在线客服

人工智能发展前景实用13篇

引论:我们为您整理了13篇人工智能发展前景范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

人工智能发展前景

篇1

一、人工智能概述

人工智能(简称AI),又被称为机器智能,是在上个世纪五十年代的Dartmouth学会当中被首次提出的,是计算机科学的重要分支之一。当前能用以研究人工智能的重要物质手段和能实现人工智能技术的主要设备即为计算机。人工智能是通过研究让计算机全面模拟人类思维的过程以及学习、推理和思考等功能的学科,包含了计算机智能的产生原理、形成与人脑智能近似的电脑等,从而让计算机能够真正实现更加高层次、更加高水平的实践运用。人工智能的本质其实是对人类思维中信息过程的一种模拟。对人类思维所进行的模拟主要可通过两条道路来开展,其一为实现结构上的模拟,也就是模拟人类大脑的结构,从而制造出类似于人脑的一种智能化机器。这一设想在实践中被证明为无法实现,这是由于人类对自身大脑和思维的过程还未能形成清晰而又明确的认知;其二是实现功能上的模拟,也就是放弃对人类脑部结构的仿真性模拟,转而从功能角度对人类大脑的思考过程加以模拟。如今人工智能所进行的努力就是对人脑功能的一种模拟。

二、人工智能发展状况分析

(一)全球人工智能发展现状

目前,人工智能技术已经在美国、欧洲以及日本等发达国家得到了迅速发展。在人工智能技术研究中非常突出的美国IBM 公司已为加利福尼亚州的劳伦斯?利弗摩尔实验室研制出了具有人脑智力能力的ASCII White电脑和蓝色牛仔电脑。据披露,后者的智力水平大体上和人脑等同。美国麻省理工学院的人工智能实验室则在实施一个代号是cog的新型项目。该项目希望能够给予人工智能以类似于人类的行为。这一项目的项目之一就是让人工智能的研究成果来捕捉人类眼睛的移动状况以及面部的表情,而另外一个项目则是让人工智能机器人抓住从其眼前所经过的物体。此外,还有一个研究项目是让机器人能够学会倾听音乐节奏,并且把其所听到的音乐旋律通过乐器加以演奏。因为人工智能具备了非常广阔的开发前景,其庞大的发展市场始终为全球各国以及各大企业所一致看好。除美国IBM公司继续在人工智能技术上投入大量资金来确保其在这一领域具有全球领先的地位之外,别的跨国巨头也在人工智能领域之中投入了相当多的资金。比如,世界首富美国微软公司前总裁比尔?盖茨就曾经在美国召开的人工智能国际会议之中作了人工智能方面的专题演讲。其所演讲的主要内容是称微软公司正在致力于推动人工智能基础技术和实用技术之研究,其主要研究领域涵盖了自我决定、知识和信息检索、数据搜集、自然语言以及语音笔迹识别等各项内容。

(二)我国人工智能发展现状

可以说,相当长一个时期以来,我国人工智能研究界的主要探究方向都是把研发具备了人类各种行为特点的高度类人性的机器人作为始终坚持的奋斗目标。在我国机械制造与自动控制专家学者们的努力下,在国家863计划以及国家自然科学基金的大力支持之下,我国的两足步行机器人研究与类人性机器人研究均取得了相当大的进展。早在上个世纪九十年代初,我国就成功地研制出了国内首台两足步行机器人,其后又通过长达十年时间的刻苦攻关,在本世纪初,终于成功地研发出了国内首台类人性机器人。这种机器人拥有和人一般大小的身躯、四肢以及眼睛等,而且还具备了相当强的语言对话能力。其行走之频率也从以往的每六秒钟走一步发展到了每秒钟能够走两步,从以往只能静态地站立到如今能够快速而又自如地进行动态行走,从以往只能够在已知环境下步行到如今可以在不确定的环境中探索前行,而且还取得了人工智能机器人神经网络、生理视觉、双手协调以及手指控制等系统开发的多项人工智能领域重大科研成果。

三、人工智能的未来发展趋势

技术的不断发展往往会超出人类最初的想象,要想能够精确入微地得出人工智能的今后具体发展趋势是不可能做到的任务。然而,从当前人工智能研究界所实施的一部分前瞻性研究之中即可看出,今后人工智能有可能会朝着智能模糊处理化、人工智能并行化、神经网络化与机器情感化等方向加以发展,人工智能具有非常大的发展空间与发展潜力。实事求是地说,将人工智能作为整体加以研究尚处于起步阶段,离人类所设定的目标尚有相当遥远的距离,人工智能在以下方面可能还会有新的更大的发展与突破。一是自动推理取得新的发展。自动推理是人工智能研究领域之中最为经典的研究分支之一。其主要理论是人工智能别的分支所具有的十分重要的共同基础。长时间以来,自动推理均属于人工智能研究领域最为热门的研究项目,其中对机器人知识系统动态化演化的特点和可行性的推理所进行的研究,笔者觉得将会是全新的研究热点,而且非常有可能在今后获得新的成绩,而且还会是相当巨大的突破。二是人工智能机器学习研究能够获得长足的进展。如今,诸多新型学习方法不断出现,而且相继获得了研究的进展,比如,增强学习算法就是其中的典型,而reinforcement learning也取得了重要的突破。但是,笔者也发现,如今研究中所得出的学习方法处理还存在不足之处,也就是具有更大的发展空间,尤其是在人工智能在线学习上显得有效性不够,十分需要找到一种全新的学习方法来解决诸多移动机器人、自主agent以及智能信息存取等目前人工智能研究中的问题。可以说,在线学习问题已经成为人工智能研究界人士都十分关心的重要问题,相信随着时间的推移和研究的深入,今后将会在以上这些方面获得突破性进展。三是自然语言处理。这一技术是人工智能技g运用到现实领域之中的一个典型示范例子。通过人工智能研究领域工作者艰苦卓绝的努力,该领域目前已经获得了诸多让人瞩目的理论和运用成果。各类人工智能领域之中的新产品已进到了各个领域之中。比如,智能信息检索技术就在互联网技术的大力影响下,近些年来得到了极其快速的发展,如今已成为了人工智能领域之中的重要的研究分支之一。因为信息的获取和纯化精化技术已经成为当前一个时期计算机研究技术之中十分需要深入探究的课题之一,所以,把人工智能技术的相关内容引入到该领域之中,将会是人工智能从理论研究转为实践运用的一个重要契机和突破口。从近些年来我国人工智能领域的发展实践来看,在此方面的探究已经取得了一些让人激动的成果。笔者相信通过今后的持续的研究,一定能够取得更大的突破,让人工智能能够真正做到造福于民。

四、结束语

总之,人工智能始终处在计算机研究技术的前端,其研究进展在相当大的程度上会决定计算机技术今后的发展趋势。人工智能只是人类工具的一种延长,无法替代人类的大脑,这一点从其诞生之日起就已确定。虽然人工智能无法对人类的智能造成挑战,但是随着人类对于人工智能的研究进一步深化,人工智能还会越来越接近于人类的智能。人工智这一人类智能客体化后之产物,其功效依然会受到人类智能之控制。如今已有大量人工智能的科研成果进入人类的现实生活之中。今后,人工智能的持续发展必然会对人类的生活与工作等带来更加巨大的影响。

参考文献:

[1]史忠植,王文杰. 人工智能[M]. 北京:国防工业出版社,2007.

[2]周以真. 计算思维[J]. 中国计算机学会通讯,2007(3).

