉴别区分常见的造岩矿物与常见三大类岩石(岩浆岩、沉积岩和变质岩);通过阅读地质图,要求学生讲述图上所表示的地形、地貌、地质构造、地层岩性及其产状、接触关系等。每次实验前根据实纲要求,教师制定实习任务,让学生做预习,设计实验方案。实习时以教师现场指导、教学示范、学生自主探究方式进行。比如,对矿物、岩石的鉴定及描述等方面,通过实物介绍、实习操作示范等,使学生在短时间掌握要领,顺利完成实习任务。野外实习也是必不可少的教学环节。野外实习的内容主要是进行各种地质构造的野外观察、地质绘图、工程地质勘察,地质资料的现场记录整理等。教师在野外现场对实习内容要点反复讲解,示范操作要领、步骤;要求学生必须做到勤思考、勤动手、勤问、勤记录,即勤于动手考察地质现象、勤于思考产生这种地质现象的内外因素、勤于对某些问题进行较深入探索和研究。通过野外实践环节锻炼学生对自然地质现象的观察识别、动手能力、分析问题和解决问题的能力以及对原始数据资料的收集和编录的能力,能够让学生懂得野外地质工作的基本方法,在加深理解的基础上学会分析土木工程与地质的密切关系,熟悉土木工程建设中常见的地质问题及处理方法,及时消化和巩固所学的基本理论知识。此外,走出校门进行野外地质实习,还可以培养土木工程专业学生吃苦耐劳、遵守纪律、团结协作等优良品质,有利于增强学生体魄和意志力。

改变现有成绩考核办法 工程地质成绩分为两个部分,即理论教学与实习、实训成绩。理论教学成绩考核应多方面考核评定学生成绩。其中,考试成绩占60%(理论知识的考核应结合工程地质学课本,以闭卷的形式考核基本知识、基本理论,要求学生在规定的时间内完成);平时成绩占40%,其中,课堂教学成绩考核占平时成绩的15%(主要考查上课表现);课后作业及论文等占平时成绩的25%。这种考核方式注重学习过程的考核,可避免学生考前突击记忆,考完后很快忘记的弊端,提高学习效果。在实习成绩考核中,实习纪律占20%(考察学生实习是否缺席、迟到、早退等),集中实习占60%(其中原始记录及实习表现占20%,实习报告占40%),同学之间相互考评成绩占20%。这种考核方式有利于对实习全过程进行考评,促进学生的学习积极性。

多年来的教学实践证明,在教学过程中不断完善教学内容,改进教学方法与手段,充分利用现代科技成果服务于教学,针对专业需要进行课程教学设计,坚持理论联系实际,加强实践性教学环节,改革考核办法有利于增强学生学习的兴趣,有利于培养学生的动手能力和工程地质方面,专业素质,为土木工程专业学生从事工程建设工作奠定良好的基础。

参考文献:

[1]孙家齐,陈新民.工程地质[M].武汉:武汉理工大学出版社,2007.

[2]白明洲,王勐,刘莹,巩慧.工程地质课程教学改革[J].高等建筑教育,2006,(2).

篇4

主办单位:中国地质学会

出版周期:双月刊

出版地址:北京市

种:英语

本:16开

国际刊号:1000-9515

国内刊号:11-2001/P

邮发代号:

发行范围:国内外统一发行

创刊时间:1922

期刊收录:

CA 化学文摘(美)(2009)

SCI 科学引文索引(美)(2009)

CBST 科学技术文献速报(日)(2009)

Pж(AJ) 文摘杂志(俄)(2009)

核心期刊:

期刊荣誉:

中科双百期刊

篇5

1.环境岩土工程定义

环境岩土工程(EnvironmentalGeotechnology)一词,源自1986年4月美国宾州里海大学土木系美籍华人方晓阳教授主持召开的第一届环境岩土工程国际学术研讨会,并在其著名的“IntroductoryRemarksonEnvironmentalGeotechnology”论文中,将环境岩土工程定位为“跨学科的边缘科学,覆盖了在大气圈、生物圈、水圈、岩石圈及地质微生物圈等多种环境下土和岩石及其相互作用的问题”,主要是研究在不同环境周期(循环)作用下水土系统的工程性质。

2.环境岩土工程研究的内容及分类

环境岩土工程是研究应用岩土工程的概念进行环境保护的一门学科。这是一门跨学科的边缘学科,涉及面很广,包括:气象、水文、地质、农业、化学、医学、工程学等等。

环境岩土工程研究的内容大致可以分为三类:

(1)环境工程。主要指用岩土工程的方法来抵御由于天灾引起的环境问题。例如:抗沙漠化、洪水、滑坡、泥石流、地震、海啸等。这些问题通常泛指为大环境问题。

(2)环境卫生工程。主要指用岩土工程的方法抵御由于各种化学污染引起的环境问题。例如城市各种废弃物的处理、污泥的处理等。

(3)人类工程活动引起的一些环境问题。例如在密集的建筑群中打桩时,由于挤土、振动、噪声等对周围居住环境的影响;深基坑开挖时,降水和边坡位移等。

3.环境岩土工程研究中基本观点及研究方法

3.1基本观点

(1)岩土实践的范围是地球表层,而地球对于宇宙来讲是一个子系统,它的变化受其他子系统的影响,它们之间有物质和能量的交换,是一个开放的系统;

(2)资源是有限的。我们只有一个地球,并且随着人口的增长,资源与人口相比越来越小,所以我们应实施可持续发展战略,而不能盲目地掠夺式地利用,以防止对环境造成不利的影响;

(3)人类无计划的活动会毁灭人类自身;

(4)自然界在不断地变化,有一些直接危害人类,反过来人类要避开危害,就必须采取措施;

(5)虽然岩土工程曾带来一些消极影响,但它是由于人类认识上的片面性和历史的局限性造成的,

所以从理论上讲,所有的环境岩土工程问题是可以解决的,但它依赖于人们环境意识的提高,岩土工程技术的进步和法制建设的健全。

3.2研究方法

环境岩土工程是一个系统工程。它涉及许多学科领域,所以在研究中应从学科间的交叉处着眼,以辩证的观点分析和解决问题。其次,应用岩土工程的观点去改善环境,使其更符合人类的生存需求。

4.环境岩土工程与相关学科的关系

与环境岩土工程相关的学科有:工程地质学、岩土力学、岩土工程学、地质工程、环境工程地质学。

工程地质学的基础理论是地质学,指导它的理论主要是自然历史观1它的基本理论是认为地质成因和演化过程决定地质体的工程特性,相应地在研究方法上就是从地质体局部特性的研究,探索地质体在生成时的地质环境以及形成地质体的地质作用和演化过程,从而在整体上认识和把握地质体的组成和结构以及发育规律,并进一步探讨和预测它在工程建筑物作用下的表现和工程行为。

工程地质学的服务对象完全是人为设计,人为施工的建物。这一应用性决定了工程地质学的边缘性、交叉性和综合性等特性。所谓边缘性指它处在地质学科的外层,位于和工程学科接壤的部位。所谓交叉性表明在它的学科发展中不断吸收工程学科的理论、概念和方法,并和地质学结合起来。所谓综合性是指工程地质学的目标是解决问题,它是借助于地质学各基础学科的成就来综合地工作的.

岩土力学、岩土工程和工程地质学在研究对象和目标上有很大的相同之处,是密切相邻的学科。但是岩土力学属于力学学科的边缘,而岩土工程属于工程学科的边缘1虽然对岩土的地质认识是建立岩土力学模型和本构关系的重要基础,但岩土力学更偏于模型及建模后的力学研究。岩土工程是将岩土作为工程结构物的一部分工程学科。不过岩土力学和岩土工程与其他的力学或工程学科相比,需要更多地质学科的支持,或者说更需要与地质学科的结合。

5.环境岩土工程的研究现状

20世纪50-60年代公害事件的显现,人们不断探索,反思,并已取得了基本的共识。目前国外对环境岩土工程的研究主要集中于垃圾土、污染土的性质、理论与控制等方面,而国内则在此基础上有较大的扩展,就目前涉及的问题来分,可以归纳为两大类:第一类是人类与自然环境之间的共同作用问题。这类问题的动因主要是由自然灾变引起的。例如地震灾害、土壤退化、洪水灾害、温室效应等。这些问题通常称为大环境问题。第二类是人类的生活、生产和工程活动与环境之间的共同作用问题。它的动因主要是人类自身。例如城市垃圾、工业生产中的废水、废液、废渣等有毒有害废弃物对生态环境的危害;工程建设活动如打桩、强夯、基坑开挖、盾构施工对周围环境的影响;过量抽汲地下水引起的地面沉降等等。有关这方面的问题,统称为小环境问题。