篇2

0.引言

2016年3月15日,备受瞩目的“人机大战”终于落下帷幕,最终Google公司开发的“AlphaGo”以4∶1战胜了韩国九段棋手李世h。毫无疑问,这是人工智能历史上一个具有里程碑式的大事件。大家一致认为,人工智能已经上升到了一个新的高度。

这次胜利与1997年IBM公司的“深蓝”战胜国际象棋世界冠军卡斯帕罗不同。主要表现在两个方面:

(1)AlphaGo的胜利并非仅仅依赖强悍的计算能力和庞大的棋谱数据库取胜,而是AlphaGo已经拥有了深度学习的能力,能够学习已经对弈过的棋盘,并在练习和实战中不断学习和积累经验。

(2)围棋比国际象棋更加复杂,围棋棋盘有361个点,其分支因子无穷无尽,19×19格围棋的合法棋局数的所有可能性是幂为171的指数,这样的计算量相当巨大。英国围棋联盟裁判托比表示:“围棋是世界上最为复杂的智力游戏,它简单的规则加深了棋局的复杂性”。因此,进入围棋领域一直被认为是目前人工智能的最大挑战。

简而言之,AlphaGo取得胜利的一个很重要的方面就是它拥有强大的“学习”能力。深度学习是源于人工神经网络的研究,得益于大数据和互联网技术。本文就从人工智能的发展历程与现状入手,在此基础上分析了人工智能的未来发展前景。

1.人工智能的发展历程

AlphaGo的胜利表明,人工智能发展到今天,已经取得了很多卓越的成果。但是,其发展不是一帆风顺的,人工智能是一个不断进步,并且至今仍在取得不断突破的学科。回顾人工智能的发展历程,可大致分为孕育、形成、暗淡、知识应用和集成发展五大时期。

孕育期:1956年以前,数学、逻辑、计算机等理论和技术方面的研究为人工智能的出现奠定了基础。德国数学家和哲学家莱布尼茨把形式逻辑符号化,奠定了数理逻辑的基础。英国数学家图灵在1936年创立了自动机理论(亦称图灵机),1950年在其著作《计算机与智能》中首次提出“机器也能思维”,被誉为“人工智能之父”。总之,这些人为人工智能的孕育和产生做出了巨大的贡献。

形成期:1956年夏季,在美国达特茅斯大学举办了长达2个多月的研讨会,热烈地讨论用机器模拟人类智能的问题。该次会议首次使用了“人工智能”这一术语。这是人类历史上第一次人工智能研讨会,标志着人工智能学科的诞生。其后的十几年是人工智能的黄金时期。在接下来的几年中,在众多科学家的努力下,人工智能取得了瞩目的突破,也在当时形成了广泛的乐观思潮。

暗淡期:20世纪70年代初,即使最杰出的AI程序也只能解决问题中最简单的部分,发展遇到瓶颈也就是说所有的AI程序都只是“玩具”,无法解决更为复杂的问题。随着AI遭遇批评,对AI提供资助的机构也逐渐停止了部分AI的资助。资金上的困难使得AI的研究方向缩窄,缺少了以往的自由探索。

知识应用期:在80年代,“专家系统”(Expect System)成为了人工智能中一个非常主流的分支。“专家系统”是一种程序,为计算机提供特定领域的专门知识和经验,计算机就能够依据一组从专门知识中推演出的逻辑规则在某一特定领域回答或解决问题。不同领域的专家系统基本都是由知识库、数据库、推理机、解释机制、知识获取等部分组成。

集成发展期:得益于互联网的蓬勃发展、计算机性能的突飞猛进、分布式系统的广泛应用以及人工智能多分支的协同发展,人工智能在这一阶段飞速发展。尤其是随着深度学习和人工神经网络研究的不断深入,人工智能在近几十年中取得了长足的进步,取得了令人瞩目的成就。

人工智能发展到今天,出现了很多令人瞩目的研究成果。AlphaGo的胜利就是基于这些研究成果的一个里程碑。当前人工智能的研究热点主要集中在自然语言处理、机器学习、人工神经网络等领域。

2.人工智能l展现状与前景

人工智能当前有很多重要的研究领域和分支。目前,越来越多的AI项目依赖于分布式系统,而当前研究的普遍热点则集中于自然语言处理、机器学习和人工神经网络等领域。

自然语言处理:自然语言处理(Natural Language Processing,简称NLP),是语言学与人工智能的交叉学科,其主要功能就是实现让机器明白人类的语言,这需要将人类的自然语言转化为计算机能够处理的机器语言。

自然语言处理主要包括词法分析、句法分析和语义分析三大部分。词法分析的核心就是分词处理,即单词的边界处理。句法分析就是对自然语言中句子的结构、语法进行分析如辨别疑问句和感叹句等。而语义分析则注重情感分析和整个段落的上下文分析,辨别一些字词在不同的上下文定的语义和情感态度。

当前自然语言的处理主要有两大方向。一种是基于句法-语义规则的理性主义理论,该理论认为需要为计算机制定一系列的规则,计算机在规则下进行推理与判断。因此其技术路线是一系列的人为的语料建设与规则制定。第二种是基于统计学习的经验主义理论,这种理论在最近受到普遍推崇。该理论让计算机自己通过学习并进行统计推断的方式不停地从数据中“学习”语言,试图刻画真实世界的语言现象,从数据中统计语言的规律。

机器学习:机器学习(Machine Learning)是近20年来兴起的人工智能一大重要领域。其主要是指通过让计算机在数据中自动分析获得规律,从而获取“自我学习”的能力,并利用规律对未知数据进行判断和预测的方法。

机器学致可以分为有监督的学习和无监督的学习。有监督的学习是从给定的训练数据集中练出一个函数和目标,当有新的数据到来时,可以由训练得到函数预测目标。有监督的学习要求训练集同时有输入和输出,也就是所谓的特征和目标。而依据预测的结果是离散的还是连续的,将有监督的学习分为两大问题,即统计分类问题和回归分析问题。统计分类的预测结果是离散的,如肿瘤是良性还是恶性等;而回归分析问题目标是连续的,如天气、股价等的预测。

无监督学习的训练集则没有人为标注的结果,这就需要计算机去发现数据间的联系并用来分类等。一种常见的无监督学习是聚类分析(Cluster Analysis),它是将相似的对象通过静态分类的方法分成不同的组别或者是特定的子集,让同一个子集中的数据对象都有一些相似的属性,比较常用的聚类方法是简洁并快速的“K-均值”聚类算法。它基于K个中心并对距离这些中心最近的数据对象进行分类。

机器学习还包括如半监督学习和增强学习等类别。总而言之,机器学习是研究如何使用机器来模拟人类学习活动的一门学科,而其应用随着人工智能研究领域的深入也变得越来越广泛,如模式识别、计算机视觉、语音识别、推荐算法等领域越来越广泛地应用到了机器学习中。

人工神经网络:在脑神经科学领域,人们认为人类的意识及智能行为,都是通过巨大的神经网络传递的,每个神经细胞通过突出与其他神经细胞连接,当通过突触的信号强度超过某个阈值时,神经细胞便会进入激活状态,向所连接的神经细胞一层层传递信号。于1943年提出的基于生物神经元的M-P模型的主要思想就是将神经元抽象为一个多输入单输出的信息处理单元,并通过传递函数f对输入x1,x2…,xn进行处理并模拟神经细胞的激活模式。主要的传递函数有阶跃型、线性型和S型。

在此基础上,对神经网络算法的研究又有诸多进展。日本的福岛教授于1983年基于视觉认知模型提出了卷积神经网络计算模型。通过学习训练获取到卷积运算中所使用的卷积系数,并通过不同层次与自由度的变化,可以得到较为优化的计算结果。而AlphaGo也正是采用了这种深度卷积神经网络(DCNN)模型,提高了AlphaGo的视觉分类能力,也就是所谓的“棋感”,增强了其对全盘决策和把握的能力。

3.人工智能的发展前景

总体来看,人工智能的应用经历了博弈、感知、决策和反馈这几个里程碑。在以上4个领域中,既是纵向发展的过程,也是横向不断改进的过程。

人工智能在博弈阶段,主要是实现逻辑推理等功能,随着计算机处理能力的进步以及深度学习等算法的改进,机器拥有了越来越强的逻辑与对弈能力。在感知领域,随着自然语言处理的进步,机器已经基本能对人类的语音与语言进行感知,并且能够已经对现实世界进行视觉上的感知。基于大数据的处理和机器学习的发展,机器已经能够对周围的环境进行认知,例如微软的Kinect就能够准确的对人的肢体动作进行判断。该领域的主要实现还包括苹果的Siri,谷歌大脑以及无人驾驶汽车中的各种传感器等。在以上两个阶段的基础上,机器拥有了一定的决策和反馈的能力。无人驾驶汽车的蓬勃发展就是这两个里程碑很好的例证。Google的无人驾驶汽车通过各种传感器对周围的环境进行感知并处理人类的语言等指令,利用所收集的信息进行最后的决策,比如操作方向盘、刹车等。

人工智能已经渗透到生活中的各个领域。机器已经能识别语音、人脸以及视频内容等,从而实现各种人际交互的场景。在医学领域,人工智能可以实现自动读片和辅助诊断以及个性化t疗和基因排序等功能。在教育领域,机器也承担了越来越多的辅助教育,智能交互的功能。在交通领域,一方面无人车的发展表明无人驾驶是一个可以期待的未来,另一方面人工智能能够带来更加通畅和智能的交通。另外人工智能在安防、金融等领域也有非常广阔的发展前景。总之,人工智能在一些具有重复性的和具备简单决策的领域已经是一种非常重要的工具,用来帮助人们解决问题,创造价值。

参考文献

篇3

算法基础课程:人工神经网络,支持向量机,遗传算法等,还有各个领域需要的算法,比如你要让机器人自己在位置环境导航和建图就需要研究SLAM。

人工智能是一个综合学科,人工智能专业的主要领域是:机器学习、人工智能导论、图像识别、生物演化论、自然语言处理、语义网、博弈论等。

人工智能专业就业方向

1、机器人设计、制作相关方向

学习人形机器人相关技术和知识,可以成为当今和以后国家急需的机器人人才,系统了解机器人结构、应用和设计开发,培养科学的工科思维方式,激发兴趣、自由发挥创作、培养沟通、协调、专注能力。

2、基于AI相关知识和技能的各个工种方向

利用AI和机械臂的结合,可以培养动手、制造,维护和解决问题的能力。桌面机械臂的课程,是引向人工智能技工的就业方向;AI技工需要掌握轻工业设备的使用和维护。

3、编程相关的方向

通过学习机器人编程课程,你能领悟或培养出工程结构思维和编程思维,这也是AI时代里任何工作都需要具备的应用技能,部分优秀的学生还能晋级为国家都需要的人工智能高级编程人才。

4、新制造和新设计相关方向

3D打印是未来新制造的基石技术, 3D打印相关技术,将为你打开一扇通往新制造、新设计的就业大门。不管以后你是上班还是自主创业,3D打印技能和思维都能助你一臂之力。

第一:智能化是未来的重要趋势之一。随着互联网的发展,大数据、云计算和物联网等相关技术会陆续普及应用,在这个大背景下,智能化必然是发展趋势之一。人工智能相关技术将首先在互联网行业开始应用,然后陆续普及到其他行业。所以,从大的发展前景来看,人工智能相关领域的发展前景还是非常广阔的。

篇4

人工智能是一门涉及较广的边沿学科,它涉及哲学、数学、心理学、计算机科学等学科,其本身的性质也就需要从事这项工作的人必须要对人工智能所涉及的学科有一定的了解。近几年,我国在人工智能的理论和技术方面都有所突破,但是时代在快速发展着,这就需要人工智能研究不能一直保持原有的状态,还要有所创新,以顺应时代的变迁。

1 人工智能的发展历程

人工智能(Artificial Intelligence)一词最早是在1956年DARTMOUTH学会上提出的,这也就标志着人工智能的诞生。在1969年召开了第一届人工智能联合会议,以后每两年召开一次。1970年出现了《人工智能》国际杂志,推动了人工智能的学术研究及发展,从此以后,人工智能的研究形成热潮,不同人工智能学派的争论非常激烈,这使得人工智能得以进一步发展。而我国的人工智能研究开始的比较晚,在1978年“智能模拟”正式纳入国家计划开展研究。而且现在我国从事人工智能研究工作的除了科技人员还有很多的大学师生,从人工智能的发展前景来看,人工智能定会为我国的现代化建设做出重大贡献。

2 人工智能的突破及科学方法

2.1 对人工智能采用分散式的研究

由于人工智能的研究是很复杂的,很难进行整体性的研究,所以只能把它分成几个层面再各个击破。人类认为结构、功能、行为是系统能力的三个基本要素,所以对于人工智能的研究也可以分为结构模拟、功能模拟、行为模拟三种模拟方式。下面对人工智能的三种模拟方式进行举例分析[1]:

关于结构模拟就以人工神经网络的研究为例。根据结构模式的思想,人工智能的研究人员尝试建造人工的神经网络模拟人类的思维能力。20世纪50年代,出现了感知机,它是用人工神经元电路构造的,这也说明了人工神经网络的智能性。后期也出现人类利用少数神经元的网络设计模拟高等动物反射能力的实例,展现了人工神经网络的发展前景。但是,在人工神经网络的研究中如果想有效的模拟人类的思维能力就需要有接近人类大脑新皮层的人工神经网络,在制造技术上存在很大的困难;如果降低人工神经网络的复杂程度,那它的智能化就会退化。基于功能模式的物理符号系统研究实例。基于功能模拟的物理符号系统的研究也取得了很多的成果,比如:通过图灵测试的血液感染疾病诊断专家系统和战胜过国际象棋世界冠军的“深兰”专家系统。但是专家系统需要拥有专业的高水平知识,但是这种知识的获取是很困难的,不仅如此,就现在的逻辑理论而言,就算获得了必要的知识,也不能支持知识的推理与表达。

2.2 发现了智能生成的核心机制和知识的生态学结构在本能知识下的知识转换

人工智能的定义是非常复杂的,简单来说,人工智能是为了实现人类改善生存与发展条件的目的,面对具体环境时,根据现有的知识去发现问题、确定解决问题的目标;再针对问题和已定的目标获得必要的信息,进而利用所获得的信息和现有的知识想出解决问题的智能方法,并实施这个方法,以达到解决问题的目的。人工智能实际上模拟的是人类智能“确定解决问题的目标、获得信息、找出解决办法”的能力。也就是说可以说,人工智能工作前提是“给出有待解决的问题、知识和明确的目标”,工作内容是“获得必要的信息,进而利用所获得的信息和现有的知识想出解决问题的智能方法”,因为找到解决问题的方法是智能的表现,所以可以理解为,人工智能的核心就是在给定条件的制约下信息知识的智能转换。在这种方法的引导下就可以建立人工智能新的机制模拟方法了。

我们已经发现人工智能的核心机制是:信息知识的智能转换,也就是说,信息和知识在人工智能的研究中发挥着很重要的作用。研究发现,知识并不是固定不变的,它具有自己的生态学结构。在本能和外界信息的刺激下,人类不断的学习并不成熟的经验知识,然后根据自己本身的理解和思考把经验知识变成规范知识最后成为常识性知识。发现知识的生态学结构不只是可以加深对知识的理解,还拓展了人工智能的研究视野,对人工智能的研究有着很重要的意义[2]。

2.3 把智能生成的机制与知识的生态学结构相结合

把智能生成的核心机制与知识的生态学结构相结合建立新的模拟方法,就会发现一直处在独立发展的结构模拟、功能模拟、行为模拟都是机制模拟方法的特例。比如:结构模拟可以说是,信息与经验知识的经验型智能转换;功能模拟就是把信息与规范知识的规范型智能转换;行为模拟是信息与常识性知识的智能转换,而且经验知识、规范知识、常识知识之间在机制模拟中是相继环节,所以结构模拟、功能模拟、行为模拟也应是机制模拟中的相继环节[3]。在“以信息观、系统观、机制观为主要标志的系统科学方法论”的观念下,原来看似无关的人工智能的三种模拟方式,竟然有着相互的关系,把原来看不到的本质给展示出来,就是科学方法的厉害之处。