6.环境岩土工程的发展展望

20世纪90年代后,我国进入了大规模工程建设时期。从沿海地区开始,逐步向内陆扩展,高层建筑、地铁、道路交通、隧道等等的建设以及城市化进程步伐的加快向环境岩土工程不断提出新的挑战。同时,自然环境的变化,地震、洪涝灾害的频频发生,温室效应的加剧,水土流失,土壤退化等大环境问题,也引发了一系列新的环境岩土工程问题。相对发达国家来说,我国的岩土工程工作者面临更为艰巨的任务。一方面,我国正处于大规模工程建设时期,有许多工程问题需要解决;另一方面,基于可持续发展要求,我们面临严峻的环境保护与治理工作。在环境岩土工程问题上,未来几年应重点研究并解决下面几个问题。其中,西部问题,包括生态环境建设与保护区域稳定性与地下工程。东部问题,包括大城市地面变形不稳定性、悬河化水资源、水环境等。在一些应用方面还急需解决的问题如下:卫生填埋场的设计问题;大规模工程建设的区域环境岩土工程问题评估;城市施工影响环境岩土工程问题;岩土工程手段在环境的治理中的应用等。

参考文献:

[1]缪林昌刘松玉环境岩土工程学概论北京:中国建材工业出版社2005

篇6

(二)研究生地质学基础知识薄弱

受不同院校、不同行业的影响,研究生在本科阶段的专业水平参差不齐,综合运用已有知识学习新知识以及解决实际问题的能力相差很大。水利、采矿、地质、石油类院校的本科教学环节,对水文地质学、工程地质学和岩石力学等地质类课程普遍比较重视,这也成为了这类高校在岩体工程专业研究生培养上的有利条件。然而,目前国内具备岩土工程专业研究生招生资格的高校,是以土木工程类院校为主。土木类院校以建筑工程为行业背景,以工业和民用建筑为主体研究对象,对水文地质、工程地质和岩体力学等课程重视不够是普遍存在的问题,甚至许多土木类高校本科阶段不开设岩体力学课程或作为选修课,岩土工程专业研究生也没有开设工程地质学课程。这导致大量的岩土工程专业研究生的地质学概念不清,严重影响他们对岩体水力学课程的学习质量,教师的教学效果和品质也受到很大的限制。

(三)学校实验条件有限,课程的实践教学环节严重不足

岩体水力学教学除了对理论讲述环节要求高,对实践性教学环节的要求也很高。室内实验揭示岩石最基本和最普遍的水力学特性,在岩石水力学实践性教学中至关重要。诸如软化系数测定,孔隙率和渗透率测试,三轴应力条件下的渗透率变化测试等都是岩石水力学性质的基础实验。然而,大部分高校的现状是实验设备和实验场地严重不足。如最基本的带水渗或气渗功能的电液伺服岩石三轴试验机,国产的试验机在国内高校装备数量很有限,功能齐全的高精度进口试验机更是凤毛麟角。基本设备都不齐全,大尺寸设备和实验场地就更为缺乏了。这会使研究生对岩石水力学实验的认识停留在字面理解上,很难真正掌握实验原理及数据处理技术。

(四)教师专业素养和学术水平有限

具有较高的专业素养、学术水平、创新意识和能力的实践教师队伍是研究生创新人才培养的关键。由于岩体水力学课程较新,可选教材比传统课程少。除了专门从事岩石水力学研究的专业人士之外,大部分承担岩体水力学课程教学的任课教师都会遇到备课困难,知识点讲解不清等问题,在课程内容广度和深度的把握上也是拙襟见肘,很难达到研究生课程的教学效果和教学品质。

二、教学改革思路与措施

(一)激发研究生的专业兴趣

岩体水力学牵涉的知识点众多且繁杂,在教学过程中,教师因为想把各知识点的概念尽量罗列齐全,不发生遗漏,从而讲授得过于理论化,使学生觉得听课十分乏味。人天生有好奇心,学习新知识、探寻未知世界本是奇妙而富有乐趣的。可以通过国家重点和大型岩石工程实例、国内外著名的工程灾害事件的现场照片、统计数据等资料,最大程度地调动研究生对岩体水力学课程的好奇心和探索欲望,从而提高学习兴趣。结合岩石遭地下水渗流破坏造成的重大工程失事实例,如意大利Vajont水库左岸大滑坡、法国Mal-passet双曲拱坝全坝溃坝、美国Teton土坝岩基段溃决[5],以及英国Woodhead和Bilbery坝、美国Francis重力拱坝、意大利Gleno连拱坝、阿尔及利亚Gabra坝、西班牙EwgadeTera支墩坝、法国Bouzey坝等失稳破坏事故,借助统计分析资料(如国际大坝委员会),从实例中强有力地体现岩体水力学性质对岩体强度和变形特性的巨大影响,突出研究的重要性。同时,让研究生充分了解这些事故,改变了工程界对岩体结构稳定性的传统认识,开辟了岩体水力学中众多新兴研究领域和方向,激发研究生的研究欲望,甚至可以培养研究生的科研责任感。

(二)完善研究生地质学基础知识

为了弥补大部分研究生地质学基础知识薄弱的问题,在充分调动学生的求知欲之后,强调岩体水力学是一门以工程地质学、水文地质学为地质学主线,以流体力学、地下水动力学为水力学主线,以材料力学、结构力学、弹塑性力学、岩体力学为力学主线的综合学科。让研究生深刻体会岩体水力学的多学科交叉融合特点。在课程讲述过程中,若遇到与地质学有关的知识,要注重基础,详细讲述,尽可能帮助研究生建立正确的水文地质学、工程地质学和岩体力学概念。如水文地质学中,溶穴、岩溶率、裂隙水和岩溶水、含水层和隔水层、隔水顶底板、贮水系数、渗流、层流和紊流、水流折射定律、溶滤作用;工程地质学中的岩浆岩、沉积岩、变质岩、断层构造、水化作用、侵蚀作用、膨胀系数;岩体力学中的地下硐室、锚固与注浆、节理、充填与胶结、损伤与断裂、水力劈裂等基本专业术语,均需要详细讲解。注意强调岩体的各种地质构造、天然缺陷、高度非线性、各向异性、多尺度特点及不确定性特征,以及裂隙岩体中非达西流现象、岩石结构的宏、细观层次认识等难点问题,并且告知学生岩体水力学理论存在的问题。例如:对岩体中渗流描述,几乎完全照搬土体渗流学,即孔隙介质渗流学的方法及经验来解决,而裂隙岩体渗流还处在发展阶段,对单裂隙渗流的研究和认识较为成熟,但对裂隙网络情况以及非稳定渗流还有待深入探索。

(三)教学模式和方法改革,注重实验和现场调

研等实践内容和本科卓越工程师培养计划的要求不同,研究生教学的核心并不仅仅是让学生去掌握某一专业知识或某一种实验方法,而是要让学生学会发现问题和解决问题的思路、方法,培养研究生获取知识和创新的能力。一方面,围绕岩体水力学的基本概念、岩体渗流规律的地质分析、基础力学理论和力学参数、岩体水力学的工程应用展开,结合岩体水力学的地质分析方法、室内外试验方法、物理和数学模拟方法、系统综合分析方法,以教师的专题介绍和研究生的学习汇报结合形式,加强和学生的互动,增加学术思想的碰撞,启发和引导研究生深入理解科学问题。另一方面,除了为学生选择合适的教材之外,还要给出相关参考书目,如《岩石水力学与工程》(张有天著),《裂隙岩体水力学基础》(朱珍德、郭海庆著),《岩体水力学导论》(仵彦卿、张倬元著),《高等岩石力学》(周维垣著)等,并且鼓励学生广泛阅读学术期刊文章。开展理论和实践的同步性教学改革。在岩体水力学课程的实践环节中,带领学生走进实验室,针对具体的实验仪器,讲解设备构成,让研究生亲自动手全程完成实验。贵重设备可能不宜人人使用,但可以请研究生全程观摩实验,并同专职实验员或博士生深入讨论和交流,鼓励学生撰写实验心得。

采取物理实验与数值实验结合的教学模式,把基于计算机仿真技术的软、硬件平台应用于岩石水力学教学中,拓宽传统实验教学中的实验对象,通过鼓励、指导学生自发设计模型进行数值仿真分析,开拓学生视野,激发学生的思维能力和创造性,有利于学生理解和掌握教学内容,同时也可以促进教学人员科研能力的提高,还能在一定程度上弥补部分实验设备缺乏的不足。此外,还可以采用现场实地调研的实践性教学方式。厦门市地质和地理环境复杂多样,雨季频繁,构成了滑坡灾害易发的基本条件。根据厦门的工程地质条件,选择华侨大学附近的集美区后溪镇(2007年被确定为厦门市14处重要地质灾害地点之一)为调研场所,在由暴雨导致该地区边坡滑坡的灾害现场,讲解水力耦合作用下岩土体的变形和破坏规律,帮助学生更形象地理解岩体水力学的水力耦合基本理论。当然,每一所高校,每一位教师的特点不同,必须根据本单位实际的软硬件条件,确立课程教学改革的具体方式,而不是盲目借鉴其他重点院校的教学模式。岩体水力学课程专业性较强,建议在研究生第一学年的下学期开设。