3 结语

通过研究发现,在人工智能的模拟研究中一直处在独立发展的结构模拟、功能模拟、行为模拟都是机制模拟方法的特例。这也就说明智能生成的机制与知识的生态学结构的结合是人工智能研究的统一理论和方法。这一结果为人工智能的发展开辟了一条新的道路,人工智能的研究的这一突破主要依靠科学方法的创新。所以,在今后的人工智能研究方面应注重科学方法的研究、应用和创新,以使人工智能研究事业在未来的发展道路上越走越远。

参考文献

篇5

首届世界智能大会6月28日至6月30日在天津举行。6月29日,马云、李彦宏、柳传志等行业大咖分享了对于人工智能等最新科技的观点。同时,在开幕式演讲中,全国政协副主席、科技部部长万钢透露,最近新一代人工智能发展规划已编制完成,该规划对直到2030年的中国人工智能产业进行系统部署,包括与此相关的人工智能重大科技项目。规划将于近日向全社会公布。

点评:公开信息显示,目前我国人工智能已上升到国家战略,并于今年3月首次写入政府工作报告。据预测,2020年全球人工智能市场规模将超过1000亿美元,年均增速约为20%,我国人工智能市场规模也将达到百亿美元量级,年均增速超过50%,行业发展前景极为广阔。近几年,智能制造被不断的提及,而随着互联网、智能科技与传统行业融合创新发展,智能科技更是在除制造业外的,教育、医疗、农业等各个领域发挥重要功效。在此基础上,世界智能大会旨在打造世界级先进智能科技成果平台、创新合作平台、产业聚集平台和投融资对接平台,展现全球领先的前沿科技新成果。此次大会的专题活动覆盖了深度学习、智能制造、人工智能、智能驾驶、智慧安防等多领域。近期A股市场上,受世界智能大会举行的利好影响,A股市场人工智能概念板块表现活跃,关注标的股:科大讯飞、恒生电子、东方网力、佳都科技、工大高新等。

6月份信贷增量以及M2同比增速等成为市场关注的焦点。对此,机构普遍认为,6月份新增信贷增量或超万亿元,M2同比增速或继续回落将至9%。华泰证券首席宏观研究员李超认为,5月份信贷增量维持不变的情况下,社融出现了边际减缓迹象。监管趋于严格的背景下,银行的表外业务回归表内将会是未来一大趋势,同时居民按揭韧性强,融资利率继续上行大背景下,银行也乐于扩张表内业务。6月份这一趋势将会继续延续,预计6月份的新增贷款在12000亿元左右,与之对应的社融新增则在13000亿元左右,整个社会融资更多的依赖银行表内贷款。当然,也有部分机构较为悲观。交通银行金融研究中心近日的报告称,总体来看,居民房贷的回落以及金融机构主动调降跨季前资产增速,将很大程度主导6月份贷款增量回落。

篇6

中关村科技园区海淀园对外合作处的曹彦音曾公开表示,在动漫游戏产业发展方面,科技园区重点对发展动漫游戏产品及相关技术的企业实施孵化,大力培养创意人才。目前主要以中关村科技园区、国家新媒体产业基地为核心,带动其余具有一定发展基础的区域共同发展。

据了解,除以上国家级产业园区外,各级政府和企业在建或筹建中的区域性数字创意产业园区也不在少数,其中比较有代表性并已进入立项操作阶段的有三辰卡通动漫网游产业基地、深圳VR产业园区等。

根据中娱数字创意产业研究院的追踪,仅2016年11月份,共发生创意产业投资230起,较10月份增长7.5%,其中数字创意产业领域投资47起,占该月总投资数量的20.4%,总投资规模超过15亿元。其中,AcFun弹幕视频网(A站)作为动漫、游戏、体育、娱乐的弹幕视频网站,获得中文在线2.5亿元的B轮投资;华谊兄弟也斥资2亿元,投资影视营销服务商剧角映画。

VR、直播作为新兴产业,堪称2016年创投圈杀出的黑马。据不完全统计,2016年全球(主要以中国为主)VR、AR行业投融资事件共90起,同比增长率高达233.3%。

在电竞游戏领域中,中国已超越美国成为全球第一大电子竞技市场。近年来,随着各项利好政策的陆续出台,电竞行业发展前景被看好,各类资本开始积极介入这个有上千亿元规模的新兴产业,2015年投融资规模达到269.1亿人民币,6年间的增幅高达513.6%。

在动漫领域中,虽然我国动漫产业目前整体规模不大,但发展速度极快,2015年总产值超过1200亿元,并保持着高速增长态势。在投融资方面,形势也颇可乐观,如2016年底,原创动漫工作室漫舞动漫获得钱皇股份100万元的天使轮投资,以原创和自主知识产权为主的云端漫画也获得了五星诚瑞数百万元的天使轮投资。

人工智能最有卖点

没有工人,那就用机械臂砌一堵高墙?在未进入公共空间之前已经预知人流高峰,从而避开拥堵?看电影时,可以直接和影片中的女主角交流?没有驾照也能开车?数字创意产业中的人工智能(AI)目前广泛嵌入在应用程序中,上述问题在不久的将来都能得以解决。

2016年8月,英特尔公司宣布将收购人工智能初创企业Nervana Systems,而就在前不久,苹果公司刚刚宣布将收购人工智能公司Turi。其他巨头如IBM、谷歌、微软、Facebook、亚马逊等也先后在人工智能领域中布局。在中国,阿里巴巴刚刚将其AI升级为ET,并扩展了人工智能功能。而百度同样在人工智能领域投入巨大……

在云计算和大数据发展日臻成熟的今天,科技巨头们都在纷纷寻找下一个技术的方向。去年年初普华永道在报告中称,展望2017年,虚拟现实、人工智能、物联网和行业整合等核心趋势将继续推动全球科技市场的并购与整合。从实际情况来看,上述科技巨头的行动已经充分证明了这一点。马云也认为,现在人们正在准备迎接第三次技术革命(人工智能)的到来。

前瞻产业研究院《人工智能行业分析报告》中的数据显示,2015年全球人工智能市场规模已达到1683.9亿元,预计2018年将达到2697.3亿元,复合增长率达到17%。

关于人工智能的发展前景,盘点2016年十大人工智能事件就可略窥一斑:AlphaGo下围棋战胜众多顶尖高手;微软聊天机器人“Tay”学会种族歧视言论;特斯拉无人车上路试驾;五大科技巨头组建超级AI联盟;美国白宫《人工智能白皮书》;微软AI的语音识别能力首次超过人类;人工智能改善癌症诊断疗法;亚马逊开展新零售业务Amazon Go;扎克伯格开发AI助手Jarvis;华人AI研究贡献占据全球份额近一半。

由此看来,未来还有什么领域完全不用人工智能参与?

传统文化强强联手

传统文化能给数字创意产业带来什么?