(四)结合教师科研项目,提升教学品质

近几年,华侨大学积极鼓励教师进行科学研究。岩土工程专业教师组建岩土力学与地下工程科研创新团队,承担了国家自然科学基金“深部裂隙岩体HM耦合作用下的声学特性及参数研究(批准号51109084)”、“卸荷作用下岩石渗透性与损伤协同演化规律及主被动式声学表征(批准号51374112)”,以及多项省部级、地厅级科研项目。教师在科学研究过程中,查阅大量文献资料,紧密跟踪国际和国内的研究前沿,时刻关注岩石水力学发展和最新的学术成果。通过不断努力,比较准确地把握到学术研究的发展方向,掌握了岩体水力学研究的一些新的实验和理论分析技术,对水力耦合作用下岩石的强度、变形、损伤破裂和渗透性演化特性,以及卸荷条件下岩石渗透性与损伤协同演化的宏细观表征等方面有了一定突破性认识,获得了岩体水力学的新知识,教师自身的综合素质也得到了一定提高。将科研体会和成果融入教学中,进一步提高教学的理论起点,深化教学内容,能够让课程教学跟上岩体水力学学科最新进展。例如:结合笔者所在科研创新团队近期开展的渗透压–应力耦合作用下的岩石渗透率与变形关联性三轴试验研究,以物理实验为基础,让研究生借助高性能计算机,利用PFC2D颗粒流分析软件,建立符合室内砂岩渗透压–应力作用三轴试验的数值模型,定义流体域和流固耦合的控制方程,模拟岩石在不同围压和渗透压组合条件下三轴压缩试验。图1为不同时步试样孔隙压力分布情况,图2为微裂纹分布模拟和试验破坏结构照片,图3为不同渗透压下岩石渗透率云图。结合物理实验和数值仿真结果,和研究生一起讨论荷载和孔隙水压力共同作用下,岩石的宏观变形发展、细观裂纹发育、剪切带内外应力状态、孔隙率特征、渗透率演化特性等。

篇7

(1)授课任务繁重。岩土工程专业课学习周期比较长,内容枯燥。尽管采用了多媒体等现代教学手段,但是知识体系繁杂,信息量太大,枯燥的理论分析或叙述,很难激发学生的兴趣;因此,形成了老师讲,学生睡的局面。而老师为了完成规定的授课任务,很少与学生互动,偶尔有问题穿插,学生也茫然不知所以,结果形成了自问自答的局面。

(2)理论和实践脱节。?r土工程专业课实践性很强,学生很难把书本上的理论知识和实践联系起来,学生普遍感觉学习过程中枯燥无味,不知道其具体使用方法。在传统教学活动中,教师大多按照章节顺序逐一讲解,并以案例说明;但是由于这些案例都是针对某一个知识点的而设计的,因此一门课往往会有多个案例,而且往往这些案例之间的关系并不大,因此学生也只能零碎、片面地看待问题,综合分析问题的能力得不到提高。而且,最为重要的是,一旦遇到实际问题,学生更不知如何下手,更难以全面分析并给出综合性的解决方案。因此,采用案例教学法可以有助于摒弃“填鸭式”教学方法,教会学生如何积极有效地学习,提高学生认识问题、分析问题及综合解决问题的能力。

(3)课程体系繁杂,难以综合掌握。岩体工程专业的课程体系繁杂,具有知识跨度大、实践性强、案例典型等特点。课程所含理论知识涉及力学、工程技术、经济与管理等多学科领域,学生往往难以整体掌握。但是岩土工程专业课程与工程生产活动密切相关,课程内容是工程实践的总结,课程的内容大都和典型工程设计及其施工实践相关,这一特点为岩土工程专业研究生案例教学的实施奠定了基础。

2 同一工程案例分解的顺序模块教学法的具体实施

由于研究生大多经过本科阶段的学习,对本专业的知识体系大都有一定程度的了解和掌握,这是案例分解并进行顺序模块教学活动的一个重要前提。本文仅以某隧道工程为案例,讲解该教学方法的应用。首先以该隧道工程为案例分解为不同的模块,进而设计参与该案例的课程如:《工程地质学》、《高等岩土力学》、《隧道施工技术》和《岩土工程数值计算》等。课程的设计和展开将按照下列顺序进行:

(1)《工程地质学》的授课教师根据该案例的工程背景,详细讲述工程的水文地质条件及岩层岩性特征,同时介绍教材中的相关基础理论知识。

(2)《高等岩土力学》的授课老师结合该工程的实际条件,讲述相关岩体的物理、力学特性,重点介绍该工程岩体的力学模型及其相关参数的确定方法。

(3)在上述老师介绍实际工程背景的基础上,由《隧道施工技术》课程针对性提出该工程的施工方案设计及其实施过程。同时介绍其它施工技术的适用性及其适用条件。

篇8

2软件功能

2.1基本功能

①显示工程地质(地质工程、岩土工程及相关专业)专家基本信息,包括姓名、性别、出生年月、技术职称、工作职务、工作单位、单位性质、联系方式。②显示专家专业特长,工作领域。③打印专家表。④按照入库序号、姓名和工作单位排序,方便检索。⑤可随时登记入库。

2.2查询

按照姓名、出生年月、工作单位、单位性质、技术职称、专业特长、工作领域等单个字段查询,查询的结果可显示专家基本信息、专业特长和工作领域,打印专家表。

2.3高级查询

多个字段的组合条件查询,查询结果可制作报表。

2.4数据库维护

数据库管理员能够轻松完成数据库的日常维护工作,如添加、删除、查询等。

专家库可用于人事档案管理、查找工程咨询专家、聘请工程项目评审专家、查找稿件评阅人、聘任学位论文审阅人等。

3系统界面及功能模块

3.1主界面

全国工程地质专家库系统主界面如图1所示。界面包括菜单区、查询区、信息管理区和信息显示区。菜单包括记录、查询、管理员和帮助等项。查询区包括单个字段的简单查询和高级查询按钮。信息管理区由基本资料、专业特长、工作领域、备注、全表浏览、打印、退出按钮组成,点选不同的按钮,信息显示区将显示不同的信息。

3.2高级查询界面

点击主界面窗口中查询区的高级查询按钮会弹出高级查询窗口,如图2所示。通过该窗口可生成查询条件、选择结果中要显示的字段、选择排序字段、选择组合查询条件,并执行查询。查询结果由查询结果窗口(图3)显示出来。

3.3查询结果窗口

点击高级查询窗口中的开始查询按钮就可弹出查询结果窗口。查询结果窗口左上部分显示符合查询条件的记录,右上部分是打印全部结果按钮和打印选中结果按钮。下部是选中专家的详细信息,当点选左上部的不同专家,其详细信息会改变。

3.4查询结果报表打印窗口

点击查询结果窗口中的打印全部结果按钮将弹出查询结果报表打印窗口,如图4所示。上部是打印按钮、导出按钮和缩放比例下拉列表框,中间是报表显示区,下部是页码显示和翻页按钮。

3.5选中结果报表打印窗口

点击主界面信息管理区打印按钮和查询结果窗口中的打印选中结果按钮将弹出选中专家资料报表打印窗口,如图5所示。

3.6数据库管理员界面

点击主界面管理员菜单下的管理员登陆菜单项后,弹出管理员登陆对话框(图6),输入帐号和密码后,点击确定按钮进入数据库管理员界面(图7)。

数据库管理员界面由菜单、工具按钮、专家信息编辑区和全表数据浏览和编辑区组成。工具按钮包括移动记录、添加、删除等按钮组成,专家信息编辑区用来编辑专家信息,全表数据浏览、编辑区浏览和编辑数据库记录。

4工程地质专家库系统开发

4.1数据库

(1)信息来源

通过学术会议、信件和网上下载(见/xwdt-040106.htm)等途径分发“全国工程地质专家库专家登记表”,收集反馈回来的原始登记表,录入数据库中。

(2)创建数据库

在MicrosoftOfficeAccess软件中建立专家数据库。数据库中包括的字段有:姓名、性别、出生年月、工作单位、技术职称、工作职务、专家特长、工作领域、通信地址、邮政编码、联系电话、传真和电子邮箱等,基本涵盖了专家的基本信息、特长、工作领域和联系方式。

(3)数据录入

数据录入方式有两种方式:①在Access中录入;②数据维护方式,即在数据库管理员界面中输入数据。

所有专家的信息存储在一个数据表中,每位专家的信息在数据表中表现为一条记录。

4.2系统功能的代码实现

采用MicrosoftVisualBasic6.0作为开发工具,运用其集成开发环境和快速应用程序开发技术,根据软件的功能模块分别创建程序界面和窗口(图1-图7)。开发过程中使用了ADOData控件、DataGrid控件、DataEnviornment设计器、DataReport设计器等。

下面着重叙述高级查询的实现。在高级查询窗口中,用户填写的查询条件包括查询结果中显示的字段、where子句查询条件、字段排序子句,用字符串连接生成SQL查询语句。然后在专家数据表中查找符合查询条件的专家记录并在查询结果窗口中显示给用户。完成高级查询功能的程序片段如下:

PrivateSubcmdQuery_Click()

DimstrKeyAsString

DimstrSQLAsString,strsqlAllAsString

DimstrOrderSQLAsString

DimstrOrderAsString

DimintLenKeyAsInteger

DimiAsInteger,jAsInteger

''''查询结果至少要显示一个字段

IflstKey.SelCount=0Then

MsgBox"查询结果中至少要显示一个字段!",vbMsgBoxSetForeground,"缺少字段"

ExitSub

EndIf

IftxtCondition.Text=vbNullStringThen

MsgBox"请加入查询条件!",vbOKOnly+vbInformation,"提示"

ExitSub

EndIf

''''查询结果中显示的字段

strKey=vbNullString

strkeys=vbNullString

Fori=0TolstKey.ListCount-1

IflstKey.Selected(i)=TrueThen

strKey=strKey&lstKey.List(i)&","

EndIf

strkeys=strkeys&lstKey.List(i)&","

Next

strKey=Mid(strKey,1,Len(strKey)-1)

strkeys=Mid(strkeys,1,Len(strkeys)-1)

''''where子句查询条件

strWhere=vbNullString

IfLen(Trim(strQuerySQL))>0Then

strWhere="where"&Trim(strQuerySQL)

Else

strWhere=vbNullString

EndIf

''''字段排序字句

IflstOrderKey.ListCount>0Then

mstrOrderSQLs=""

intLenKey=0

Forj=0TolstOrderKey.ListCount-1

strOrderSQL=lstOrderKey.List(j)

IfoptOrder(0).Value=TrueThen

intLenKey=InStr(1,strOrderSQL,"(升序)",vbTextCompare)

strOrder="ASC"

Else

intLenKey=InStr(1,strOrderSQL,"(降序)",vbTextCompare)

strOrder="DESC"

EndIf

IfintLenKey>0Then

strOrderSQL=Mid(strOrderSQL,1,intLenKey-1)

IfmstrOrderSQLs<>""Then

mstrOrderSQLs=mstrOrderSQLs&","

EndIf

mstrOrderSQLs=mstrOrderSQLs&strOrderSQL&strOrder

EndIf

Nextj

mstrOrderSQLs="orderby"&mstrOrderSQLs

Else

mstrOrderSQLs=""

EndIf

''''字符串连接生成SQL查询语句

strSQL="select"&strKey&"from"&"专家库"&strWhere&mstrOrderSQLs

strsqlAll="select"&strkeys&"from"&"专家库"&strWhere&mstrOrderSQLs

adoconnection.ExecutestrSQL

adoconnection.ExecutestrsqlAll

IfErrThen

MsgBoxErr.Number&vbCrLf&Err.Description&Err.Source,vbCritical,"SQL语句错误"

Err.Clear

ExitSub

EndIf

SetrecResult=NewADODB.Recordset

SetrecKeyword=NewADODB.Recordset

frmQueryResult.strSQL=strSQL

frmQueryResult.strSQL=strsqlAll

recKeyword.OpenstrSQL,adoconnection,adOpenStatic,adLockOptimistic

recResult.OpenstrsqlAll,adoconnection,adOpenDynamic,adLockOptimistic

IfrecKeyword.RecordCount<=0Then

MsgBox"没有您要查找的记录!",vbInformation+vbOKOnly,"找不到记录"

ExitSub

EndIf

''''查询结果显示

frmQueryResult.ShowvbModal

篇9

0、引言

淮海地区位于鲁南丘陵与苏北平原交汇的残丘平原上, 其地貌为侵蚀平原, 根据多年实际勘察了解, 除残丘外, 平原区第四系地层的上部广泛沉积了巧软土, 一般多为土质松软、饱和、高压缩性、工程性质较差的粉砂、粉土或淤泥质软粘土等。笔者通过收集大量资料, 对饱和粉土的工程地质性质进行了分析总结。

1、粉土的分布与成因

统观淮海的地貌形态, 四周被低山、丘陵所环抱, 中间低平。从地质成因方面分析, 本地区在第四纪全新世有沐水、泅水泛滥, 后有黄河冲积, 形成了泛滥冲积平原及冲积垅状高地。

淮海地区泛滥冲积平原分布较广, 标高一, 地势平坦, 从北西向南东微斜, 坡降很小, 表层为第四系全新统泛滥冲积粉土。冲积垅状高地即废黄河高漫滩, 分布于黄河故道两侧, 自北西向南东穿越市区, 由黄河带来的粉砂、粉土堆积而成, 标高一。两侧形成天然坝堤, 高出泛滥冲积平原一。

2、粉土的指标及相应的工程地质特征

据GB50021 - 2001 及GB50007 - 2002 规范,粉土定义为塑性指数≤10 且粒径>0. 075mm 的颗粒含量不超过全重50 %的土体。由砂粒、粉粒、粘粒组成。论文格式。粉土以塑性指数IP ≤10 为下限与粘性土分界;以粒径> 0. 075mm 的粒组含量不超过全重50 %为上限区别于砂土。这类土呈现的特征主要是粉粒所具有的特征,是介于砂土与粘性土之间的一类特殊土。因粉土的颗粒较粘性土大,故其粒间联结较弱。粉土有接近砂土及粘性土的双重特性,这主要是因为粉土既含有砂粒又含有粘粒成份的缘故。实践中证明:当粉土中的砂粒含量较高时,其特征与砂土相似;当粘粒成份含量较高时,粉土表现出来的性质则与粘性土接近,故有条件时我们可据粉土中颗粒的级配情况将之划分为砂质粘土(粒径< 0. 005mm 的颗粒含量不超过全重的10 %) 及粘质粉土(粒径< 0. 005mm 的颗粒含量超过全重的10 %) 。论文格式。 粉土中水与土颗粒表面的作用发生了质的变化,明显地与粘性土和砂土不同:因粘性土存在结合水,它与矿物颗粘表面的物理化学作用以及其自身结合水的变化,对粘性土的性质影响极大,形成了流塑—软塑—可塑—硬塑—坚硬等不同的土体状态。而砂土孔隙中存在的是自由水,水的存在与否几乎对砂土土性无多大影响,而粉土中水与颗粒间的毛细作用占较大的优势。据研究,淮海地区粉土在不饱水状态下有一定的强度及硬实性,在饱水状态下则易散化与结构软化,致使强度降低、压缩性增大。粉土在失水状态下具有迅速的孔隙水压消散过程,主固结完成很快,因而伴随明显的强度增大。

通过广泛搜集资料,统计出淮海地区范围内含水量和孔隙比统计频数图如图1、图2所示。

图含水统计频数图

从表、图1及图2可看出天然饱和粉土的含水量、孔隙比等土工参数指标的变化范围较大,说明饱和粉土在全区分布范围内,其工程地质性质不均含水量较高、孔隙比较大, 中等压缩性说明其工程地质性质较差。

3、粉土液化强度

下图为典型的粉土液化试验记录曲线。(取淮海区粉土试样)。将不同循环应力σd 条件下粉土液化时的循环次数 与动剪应力比σd /2σ′在单对数坐标系作图,可以得到液化强度曲线。图3为不同密度状态条件下的液化强度曲线,从图1中可以看出对于重塑粉土试样,密实度是影响抗液化强度的一个重要因素,随粉土干密的增大,抗液化能力增强。图2为不同细粒含量下液化强度曲线。从图中可以看出,当细粒含量从80%减少到55% ,土样的抗液化阻力也随之减小。但是细粒含量为45%的土样的抗液化阻力却稍大于细粒含量为55%的土样,这表明当粉土中细粒为55%时,抗液化强度接近最低。在图2中,细粒含量为45%和55%的土样的液化强度曲线几乎重合,根据的粉土中细粒含量对液化强度的影响作用存在分界点的概念,可以推断本区试验所用的土样,当细粒含量在50%左右时抗液化强度最低,当细粒含量小于50% ,土样的抗液化强度将随着细粒含量的减小而增大。细粒含量为50%也相当于平均粒径大约等于0. 074 mm。