腾讯公司文化产业办公室研究员曹爽表示,传统文化是产业创意内容的源泉,是数字创意产业走向世界的核心竞争力。

记者通过对产业的回顾和观察看出,数字创意产业在传统文化当中寻找结合点和商机的例子并不罕见,例如敦煌石窟壁画彩塑的数字化,不仅永久保存了文物信息,也使传统文化的数字产品更具市场价值;图书馆的数字化,为中华传统文化打造一个共享平台。据了解,目前国家图书馆数字资源总量达1160.98TB,年增长超过130TB。

记者获悉,优秀文化资源的创造性转化、传统文化业态的数字化升级等都将成为未来国家政策扶持的重点。完美世界副总裁伊迪则表示,从文化产业来看,传统文化产业与数字化联手升级的确是一个很好的方向。

“比如到电影院看电影。消费者目前在影院的延伸消费也仅仅停留在食物及饮品上,但影院与数字技术相结合,未来的影院的情形可能远不止如此。”伊迪说,“例如,可以将游戏和动漫产业融入到电影院中,将影院打造成一个以IP为核心的数字化综合体验区,还可以将当下发展迅猛的电子竞技项目带入传统院线。”

篇7

篇8

电力电网调度系统对电力系统而言是至关重要的,在电力系统初具雏形时,由于科技落后,电力电网调度系统不是智能的,是由工作人员通过打电话的方法了解各个电力站的运行状况,如果发现电力站的运行发生异常状况,就会凭借工作人员的经验,对发生的异常状况进行处理。现如今,科技水平不断发展,自动化技术也不断地更新,电力电网的智能调度系统在电力系统中也得到了应用,并取得了一定的成效。与传统电网系统相比,电力电网的智能调度系统不是孤立存在的,它是一个实时动态的系统,可以有效地进行分析和调控电力系统,当电力站发生故障时,电力电网的智能调度系统可以更加精准和及时地对故障分析和处理,更加快捷方便,可以更全面地了解电力电网的运行状况。

一、电力电网智能调度系统概述

(一)电网调度系统自动化的现状和前景

在科学技术不断发展的今天,电网调度系统已由最初单纯获取电力系统的数据转换为全面了解电力电网的运行状况,成为了能量管理系统。虽然我国科学技术水平在不断的发展,但是技术理论仍然不是很先进,导致电网调度系统的自动化和智能化程度仍然不是很高。因此,如何更好地运用现代科学技术,完善电力电网的智能调度系统,使电力电网的智能调度系统更加高效便捷,实现真正的智能,这将是电力系统的未来趋势。

(二)电力电网系统智能调度的概念

电力电网系统智能调度就是指调度系统可以对电力系统的电网的每个状态进行自动获取,综合了解其中的变化,协助电力调度员的管理,使电力调度员操作更加便捷精准,便于获取最好的方案,从而保证电网的安全运作。电力电网系统智能调度系统的功能不单单是基础的电力系统的稳态分析,在电力系统发生突如其来的故障时还应该具有一定的分析功能,可以及时帮助电力调度员解决故障,并且还应该可以兼容日益发展的运行系统。新型的电力电网系统智能系统比如今使用于电力系统中的调度系统更加复杂,更加庞大。新型的电力电网系统智能系统不单单需要电力系统中各个系统相互独立,却有相互统一,各个系统间可以互相帮助,除此之外,还要求新型的电力电网系统智能系统有兼容第三方软件的能力,该系统的最终构架应该是一种开放式的软件体系。

二、 人工智能在电网调度系统中的应用

(一)人工智能的概念

人工智能又名机器智能,融合了计算机科学、数理逻辑、控制论、信息论、神经生物学以及语言学等多门学科的知识理论,最终发展而成的一门综合性学科。人工智能的主要目标就是运用人类的智慧,使计算机系统日益的先进,逐渐使计算机系统表现出人类的一些基本智能行为。科学家进行了大量的科研实验,实验结果表明,人工智能技术发展的速度也越来越快,已经广泛地应用与各行各业,并发挥了显著的效果。不可否认,人工智能必将是未来的发展趋势。

(二)人工智能系统方法分类

二十世纪八十年代初,人工智能技术刚刚崛起,不断地应用于电力系统以及电力系统的相关行业中,主要原因如下:

1电力系统在当时那个年代就已经拥有了很大的规模,数据处理十分的繁琐,并且系统要求动态实时性,凭借当时的计算机水平根本没有办法快速获取计算结果,严重拖累了电力系统的工作效率。

2电力系统的非线性根本没有办法凭借当时的计算机水平建立出精确的线性数学模型。

3由于当时科学技术水平不是很发达,大多数人对电力系统不是十分了解最终导致电力系统行业中存在很多模棱两可的问题。

4由于当时科学技术水平不是很发达,很多电力系统的专家只能根据自己的经验对电力系统进行分析,根本无法运用精确的数学进行描述。与传统的计算不同,人工智能算法是以解决知识中所存在的问题的方法为基础,解决了传统计算方法的缺点。因此,人工智能应用于实际的电力系统中是十分必要的。

(三)人工智能在电网调度系统中的应用以及方法:

1 专家系统

在二十世纪六十年代,专家系统作为人工智能在电网调度系统中的应用的重要分支开始兴起,专家系统顾名思义,这个系统拥有极其接近人类思维模式的智能系统,可以很好地进行分析和推理,就犹如一些拥有丰富经验和渊博知识的专家,在特定的区域里凭借区域内固有的数据库对问题进行合理的分析,最终提出适当的问题解决方案。在专家系统应用于电力电网调度系统中,应该包括电网的管理、对电力系统进行综合的监测作用、对故障进行分析并及时提供解决意见等。

2 人工神经网络

人工神经网络顾名思义,就是一种类似于人类大脑的神经网络,人工神经网络可以对给与的信息进行适当合理的分析,并且处理,最终演变成数学模型,人工神经网络的本身就是对自然界某种算法或者函数的逼近,也可能是一种逻辑表达方式。人工智能神经网络与人类的大脑十分相似,具有一定的自学和联想能力,可以快速地根据特定的规律推算出大致的结果。人工神经网络已经广泛应用于人工电力电网系统的动态控制与诊断、状态数据估计等很多的相关领域,并取得了一定的成效,而其中的人工神经网络的预测估计分析技术已经十分的完善。

3 遗传算法

遗传算法就是根据达尔文生物种族进化论中遗传机制和自然选择学机理的生物进化过程进行模拟最终获取相应的计算模型,遗传算法可以通过模拟自然进化过程分析获取最好的解决方案。具体方法如下:

(1)选取一定数量的候选集。

(2)根据一定的条件,计算出这些候选集的应用范围。

(3)根据计算所得的应用范围适来确定符合应用范围的候选集。

(4)加工处理符合应用范围的候选集,最终形成新的候选集。

在整个遗传学算法中,达尔文自然选择学机理中的“适者生存”一直贯穿始终,遗传算法凭借自身十分优异的计算和处理功能,已经广泛地应用于电力电网系统中。

4 Agent技术

Agent技术是一种智能计算实体,在分布式系统中拥有灵活性、主动性、反应性、交互性和自主性。Agent体系结构是一种自主行为实体,单纯凭借现今的计算机水平,很难准确对Agent体系结构进行描述,其大略可分为三种类型,是混合式体系结构、反应式体系结构和审慎式体系结构。如今,反应式体系结构是其中主要的研究对象,事件处理系统、方法集合和内部状态集组成了反应式体系结构。具备良好适应性和开放性的Agent技术作为在新一代调度自动化系统,发展前景不可小视。

对于同类发电机组而言,综合考量其安全性能、经济效益和环保指标等要素,可以分别表示出机组的可靠性能R、经济效益标准E、环境标准D,以及热电比例H,依次用a表示其权值。那么可以得出:I=a*(R+E+D+H),其中每个权值的和为1。

设定机组工作的经济程度与出力之间的关系为函数E(P),那么用来指代系统经济性能的公式可以表示成:E=E(P max)/ P max。

系统的环保性指标可以用单位排放的污染气体总量来表示;系统的热电比是将单位出力表示为热量数值,设定热电之间转化的关系函数H(P),那么可以得出:H=H(P max)/ P max。

(四)Agent技术的发展前景

分布式的Agent技术就是将能量管理系统模块封装成Agent,使智能电网调度拥有更强的自治性和可移植性,从而在一定程度上解决了智能电网调度的一些问题。现如今,学者对人工智能技术不断深入地研究,从而使其更加广泛地应用于电力系统中,并取得了一定的效果。在科学技术不断发展的背景下,Agent技术一定会拥有更广阔的前景。

三、 国内外电力电网智能调度系统的研究现状

在二十世纪九十年代,Dy-Liacco作为“现代能量控制中心”概念的创始人,十分全面地论述建立了电力电网智能调度系统的文献,在文中提到想要解决电力系统中存在的一些问题,应该用智能机器调度员替代人工调度员,除此之外,文中还提到要综合仿真培训和自动学习等功能,从而使电力电网自动运行。在我国,卢强院士最先提出了“数字电力系统”的概念,主要讲诉的是正常情况下电力电网智能调度系统对电力系统的监管的分析的功能等;华北电力大学的杨以涵教授则带领自己的科研组进行电力系统的研究,基于“数字电力系统”的概念,分析电力系统中电网会出现的故障,以及安全方面等进行了探讨,最终形成了建立以分析和解决电网故障的“调度机器人”的思维模式。

结语

综上所述,电力电网调度系统对电力系统而言是至关重要的,电力电网的智能调度系统是一个实时动态的系统,可以有效地进行分析和调控电力系统,当电力站发生故障时,电力电网的智能调度系统可以更加精准和及时地对故障分析和处理,更加快捷方便,可以更全面地了解电力电网的运行状况。本文对电力电网智能调度系统做了简单的介绍,对电力电网智能调度系统的具体应用进行了探讨,希望本文可以给相关电力电网工作者甚至是研究者带来一定的参考作用,使电力电网的智能调度系统更加完善,可以更好地应用于电力系统中。

参考文献

篇9

身体不舒服,想要打开手机淘宝问问医生,但是怎么样才能从几千个在线等待咨询的医生中间找到最匹配的那一个?

阿里健康已经开发并在手机淘宝上线了健康小蜜――医药健康智能问答引擎。这个类似于智能问答机器人的引擎,可以回答普通用户的一般性医药健康问题,然后根据用户的需求进行选择,将用户自动匹配给相应的医生或者药师。

事上,目前,从医疗健康的监测诊断、智能医疗设备,到教育领域的智能评测、个性化辅导、儿童陪伴,从电商零售领域的仓储物流、智能导购和客服,到应用在智能汽车的自驾技术,都能看到人工智能的身影。

人工智能等技术是助推自动驾驶发展的关键技术。例如,人工智能在帮助汽车解读传感器数据时起决策作用,通过阅读驾驶者的驾驶行为和表情,能及时提醒驾驶员在疲劳驾驶时切换至自动驾驶模式。

“人工智能”一词,通常被认为是1955年8月31日在达特茅斯(美国一所院校)会议上诞生的,61年来,人工智能的研究和实践一直处于不断增长的趋势。当今,人工智能技术的突破带来了席卷全球的技术革命风暴,创造出了一个无比广阔的市场,中国的很多公司在这股大潮中抓住机遇,表现亮眼。有观察者认为,中国的人工智能已成为一张令世界瞩目的闪亮名片。

过去的一年里,长虹、TCL、创维等中国家电企业都纷纷人工智能家电产品,希望借助人工智能打破家电行业的销售难题。

不久前,搜狗公司2016全年财报,搜狗借助人工智能技术实现了较大的业绩增长。未来会把人工智能应用到更多的产品中,让用户表达和获取信息更简单,让人工智能真正惠及人类。

全球人工智能研发的脚步正在加快,中国也不甘示弱。近年来,百度先后成立了大数据实验室、深度学习实验室和硅谷人工智能实验室,并通过架构调整全面发力人工智能。2016年百度世界大会上,“百度大脑”推出,该项目将对语音、图像、自然语言处理和用户画像、无人驾驶等领域进行重点关注和研发。

在腾讯,人工智能研究项目包括WHAT LAB(微信-香港科技大学人工智能联合实验室)、优图实验室、微信模式识别中心、智能计算与搜索实验室等多个部门。

人工智能犹如新的科技革命,为长期低迷的世界经济注入新的活力。去年诸多关键技术突飞猛进,无疑是人工智能发展史上浓墨重彩的一年。诞生半个多世纪以来,它终于走到了从科技研发到行业应用的临界点,蓄势待发。

为发展更新“发动机”

人工智能技术的重大突破必将带来新一轮科技革命和产业革命,对人类生活的方方面面将产生深远的影响。大力发展人工智能技术是中国经济转型升级的重要动力。

众多研究表明,人工智能是对传统行业商业模式、产业链和价值链的全面颠覆,将为全球经济、社会生活的方方面面带来质的变化。

发展人工智能的最大意义在于为现代化发展更换“发动机”。咨询公司埃森哲研究了美国、芬兰、英国等12个发达国家并作出预测,到2035年,人工智能将帮助这些国家的生产率提高40%左右。

对于中国而言,人工智能带来的好处将是多方面的。就经济来说,借助人工智能新技术实现自动化,将极大提高生产率,节省劳动成本;优化行业的现有产品和服务,提升其质量和劳动生产率;通过创造新市场、新就业等,将促进市场更加繁荣,开拓更广阔的市场空间。

而在产业升级方面,中国的传统制造业大而不强的问题亟待克服,人工智能恰恰为制造业转型升级提供了便利和动力,一是这些企业拥有行业海量的数据和大量资金;二是在生产力水平急需提升、传统人口红利逐渐消失的情况下,传统企业有迫切的意愿来改造升级自己的工厂、业务,提高收益,降低企业成本。因此,制造业既是人工智能可以大有作为的领域,也是中国发展人工智能的优势领域。

《全球人工智能发展报告2016》显示,中国人工智能专利申请数累计达到15745项,列世界第二;人工智能领域投资达146笔,列世界第三。

据艾瑞咨询预计,2020年全球人工智能市场规模将达到1190亿元,年复合增速约19.7%;同期中国人工智能市场规模将达91亿元,年复合增速超50%。人工智能发展前景极为广阔。

就制造业而言,“中国制造2025”计划的实现就需要很多人工智能。比如过去在技术上难以克服的问题,就可以通过深度学习,在工程上快速地取得一些新的突破。人工智能技术的发展与应用,对于有效实现“中国制造2025”目标至关重要。

面向未来长远布局

在人工智能这场科技浪潮中,中国与其他国家已经站在了同一起跑线上。针对未来产业竞争,中国政府已在多个方面对人工智能产业做出布局,“人工智能+”的发展,需要面向未来,做出长远布局。

未来5到10年,人工智能将像水和电一样无所不在,可以进入到教育、医疗、金融、交通、智慧城市等几乎所有行业。

篇10

我们当时考虑,“智能制造”离我国企业还比较远,所以就没有积极参与其中,而是集中于信息化。重点是集成――信息互联互通,以企业效益驱动。

日本的IMS没有很成功。从今天来看,其中最重要的是信息环境,包括人工智能的技术和产业化,都属于初级阶段,不足以支持制造的需要。下面是具体的对比:

信息环境的变化:计算机运算速度,无论超级计算机,还是普通计算机,其运算速度都提高了1000倍以上。芯片线宽今天达到7纳米,是80年代的1/200, 通信和网速提高了50000倍。

人工智能本身的进步:20世纪80年代,人工智能主要是专家系统、模糊计算和神经网络。当时是浅层神经网络。 今天,神经网络已经达到152层的深度学习。自然语言理解,如机器翻译―口语、图片,Google、百度已接近人的水平。

进一步,人工智能将从“计算机模拟人脑思维、认知”往计算机+人的混合智能(如人在回路中)、计算机+网络的群体智能、大数据智能、跨媒体智能、计算机取代人的大量自主无人系统(无人机、无人车、机器人等)这些方向发展。

这样的变化就为今后智能制造的发展提供了巨大推动力。

从智能技术在制造中的应用看,20世纪80年代,多数为产品设计、加工制造、资源管理。今天,扩展到全生命周期:产品创新设计、加工制造、装配、测试、管理、营销、售后服务、客户关系、仓库物流供应链、报废处理等。

因此,智能制造将面临一个新的快速发展前景,被人们寄于厚望。

对智能制造内涵的认识

对智能制造内涵有一个准确、全面的理解有助于避免实施时的被动、盲目。

那么什么是智能制造?目前业界还没有公认的定义。一种最简单的说法认为,智能制造是智能和制造的交集、融合。

进一步,我们再分析一下什么是智能?什么是制造?其中涉及到几个概念:

人工智能技术:是指用机器(主要是计算机和软件)实现人的“感知”和“判断”。这是传统人工智能的提法。如感知方面:机器视觉、力觉、触觉、听觉……在判断和决策方面:专家系统、人工神经网络、模糊推理、智能,自然语言接口、机器学习等。

人工智能新形态:大数据智能、群体智能、跨媒体智能、混合智能……体现形式:自主无人系统;应用:智能制造、智慧医疗、智能农业、智能城市等。

新一代信息技术:包括了移动互联网、智能技术、大数据、云计算、物联网等。

此外,制造全生命周期包括了产品创新设计、加工制造、装配、测试、管理、营销、售后服务、客户关系、仓库物流供应链、报废处理等。

这样就有另一种说法:智能制造是智能技术(特别是新一代智能技术)在制造全生命周期应用中所涉及的理论、方法、技术和应用。

还有一种说法认为,智能制造是指在制造工业的各个阶段,从智能技术的视角,融合信息、机械、工艺、管理等学科技术,以一种高度柔性与高度集成的方式,支持产品全生命周期的产品(服务)设计、加工、管理、销售到报废处理的全过程,达到制造业智能增长、包容性增长、可持续增长的目标。

内涵差不多,都可以参考。

从技术角度看,智能制造技术是制造技术、自动化技术、系统工程与人工智能等学科互相渗透、互相交织而形成的一门综合技术。其具体表现为:智能设计、智能加工、机器人操作、智能控制、智能工艺规划、智能调度与管理、智能物流、智能装配、智能检测、智能维护故障诊断、新制造模式等等。

智能制造

既可“顶天”也可“立地”

不管是哪一N说法,智能制造覆盖面很广,人工智能的内涵也很广。制造全生命周期中的任何一个环节,采用了人工智能的任何一种具体技术都可以属于智能制造的范围之内。

因此,智能制造不只是“高、大、上”,制造业(包括其它行业)的各个层面都可以有所作为。

这便是“立地”,智能制造就在我们身边。

我国在前20~30年的许多信息化成果,如数字化制造、集成制造、网络化制造、虚拟制造、协同制造、现代物流、企业管理信息化等等,都会多多少少用到智能技术(人工智能1.0)。这些方面也需要智能制造进一步发展。

“智能制造”的发展,即“基于人工智能2.0的智能制造”,(或者称为新一代智能制造)当然是“顶天”的(但也“落地”)。

例如,智能感知(大多数需要MEMS技术)是智能装备、智能工厂必须的,也是设备健康管理、故障诊断必须的;

自然语言理解,人在回路中,知识性工作自动化;

群体智能支持众创空间(新产品的创新研发);

大数据智能可以改善产品质量、故障诊断、对员工/企业/用户的诚信管理;

“无处不在”的高端智能产品;

新制造模式 ,用户参与的设计、批量为1的制造。

我国在这些方面也都有成果、案例。当然还将在深度和广度方面进一步发展。

实施智能制造 不要忘了目标

智能制造有前景,是一个热点,在一些计划中被提为重点,但也只是企业转型升级、制造强国战略中的一个选项。

如何在众多的新技术中选择?如何加权选择?根本一点还是看能不能给企业带来效益、让企业实现可持续发展。

技术只是手段,目标决定了企业的选择。

因此,实施智能制造的方针是:需求牵引、效益驱动;总体规划、分步实施;重点突破、创新发展。

篇11

人工智能;计算机网络技术;运用

引言

到目前为止,我国的很多领域都已经开始了人工智能技术的应用,人工智能的技术应用大大方便了我们的生活,同时,也实现了生产和服务领域的革新和进步,对我国整体的科技进步和发展发挥了重要作用。

1人工智能简介

1.1概念

人工智能是在近些年逐步兴起和开始被大家熟知的技术名词,人工智能主要应用在人工模拟操控以及实现人的智能性扩展和延伸,人工智能综合了相关领域的智能性技术、智能操作方法以及智能技术应用,属于一门综合性较强的技术类应用科学。属于一门独立的新型技术学科。人工智能主要的应用载体为计算机,通过技术研究尝试实现计算机实体发挥出人的智能,实现对人的智能性模拟应用,智能性延伸和扩展。从根本上来讲就是寻求高应用技能的计算机,通过科学的设计和新型的建造方式实现计算机应用系统的高智能水平发挥。人工智能的概念是以人类智能为参考的,主要的应用方法是利用人工技术,通过人类智能行为的计算机开发和引入,综合性研究的科学载体。近些年来,伴随着计算机软硬件的技术更新发展速度不断加快,计算机的实际应用速度和效率不断提高、实际的资源存储能力不断提高,同时,实际的网络技术普及促使电子类产品价格不断下降,许多人工无法短时间内快速完成的任务通过计算机已经可以轻松搞定,人工智能也由此拥有了更多的现实应用能力和基础。目前,我国的人工智能研究主要集中在三个重要领域,其中包括了智能化的接口设计、智能化的数据搜索以及智能化的主体系统研究[1]。

1.2接口技术研究

为了实现更加便捷自然的人工智能交流技术应用,智能接口技术的研究在近些年来越来越受到关注。数据的提炼和有效信息的挖掘技术需要从大量模糊和随机的数据中进行有效信息提取,从而实现对潜在和隐含信息中有价值数据的搜索和提炼的过程。所以,这一过程就需要搜索的主体具有一定的意念、选择性能力以及辨识方法,属于一个智能化的概念主体。同时具有明显的自主性特征。通过对人类大脑智能化识别以及模糊数据处理功能模仿,实现智能化计算机的应用。未来,人工智能将会在人工神经网络中进一步应用和普及,成为未来可具发展潜力的全新领域。在人工智能技术应用过程中,包含了语言信息自动处理、定理化的自动证明以及智能化信息检索和问题解答等等。所以,人工智能应用中人机关系的变化将会进一步对人们生活方式以及生产模式产生重要影响,成为整体信息技术发展的新方向和新课题。在新的发展阶段,人工智能也将拥有新的应用领域需要出现[2]。

2人工智能在网络技术中的应用

在网络安全领域,人工智能技术应用也逐步广泛发展起来。互联网信息时代人们的交流和联系日益密切起来。人们的生产生活也因此大为便捷。但是,信息交流沟通的便利性加大的同时也必然引起网络信息的安全系数降低,网络安全隐患多种多样。所以,人工智能技术的网络安全维护应用将成为重要的突破口,大大提高网络安全系数,同时实现网络安全性能的提高,对用户的信息安全进行充分保护。人工智能最突出的特点就是对于不确定性信息以及不可知性信息的理解以及整合能力较高,这些都是可利用在网络安全维护中的重要技术优势。能够很好的对入网访问者进行智能识别,提高信息的安全和稳定性[3]。同时,人工智能技术还可以很好的应用到计算机网络信息服务领域中,一般被称为智能信息处理技术,通过这一技术的融合可以有效提高人工智能的个性化任务设置,丰富实用方式,提高综合服务水平。在软件方面,各类新型开发工具都在不断应用,人工智能的领域化拓展速度不断加快,在硬件方面,技术革新带来了性能的不断提高,同时价格也在不断降低。

3结论

综上所述,我国的人工智能科学技术在很多领域的应用已经得到了很大的突破,科学技术与计算机网络都是在人工智能发展过程中得到自身应用拓展的重要组成。通过以人工智能计算机网络应用模式的分析和研究,进一步为人工智能的未来发展提供理论研究和参考价值。

作者:谷世红 毕然 单位:石家庄信息工程职业学院

参考文献

篇12

1农业机械新技术的发展与应用

1.1计算机视觉技术

因为在当前的经济社会,农业经济效益高低在很大程度上取决于农产品质量好坏,优质等级的农产品价格会更高。但是如果以人工方式对农产品进行分类,不但费时费力,而且效率很低。而通过计算机视觉技术则可以很好的解决这一问题。其主要是依靠图像处理、视觉模拟等先进技术作为技术依据来对农产品品质进行分级检验。现如今,计算机视觉技术还在农业机械收割、播种等领域有所涉及,但目前还无法有效处理快速获取动态图形信息,为收割、播种这一领域的应用带来了一定的难题,还需要相关人员继续进行研发[1]。