图1 不同干密度粉土抗液化强度曲线 图2 不同细粒含量土样抗液化强度曲线

4、粉土液化分析

笔者认为,在P c 小于9%时, 粘粒分布在粉粒周围以点接触式胶结着粉粒。在力的作用下, 粉粒沿粘粒发生滑移。此时, 粘粒起了以为主的作用, 动剪应力比随粘粒含量的增加而减少; 当粘粒含量大于9% 时, 粉粒周围有足够厚的粘粒层, 此时的粘粒不但胶结粉粒, 也有自身固结的作用。随着粘粒含量和时间的增加, 粘粒对粉土颗粒的胶结和自身结构调整作用也将增强, 此时粘粒主要起稳定、镶嵌粉粒的作用。所以, 随粘粒含量的增加而动剪应力比也逐渐增大。无论那组干重度下, 粘粒含量P c= 9% 抗液化强度最低。通过一些试验及分析得出:粉土中所含粘粒量是影响其液化的重要因素。论文格式。通过对本区含天然粘粒的粉土进行实验,动剪应力比在P c= 9% 时最低, 并且曲线呈向上开口的抛物线型;粉土中无论粘粒含量如何, 都有随干重度增大抗液化强度增强的规律, 即干重度愈大,土的抗液化强度愈高, 反之, 抗液化强度降低。

5、小结

由于饱和粉土工程地质特性的变化范围较大,在岩土工程勘察时, 应针对具体工程项目,

对饱和粉土地基进行更详细更具体的分析研究。本文对淮海区的粉土进行了一定的实验分析和讨论,研究了干密度、细粒含量对粉土的抗液化强度的影响。分析发现该地区的粉土的抗液化强度并不是随细粒含量的变化而单调变化,而是当粉土中细粒含量达到某一定量时,粉土的抗液化强度将达到最低点。淮海区的粉土有粘性粉土及砂质粉土之分。水在粉土中影响较大,不饱和水状态有一定的强度和硬实性,饱和水后易散化,力学强度大幅下降等。

参考文献:

【1】( 王家斌、粉土的工程地质特征及承载力特征值的确定 西部探矿工程呢2004)

【2】(牛琪瑛、粉土抗液化特性的试验研究、太原工业大学学报、1996年9月)

【3】(刘辉、石磊论徐州市饱和粉土的工程地质特性、江苏煤炭、2003年第三期)

【4】(李志毅、杨裕云 工程地质学、中国矿业大学出版1994年10月)

篇10

高边坡及不稳定体是水利水电工程中常见的地质问题,对水库大坝的安全有重大隐患,尤其是面板坝,对边坡的要求极高,以下从五个方面对不稳定体进行分析并提出处理意见。

1不稳定体的地质条件

不稳定体处于坝址左岸边坡,大致以趾板线方向分界,分别出露凝灰岩、粉砂岩两个岩组,趾板线以上多为厚层块状凝灰岩夹粉砂岩,下游方向多为薄层状粉砂岩,由于岩体耐风化程度不同,前者多表现为陡坎,后者多呈沟谷。

通过测绘资料分析,主要发育NW向和NE向两组断层,其中NW向断层从左坝肩及左岸趾板线通过,表现为陡倾角顺层挤压断层,该组断层规模较大,对左岸趾板边坡影响较大;NE向断层规模较小,对左岸影响也小。

2对主要结构面的认识

F2断层为出露于河谷左岸的一组NW向低序次的缓倾角断层,它是一组与岩层面产状走向近一致的扭性结构面。地表出露长度约100m,上游为F9一组NW向陡倾角断层截断,下游延伸至河床。

F9断层,断面有厚3cm绿色糜棱岩,下盘岩体相对较完整,其上盘岩体已沿F9产生过滑动,断层带有5m厚的滑坡破碎带,呈散体结构。

现在对不稳定体叙述如下:靠岸里发育一倾坡外的F9断层,其构成了不稳定岩体后缘及南侧切割面,与F2底滑面组合构成了左岸不稳定体。

3不稳定体稳定分析

以节理裂隙面产状、发育情况及其可能的不利组合做为稳定分区原则,以745m高程上下和F2断层上、下盘为界做以下稳定分区。

(1)稳定性差的Ⅰ区

①范围:F2断层面以下至趾板线范围。

②岩性:凝灰岩、凝灰质砂岩及粉砂岩,岩体呈镶嵌碎裂结构。

③出露断层:倾坡外的一组缓倾角断层F2

④变形方式:F2这组缓倾坡外断层,是岩质边坡稳定性最差的,极大可能被顺层挤压断层以及层面切割,产生拉裂及滑塌变形。

(2)稳定性极差的Ⅱ区

①范围:自745m高程平台至F2断层的上盘岩体。

②岩性:凝灰岩和粉砂岩,呈碎裂镶嵌结构。

③出露断层:主要为一组走向NNW倾向岸里的中等倾角断层。

④变形方式:主要可产生拉裂变形,该区发育NNW倾坡内中等倾角断层的分布,在平硐中遇到该组断层就产生塌方,带内物质松散无胶结,使Ⅱ区岩体呈现“软弱相间”状态,该组断层极易与F2组合产生塌滑。

(3)基本稳定区Ⅲ区

① 范围:745m高程平面以上部分,地形相对高差50~60m。

② 出露凝灰质砂岩、粉砂岩和少量厚层块状凝灰岩。

③ 据地表测绘,仅出露少量倾坡内的断层。

④该区已到不稳定体边缘,倾坡内断层无崩塌可能,只能是风化卸荷影响,产生小的局部变形,对趾板无任何影响。

4不稳定体稳定计算

按平行断面法计算不稳定体总体积11万m3,岩体天然容重取27KN/ m3,则岩体自重W=2.97×106KN。

① 基本荷载作用下由刚体极限平衡原理计算边坡安全系数

(其中天然状态下取C=59KPa,φ=25°):

Fs=■=■=1.25

② 特殊荷载作用下由刚体极限平衡原理计算边坡安全系数:

Fs=■=■

其中Fi为水平向地震惯性力,其计算公式:

Fi=ahξGEiαi/g=2.1×105KN

Fs=1.05

由计算可以看出,不考虑水的作用和地震惯性力作用时,在基本荷载作用下Fs=1.25;在考虑地震影响时Fs=1.05,不稳定体处于临界稳定状态,均不能满足岩质边坡安全系数1.3~1.25的要求,需及时处理。

5不稳定体处理意见

(1)稳定性差的Ⅰ区(F2断层面以下至趾板线范围)

该区发育F2缓倾坡外断层,且处于库水位以下,是岩质边坡稳定性最差的,极大可能被顺层挤压断层以及层面切割,产生拉裂及滑塌变形。但F2断层下盘岩体结构面相对较少,节理面闭合,平直,岩体完整性相对较好,对该区的处理建议以锚固处理措施为主,并做好不稳定体表面的排水以及布置边坡变形观测系统。

(2)稳定性极差的Ⅱ区(自745m高程平台至F2断层的上盘岩体)

据分析F2断层上盘岩体有可能沿一些后缘切割面产生局部滑塌。且745m平台到趾板线距离为50m,相对高差较大,因此根据不稳定体的规模及稳定现状,建议对高程745m以下至F2底滑面岩体应继续清除处理,在清除过程中,注意爆破控制,以防已滑动的破碎岩体,在爆破过程中进一步破坏。并对面板进行封盖处理,以防开挖过程中不稳定体危及面板安全,并对开挖坡面及时喷锚处理,在开挖坡面上设置马道。

(3)基本稳定区Ⅲ区(745m高程平面以上部分)

该区主要断层极少,未形成不利组合,该区已到不稳定体边缘,倾坡内断层,无大的崩塌可能,但该段岩坡长时间暴露在外,风化强烈,依然存在一些小的不稳定体,目前处于稳定状态,该区对水工建筑物影响不大,但Ⅱ区处理后,此处可能会产生滑塌,建议在处理Ⅱ区前将该处削坡处理,并对边坡做一些喷锚支护。

6结语

边坡岩体的稳定并不是由单一因素造成的,而是与边坡的构造环境特征、地形地貌特征及结构面的发育特征等方面密切相关,各种因素是相互作用、相互影响的。地形条件决定了边坡形态,结构面组合是岩体边坡稳定的控制因素。

参考文献

[1](GB50487-2008)水利水电工程地质勘察规范.

[2]水利水电部水利水电规划设计院主编.水利水电工程地质手册.北京:水利电力出版社,1985.

篇11

一.前言

随着铁路事业的不断发展,各种各样的铁路病害成为分布广并且治理难的病害,所以要了解铁路路基病害类型和机理,并作有效的检测,帮助提出解决措施,对铁路路基的养护和治理有重要的作用意义,下面将进一步阐述有关内容。

二.铁路路基病害类型及其原因

1.挤出变形

挤出变形具体表现为路肩隆起、侧沟被挤等,是由土体强度不足而产生的剪切破坏或塑性流动引起的。

2.翻浆冒泥

翻浆冒泥分为道床性和基床性两种。道床性是由于道床板结,阻塞路基面降水的顺利排出而形成的。基床性是由于基床土质不良,在列车荷载作用下液化成泥浆,由于荷载的反复作用形成抽吸作用,泥浆受挤压向上冒出。其发展过程一般为道心积水阶段、冒砂阶段、局部翻浆冒泥阶段、区段翻浆冒泥阶段。

3.路基下沉

(一)主要特征和一般表现形式

路基下沉是指路基压实质量不足或基底松软,在水和列车荷载作用下产生局部或较大面积的竖向变形。一般在初期运营时,沉降变形会逐渐减小。但当荷载增加或水渗透导致填料含水量增加,会使路基沉降变形加大。路基下沉可分为基床下沉、堤体下沉和基底下沉。

一般不发生翻浆冒泥,雨季下沉较快,旱季下沉较缓,道碴囊越来越深(一般>50cm),有时软卧层较薄,道碴囊较浅时就发展成为挤出。轨道的水平、高低、方向有较频繁,较大的变化,道床石碴因陷入碴囊而逐步减少,每年均须适量补充石碴。路堑处侧沟长年呈湿润状态或有明显的地下水从沟边或沟底渗出。有时有泥浆从轨道一侧的沟边或沟底冒出。

(二)成灾机理

填方处密实度不满足要求,堆填或碾压不够,路基土在自重应力作用下发生欠固结现象。基底地基土存在松软土层,其在列车荷载作用下主固结和次固结时间较长,沉降会持续发展。或是地基处理不当导致的不均匀沉降,引发病害。路基各部分刚度差异,在路基内部内可能造成较大的附加应力,导致路基发生强度破坏。对于刚度较小的路基,也可能产生较大的沉降变形。地下水位的升降,会引起起填料容重、孔压的发生变化,特别是负孔压,会产生较大的附加应力,从而造成路基的附加沉降。另外,水的影响作用会严重影响基床的强度和变形,引发不均匀沉降变形。填料均匀性差,其颗粒组成和工程性质差异,其产生的不均匀沉降变形,亦会导致路基本体局部开裂或沉陷。填方路基过大侧向变形也是导致路基产生差异沉降的一个重要因素。

4.边坡冲刷

指较高大的土质路堑、路堤边坡、岸坡(滨河、河滩、海滩和水库(塘)的路堤边坡)或严蘑风化的软质岩石边坡受到水流的冲蚀、冲刷作用而形成冲沟或冲坑为边坡冲刷。边坡冲刷分为边坡淘刷和边坡冲沟。

5.路基变坡滑塌

路基变坡滑塌指的是因为黏土质边坡表层受地表水的下渗或者受到地下水的影响,导致表层的土壤含水饱和,而失去了较为稳定的边坡层,造成了浅层变坡的坍塌或者出现溜滑现象。边坡的滑塌造成了路堤溜坍范围不超过轨枕端部,对于路堑地段边坡的路基溜坍,将不会影响到路基基床的稳定性能。

6.陷穴

指路基下及其附近存在洞穴,其坍塌可引起基床和道床突然沉落,轨道悬空,中断行车,甚至造成列车颠覆。陷穴病害分为黄士陷穴、岩溶洞穴、盐蚀溶洞和墓穴兽洞等。

7.滑坡

指影响路基稳定的土(岩)体滑动。分为边坡的深层滑动、路基滑移及山体滑坡。

8.冻害

发生在寒冷地区,如路基上为透水性较差的细粒土,当含水量较高或基面积水,在冻结过程中,中水重新分布和聚集形成冰块,又引起不均匀的冻胀现象。

9.水浸路基

指实际浸水超过设计水位的路基,被水浸或淹没,引起一定的沉降或局部坍塌,当路堤缺乏足够的防护和加固设备时,导致路基稳定性受到影响或破坏。

三.铁路路基病害产生的机理

1.病害的发生取决于特定的地质环境

2.病害的发生与相应的气候变化和列车振动荷载息息相关

前者是病害发生的内因。后者是病害发生的外因。对某一具体的线路来讲,其地质条件是客观存在,虽然它也在不断地发生变化,但基本上是一种较为稳定的量,因此,在一定程度上路基病害的发生频率和程度将取决于气象水文条件和列车长期重复振动荷载的影响,路基病害的产生和发展是各项因素综合作用的结果。观测表明,在列车轮轴荷载的重复作用下,路基的渐进破坏主要表现为过大的塑性变形,这种塑性变形累积到一定程度将会使路基填土产生塑性流动,并产生路基病害。

研究表明:产生这些病害(破坏)的原因在很大程度上依赖于路基土在循环荷载作用下的抗剪强度特性,而后者与土的饱和度密切相关。随着饱和度的增大,土的动强度(即经过若干次循环加载后仍处于稳定状态的最大偏应力比)将显著降低。处于轨道下方的路基土因反复受到挤压和固结而产生过大的累积塑性变形,从而形成所谓的道碴坑以及枕木下方的积水坑。尤其是在雨季,基床填土含水量达到饱和状态,动强度显著减小,从而使道床工作性能急剧下降,甚至会导致线路产生严重的不平顺而影响行车安全。

四.铁路路基病害的检测方法

为了有效的整治铁路路基的病害,首先要进行准确到位的病害检测,深入的分析路基病害的原因。按照铁路既有线路的特征,铁路路基的检测不能影响或者少影响列车的形式,因此需要采取的监测手段,要最大程度上实现快速、准确,减少因为病害检测造成的不便可采用轻型动力触探、地质雷达、瞬态面波法和取土试验等多种手段对线路进行试验检测,具体步骤和方法如下:

1.在病害多发地段进行开挖横沟,查明路基的几何特征

2.使用探地雷达法以及瞬态面波法

探地雷达法的优点是能够直观反映出道床的几何形态而且表层分辨率高,能够实现路基结构分层的探明;能够探测出路基病害的类型及程度和具置,此法可以用来分析道床、路基各个土层的地质情况;其测量的数据为基床的电性参数,不能给出路基的力学特性。因为高频信号的限制和道砟的散射,瞬态面波法表层状况无法精确地反映出土层的真实状况,探地雷达法很好的弥补了这方面的不足,而瞬态面波法能够随深度的变化准确反映出路基土的力学参数,能够测试到比较深的深度,弥补了探地雷达法不能给出路基的力学特性的不足。对铁路线路路基病害的检测,主要就是检测路基表层和其下路基土的承载能力,综合运用两种检测方法,能够实现很好的检测路基的目的。

3.对铁路路基强度,路基刚度等参数的分析

重型动力触探是进行路基力学性能的探测为主,是按照击数×10cm-1来标线路基各个位置的力学性能的参数指标,击数越高表明路基土质的性能越好,路基的强度也就越,能够从不同深度位置来测试出不同深度下土的力学性能,以更好的进行路基状况的分析。轻型动力触探与重型动力触探原理基本上是相同的,只是重型动力触探以击数×30cm-1来展现铁路路基,每个位置的力学性能指标。针对现有的铁路线路的特征,对现有路基测试要按照原位以及区段测试相结合的测试措施,这样能够实现对既有铁路路基的基本状况,进行一个综合的评价,为铁路路基病害的预防和处理提供实际的资料。

五.结束语

总之,铁路路基病害的类型各种各样,针对不同类型提出不同的检测方法和解决措施很有必要,这样才能彻底有效地解决铁路路基病害,使铁路正常进行运营。

参考文献:

[1]许玉成.浅析路基常见病害成因及防治措施[J].路基工程,2011(4):64—66.

[2]彭华,张鸿儒.铁路路基病害类型、机理及检测与整治技术[J].工程地质学报,2010,13(2):195—199.

篇12

文章编号:16721683(2013)05008605

地裂缝是一种渐进型地质灾害,在世界上很多国家和地区都有发育,国外如美国、墨西哥、日本等国,国内如西安、大同、苏州、无锡、常州、衡水、邢台、北京等地区。由于地裂缝两侧地质体发生相对差异沉降和水平方向错动与拉张,使得地裂缝所到之处地下设施遭受严重破坏,地表建筑物失稳、道路破裂,不仅严重影响城市规划建设,有时也给人民生命财产造成严重威胁[18]。

在地裂缝研究中,确定地裂缝影响宽度、预测地裂缝活动趋势和活动量预测是亟待解决的重要问题,是制定合理的地裂缝防治措施的前提工作。这些问题直接关系到避让带宽度的设置、工程结构形式的选择、城市规划建设和建设工程安全。对于不可避免的跨地裂缝带建筑物,如果实际避让距离和实际错动量超过了预留避让宽度和预留位移量,造成的社会影响及经济损失难以估量。

利用模型模拟地裂缝是地裂缝研究重要的发展趋势[911]。近年来,长安大学在这方面已开展了卓有成效的工作,并取得了一些重要成果。本文采用FLAC3D软件对北京地区目前发育最强烈的高丽营地裂缝进行模拟研究。

FLAC3D可以模拟岩土或其它材料的三维力学行为,被广泛的应用在边坡稳定性分析、隧道围岩稳定性分析和工程地质数值分析等研究中,并且取得了行业内的普遍认可。

1高丽营地裂缝概况

高丽营地裂缝最早发现于20世纪90年代,地裂缝走向大致呈NE45°-60°,与黄庄-高丽营断裂相一致,由西王路村向北东延伸到北京北六环以外,向西南经唐自头村穿越京承高速公路,沿华都肉鸡场、土沟村、北七家卫生院、普罗旺斯别墅区、八仙别墅小区延展(图1),长度约6 km,裂缝宽度一般几毫米至十几毫米不等,最大200 mm。地裂缝两侧地面明显差异,呈西北高、东南低状态,主要表现为地面塌陷、墙体开裂、地表变形[2,5]。

贾三满等[2]认为高丽营地裂缝为复合型地裂缝,地裂缝受黄庄-高丽营断裂的控制,是黄庄-高丽营断裂的地表迹线,是基底断裂活动在地表浅部的延伸,地裂缝与下部构造断裂面呈明显的重接复合关系,地裂缝形成是断裂蠕滑变形与地下水下降引起的地面差异沉降共同作用的结果。

2研究区地层

研究区内属于温榆河冲洪积扇平原区,南侧有温榆河通过,总体地势为北高南低。温榆河东北侧地块地面高程2663~36.87 m,温榆河西南侧地块地面高程为25.92~3390 m,河床高程约25.0 m,河面宽约200 m。地表均被第四系地层覆盖,沉积物成因类型较简单,以河流的冲积物为主体。地裂缝两侧地层以收集的地热钻孔资料为基础,进行了简化,见表1。表中的物理力学指标为各地层岩组的平均估计值。

3数值模拟方案

根据研究区的水文地质与工程地质条件,以及地裂缝的影响因素。计算模型以黄庄高丽营断裂(地裂缝)为纵轴,长度取3 500 m,在横向以纵轴为基准轴线,下盘侧取1 000 m,上盘侧取1 800 m,即模型宽2 800 m,地面标高北部为35 m,南部为29 m,上盘(东南侧)基岩面标高取-1 084 m,下盘(西北侧)基岩面标高取-429 m。断裂带(地裂缝)宽度暂取10 m。数值模拟的断裂带倾角取76°(图2)。

4数值模拟结果分析

4.1构造应力作用下地裂缝的发展及其影响

篇幅所限,只选择基岩断块垂直错动0.2 m和5 m时的模拟结果进行分析。

当基岩断块垂直错动0.2 m时,垂直沉降分布见图3,水平位移分布见图4,最大主应力分布见图5,最小主应力分布见图6。

当基岩断块垂直错动5 m时,垂直沉降分布见图7,水平位移分布见图8。

在研究区域垂直于地裂缝轴线,选择河流北侧600 m测线,得到测线上的地表沉降、水平位移分布对比曲线(见图9、图10)。可以看出,地裂缝两侧存在明显的差异沉降,在剖面上呈现“牵引挠曲”现象;研究区地表沉降和水平位移随着基岩断块的垂直错动距离增大而增大。

根据地表相近两点的差异沉降与距离,计算测线断面的各部位的地表(地基)平均倾斜值,见表2。计算表明,当基岩断块垂直错动0.2 m时,地表(地基)平均倾斜值大于2‰的区域几乎不存在;当基岩断块垂直错动0.5 m时,地表(地基)平均倾斜值大于2‰的区域长度为距离地裂缝约52 m;当基岩断块垂直错动1 m时,地表(地基)平均倾斜值大于2‰的区域长度为74 m距离,当基岩断块垂直错动2 m时,地表(地基)平均倾斜值大于2‰的区域长度约86 m距离,当基岩断块垂直错动5 m时,地表(地基)平均倾斜值大于2‰的区域长度约130 m距离。

当承压水位降低15 m时,垂直沉降分布见图13、水平位移分布见图14。

在研究区域垂直于地裂缝轴线,选择一条测线(河流北侧500 m),拾取测线上的地表沉降、水平位移,可以得到测线上的地表沉降、水平位移分布对比曲线(图15、图16)。

根据地表相近两点的差异沉降与距离,计算该测线断面的各部位的地表(地基)平均倾斜值,见表3。

从地表沉降、水平位移、应力变化分布对比曲线可知,由于承压水头的降低,地裂缝两侧产生明显的差异沉降,但影响范围较小约10~20 m。研究区地表沉降和水平位移随着承压水头的降低而增大。地裂缝附近的倾斜值较大,随着距离地裂缝越远,倾斜值减小。综合分析认为,地下水作用下,地裂缝附近产生明显的差异沉降,其它部位以均匀沉降为主。

4.3地裂缝区域的安全避让距离

地裂缝区域的安全避让距离应是以地裂缝延展方向为轴线,垂直轴线向两侧(上盘、下盘)确定的保护建(构)筑物的有效距离。模拟结果表明,构造应力和地下水位变化影响下,地裂缝两侧均产生沉降和变形,其中远离地裂缝均产生均匀沉降,对建筑物的影响不大;但在地裂缝附近则产生明显的差异沉降,对建构筑物影响巨大。因此根据各类建筑物地基变形允许值的最严格标准,采用倾斜值0.002(即2‰)控制安全避让带。根据模拟计算结果,地裂缝安全避让距离确定为上盘(包括地裂缝带宽)80 m,下盘10 m,总避让带宽度为90 m。这与多种手段调查、试验、测试和监测结果确定的地裂缝两侧避让距离100.41 m(上盘74.27 m,下盘26.14 m)相近[4]。

5结论

(1)地下水的作用在地裂缝附近(10~20 m)产生明显的差异沉降,其它部位以均匀沉降为主。

(2)根据数值模拟高丽营地裂缝的安全避让距离确定为上盘80 m,下盘10 m,总避让带宽度为90 m。

(3)本次数值模拟假设断裂两侧地层为均质,但实际上断裂两侧地层参数非均一,地裂缝成因比较复杂,所以本次提出的地裂缝避让带宽度只是作为一种参考。

参考文献:

[1]王海刚.北京市顺义地区高丽营地裂缝灾害[J].中国地质灾害与防治学报,2011,22(3):134.

[2]贾三满,郭萌.从高丽营探槽分析黄庄-高丽营断裂与地裂缝的关系[J].城市地质,2007,4(2):2428.

[3]贾三满,王海刚,叶超,等.北京地区地裂缝勘察方法研究[J].工程地质学报,2011,(19):104111.

[4]贾三满.北京市地面沉降监测年度报告[R].北京市水文地质工程地质大队,2010.

[5]王海刚,贾三满,王荣,等.北京顺义地区地裂缝调查与成因分析[J].中国科技论文在线精品论文,2012,21(5):20552062.

[6]武 强,陈佩佩.我国城市地裂缝灾害问题与对策[J].中国地质灾害与防治学报,2002,13(2):7072.

[7]门玉明,石玉玲.西安地裂缝研究中的若干重要科学问题[J].地球科学与环境学报,2008,30(2):172176.

[8]冯利斌.北京未来科技城地裂缝成因机理及其防治对策研究[D].长安大学,2011.

篇13

2O世纪9O年代,我国设有地质类专业的学校共有61所,分别属于15个部委、8个行业公司和省市政府。其中,工科类地质专业15个。1993年,国家教委颁布《普通高等学校本科专业目录和专业简介》,工科类地质及相关专业也有1O多个,主要有:矿产地质勘查、水文地质与工程地质、应用地球物理、应用地球化学、勘察工程、石油工程、石油与天然气地质勘查等专业。1998年国家教委颁发的引导性目录中,将所有工科地质类专业合并成一个大专业——地质工程专业。目前,国内办有“地质工程”专业的大学有:中南大学、西南科技大学、西安科技学院、长安大学、安徽理工大学、山东科技大学、焦作工学院、河海大学、华北水利水电学院、中国矿业大学、西南交通大学、石油大学、同济大学、南京大学、兰州大学等;办有“勘查技术与工程”专业的大学有:中国地质大学、成都理工大学、吉林大学、石油大学等2O所;办有“资源勘查工程”专业的大学有:中国地质大学、贵州大学、昆明理工大学、吉林大学、长安大学等24所。由于这些学校原属于不同的行业部委,其侧重点不同,为了保持原行业的需要和特色,在这个地质工程专业名称下,各学校根据需要各有不同侧重面,有的侧重煤炭,有的侧重石油,有的侧重有色金属,有的侧重工程等方面。因此,同一个专业,各学校设置的课程就有很大差异,培养规格也不一样,这对于专业评估、管理等方面都造成了困难。

2.国外地质类专业教育现状

第二次世界大战后,各国都积极致力于经济发展,世界经济出现了空前的繁荣,但随之产生了诸如人口膨胀、资源枯竭、能源危机、环境恶化、生态失衡和灾害频繁等严重的社会问题。特别是资源和环境问题,是国际上共同面临的重大问题。它涉及政治、经济、科学技术、文化、社会价值观念与伦理道德、法律和政府政策等方方面面,十分错综复杂,这单靠科技进步和工程创新是无法解决的。必须从可持续发展的需要出发,由自然科学和社会科学联手方能解决。因此,国外在培养地质工程师时,强调学会综合运用多学科的知识去研究和解决问题。严格说来,国外的高等院校内没有地质工程专业,地质工科教育一般在工程领域,所设的地质类专业大多没有细分,只设“地质学”或“地球科学”专业所设课程除了数、理、化等基础课外,主要是地质学科的基本原理类课程,如构造地质学、岩石学、矿物学、地层学、地球物理学、地球化学、地质学、环境地质学、古气候学、结晶学等,方法技术类课程较少。从设立的课程可以看出,他们培养的学生主要侧重于地质学基本原理的掌握和社会可持续发展的需要。且招生规模较小,一般一个专业每年只招收1O余名学生。但是,要求学生对地质工作方法有全面的掌握,在高年级学习了一定的专业课程后,一般要求学生利用假期参加地质工程实习,因此,培养出来的学生一般仍然具有较强的科研实际工作能力,在走向社会后很快能适应自己的工作。

3.地质工程专业发展战略的几个问题

地质工科教育的问题,从根本上讲,可以归结为3个基本问题:一是人才培养目标和规格,即要培养什么样的人才;二是培养方案与模式,即如何高质量地培养出所需要的人才;三是培养规模,即在一定的时期内,要培养多少地质工科类专业的学生才能满足国家需要。新世纪的中国到底需要什么样的地质工程人才呢?我们认为,这应该根据地质科学的发展趋势、我国基本国情和国民经济建设的需要以及国际办学经验来决定。

(1)我国地质科学发展趋势。综观我国地质学科的发展趋势和任务,可归纳成以下几个方面:第一,为可持续发展提供资源保障。主要包括:能源与矿产资源以及地下水资源的发现、勘查、开发和保护;地质灾害的预测与防治;人类工程的地质基础;环境保护等。第二,全面深入认识地球。加强学科综合研究,全面了解地球系统的作用原理,为人类与自然协调发展提供指导。第三,加强高新技术的开发应用和学科发展。

(2)我国的基本国情与国民经济发展需要。首先,目前我国经济体制正由计划经济向市场经济转轨,并且市场经济体制正在逐步完善,尤其是我国加入wT0后,地质工科教育原来面向的地矿行业也在经历了体制上的根本性转变,国土资源部的政府职能和运行机制已完全不同于原地矿部。资源的勘查、开发工程、基本建设中工程地质市场等将由市场经济规律支配,而资源的监测管理、保护和分配、地质工程项目的质量监督和评估,则由政府部门通过制定相应的资源政策和法规来调控。今后地质工科教育面向的主体不再是某个部门或某个行业,而是市场。实际上,现代地质工科已波及社会经济生活的方方面面,包括资源、环境、基础工程等,普遍存在于许多产业部门和企业的生产中。因此,地质工科教育面对的领域将是十分广阔的。其次,现代科学技术加速发展引发的“知识爆炸”迫使地质工科教育重新回到重视基本知识、基本技能的学习和综合能力素质的培养上来。近些年由于知识信息的产生速度日益加快,人类知识老化周期缩短,其总量已达3~5年翻一番的惊人程度。近些年来,生产、管理部门兴起的“在职进修学位”在一定程度上就反映了这种变化。地质工科教育与其他工程教育一样,也面临着知识快速增长的挑战。与知识增长的速度相比,四年的本科教育时间显得太短。因此,本科教育只是地质工科类人才培养的一个短暂的初级阶段,其教育的重点应放在基础知识的学习,综合能力(包括自己获取知识的能力,发现问题解决问题的能力,实践能力等)和综合素质的培养上来。还有,应该看到,目前我国还处于发展中的初级工业化阶段,在大多数工程领域,我们还走在西方发达国家早已完成的路途中,而这是不可能跨越的,只能是加速前进。当前我们的国情实际制约着我国的地质教育还必须兼顾“专才”的一面。特别是我国的基本国情是经济尚欠发达、人口多,高等教育还不能像发达国家那样能满足人民群众的愿望,培养一位大学生要花费国家大量教育资源,我们不能把国家投入的有限的教育资源单纯用来提高学生的基本素质,而应该使培养的大学生进入社会后必须能马上承担一定的专业工作,这样才符合我国的基本国情。

4.我国地质工程专业学生应具备的基本素质要求

综上所述,我国的地质工程教育应改变“专才或通才”的单一培养目标和模式,应该转向以培养“具有扎实基础、一定专长”人才为主,适当兼顾对各行业人才的需要做法目前,地质工科类专业的人才培养目标应该是:为适应21世纪我国社会主义经济发展的需要,培养德智体全面发展,基础扎实、知识面宽、素质高、能力强,富有创新精神的专业人才。培养具备基础地质学、地球化学、地球物理学、水文地质学、工程地质学等方面的基本理论知识,具备从事资源地质勘察的初步能力和解决常见地质工程问题的基本能力,能在资源勘察、工程勘察、设计施工、管理等领域从事资源勘察与评价、管理各类工程建设等方面工作的高级工程技术人才地质工科类专业的业务培养要求应该是:要求学生在学好数、理、化、外语、计算机知识的基础上,主要学习基础地质、矿产地质、水文地质、工程地质、地质工程的基础理论知识,受到工程师的基本训练,掌握运用现代地质学理论和先进科技手段,具备进行资源地质工作和解决与各类工程建设有关的地质工程问题的基本能力,并具有合理利用与保护自然地质环境的初步能力。毕业生应该获得如下几方面的知识和能力:

(1)掌握地质工程学方面的基本理论和基本知识。

(2)掌握区域地质调查、矿产资源普查勘探、工程勘探的基本方法;初步掌握工程勘察的常用技术和测试方法,掌握常见地质工程问题的分析方法。

(3)具有对区域地质、矿床地质、成矿地质条件等进行综合分析及矿产资源评价、管理的初步能力;具有岩土工程勘察、设计、施工及管理初步能力;具有解决工程建设中各种地质问题的能力;具有对环境地质做出评价与规划的初步能力;初步具备应用计算机技术处理上述地质问题的能力。

(4)熟悉地质资源、岩土工程与勘察、环境等方面的方针、政策、法规。(5)掌握文献检索、资料查询的基本方法,了解地质资源与地质工程的理论及技术发展动态,并具有强的自学能力和初步的科研能力及一定的实际工作能力。

二、地质工程专业发展建议

1.地质工程专业人才培养规模目前,尽管我国有几十所大学设有地质工科类专业,各学校的招生规模在几十至百余名不等,但从目前社会需求来看,其数量根本满足不了国家需要,每年毕业生的供需比达1:2~1:5。从长远考虑,特别是如前所述,地球科学的功能已扩大到社会的各个方面,有必要适当扩大招生规模,但也不要像我国上世纪5O~6O年代那样无限制地招收过多的学生,据目前需求分析,最好达到目前规模的1.5倍左右。

2.应对措施

(1)改变目前地质类学生的招生制度。针对生源少、学生不愿学的状况,应该适当采取优惠政策。比如,适当降低录取分数线、面向地矿行业定向招生,以解决目前地质队和矿山缺乏技术人员的问题。

(2)分层次培养地质类专业人才。高水平的地质类专业人才要依托各校的学位点来培养,可建立数个工科地质专业基地来培养本科生。