1.2人工智能技术

人工智能是当前社会上讨论的热点话题,是最前沿的高科技之一。将人工智能技术应用在传统的农业中是时展的需求,也是未来的主要发展趋势。美国等发达国家已经初步将人工智能技术应用在实际的农业生产中。如美国农业已经开始使用激光拖拉机,实现了人工智能操控拖拉机的方向、所在位置和工作动态,极大的解放了劳动生产力,提高了生产效率和操作精准度,也使得农业生产更加舒适省力,尤其适宜大规模的农业生产。

1.3自动控制技术

在农业生产中,自动控制技术的应用较为广泛,但是还有很大的应用与提升空间,尤其是在一些特殊生产领域,依然还属于机械新技术。例如,在蔬菜大棚的农业生产中,通过自动控制技术就可以自动对大棚内部的温度与湿度进行合理的实时调节,不但使调节后的温度湿度更加科学精准,更适宜蔬菜的生长,也大大减少了人力劳动工作量。

1.4联合耕作机械技术

所谓联合耕作,就是指两个或两个以上的机械一起使用进行农业耕作。通过联合耕作,可以缩短农业生产时间,提高农业耕作效率。通过采取联合耕作机械技术,可以一边耕地一边播种,也可以一边采收农作物一边打碎秸秆。这样的耕作要比传统耕作更加高效省时,在农业生产中发挥了非常重要的作用。

1.5液压机械技术

采取液压机械技术,不但能够节省大量的能源,减少对自然环境的污染与破坏,还能够保证农业生产的稳定性,不会因为其他因素影响其工作效果。这是因为与其他的农业机械相比,液压机械采取静液压转动技术,根据实际需要调节转速,不但对机械本身的使用寿命有很大益处,也提高了农业机械生产的稳定性。另外,采取液压机械技术,最显著的优势除了节能环保以外,还在于其不会发生任何泄漏,所以不会对土壤造成污染,这也农业机械化生产中很关键的一点。

2农业机械新技术的发展前景及对策

农业实现机械化生产是必然的发展趋势,因此农业机械新技术的发展前景十分广阔。在此形势下,需要进一步采取有力措施,促进农业机械新技术实践运用水平的提升[2]。

2.1政府及有关部门应大力扶持农业机械新技术

农业现代化的进程为缩短城乡差距做出了很大贡献,但受生产力水平的限制,农村经济依然比较落后。在此情况下,政府应当大力扶持新型高效农业机械技术的研发和应用,并提供相应的优惠政策和补贴政策,为农民负担一部分的购置机械费用,促进农业机械新技术快速转化为生产力,提高农业生产效益,增加农民经济收入。

2.2大力推广农业机械新技术

我国是地大物博的农业大国,各个地区都有农业生产,但是农业机械新技术在研发应用时往往只是先在一部分发达地区实施。而在偏远地区,人依然是最主要的劳动力,新的农业机械无法普及到这些地区,极大的限制了我国农业经济的发展。为此,新时期下还需要大力推广农业机械新技术,使更多的地区实现高科技的现代化机械生产。

2.3注重机械化生产的节能性

在农业生产中,机械化生产与人工生产之间存在的区别之一就是人工生产时会更加注重对资源的利用,而机械化生产有时则会造成生产原材料的浪费。例如在玉米的采收中,人工采收基本可以实现颗粒归仓。但是机械收割则有可能无法将倒在地面的玉米采收起来。这与农业机械化建设的初衷是背道而驰的,因此在使用农业机械新技术时,应该要注意节约资源,避免浪费,实现工作效率和生产效益的双赢[3]。

3结束语

综上所述,在当前我国的农业发展过程中,农业机械化新技术具有很大的发展前景与发展潜力,并且在很多领域都还有很多的可发展空间。这就需要技术人员不断的积极研发更多更高效的农业机械技术,同时还需要国家给予一定的支持,做好农业机械新技术的推广工作,从而最大程度的将人工劳动力解放出来,促进农业现代化的发展。

参考文献:

[1]王丽芬.农业机械新技术的应用与发展[J].南方农机,2016(11):22+28.

篇13

1 人工智能概述

人类的三次工业革命,对社会的影响是巨大的,进入21世纪,科技信息对我们生活中越来越重要,计算机成为我们生活中必不可少的用品,工作、学习样样都离不开,它使我们的生活在信息世界,对信息的掌握更及时、便捷。

“智能化”是新世纪新技术、新产品、新产业的重要发展方向,只能控制、智能自动化将是我们的目标,所以,人工智能越来越广泛的被应用到我们的日常生活中。

人工智能(A Rtifcial Intelligence),英文缩写是AI。人工智能是一门综合了计算机、生理学、哲学的交叉性学科,是一门极富挑战性的学科。人工智能研究的是使机器能够胜任一些需要人类只能才能完成的复杂工作,人工智能机器人的诞生是人工智能操作的里程碑,是人类经过无数的实验而成功运用人工智能创造的结晶。

人工智能的研究是方方面面的,它不仅涉及计算机程序应用,还涉及到信息论、控制论、自动论、生物学、心理学、语言学、哲学、数学逻辑等多门科学知识。早期的人工智能机器人是不成熟的,它的只能做一些很简单的事情,并没有达科学家要求的程度,所以如何构造一个系统,可以使机器人的编程程序完全模仿人脑的行为成为摆在专家们面前的最严峻的考验。

2 人工智能的应用

随着计算机、通信和并行程序设计技术的发展,对人工智能的研究已经发展成为智能体系统的研究。网络游戏中最常见的游戏是扑克牌,一般游戏时,我们的对手就是计算机本身,计算机拥有的这样一套程序就是人类向人工智能迈出的一大步。几天的计算机程序已经达到可以下各种棋类游戏的锦标赛水平,但是,这其中仍然还是存在没有解决的问题。人类遇到困难的时候,总是会在不断的思考中找到解决问题的方法,从而轻易的解决问题。到目前为止,人工智能程序已经知道如何考虑他们要解决的问题,也就是在搜索解答的广泛空间中,寻找比较好的答案。

智能体理论设计智能体是什么和如何使用数学形式化方法来表达和推理智能体的属性。只能体体系可以被认为是智能体的软件工程模型,智能体语言是智能体变成核试验的软件系统。

在我国,智能体技术多被应用到处理像Internet这样的具有异构、分布、动态、大规模及自主性的系统中,是人工智能技术在信息处理方面的一个崭新的应用。

在人工智能研究中逻辑推理是研究最持久地一个领域,在这个领域我们通常把注意力只集中在一个大型的数据库的事实上,对出现的新信息进行适时的修正。而在这个领域中,我们不仅需要具备根据假设进行演绎的能力,而且需要具备对信息检索和定理证明进行形式化的处理的能力。

3 人工智能的发展

从目前的形势来看,绝大多数人工智能系统都是建立在物理符号系统的假设之上的。在没有出现于物理符号系统假设抗衡的人工智能理论前,无论从设计原理还是在已经取得的实验结果来看,只能基础的体系结构Soar在探讨智能行为额一般特征和人类认知的具体特征的征途上是取得了有特色的进展,在人工智能的研究上都是处在科学的前沿的。

在人工智能的研究学者中rooks提出了人工智能的新途径,认为智能系统的能力可以无需符号表示而进行逐步的转化。人工智能虽然取得了一定的成果,但是在研究中的问题也是层出不全的,如对人工智能本质认识不全面的问题,着眼于这些困难的解决,抓住人工智能的生长点,使人工智能可以产生质的飞跃,这就是我们以后工作要做的。这些工作归纳起来主要有:(1)归纳性;(2)关联性;(3)抽象性;(4)开放性;(5)主动性;(6)动态性等方面的研究。

综上所述,人工智能领域的下一个突破可能不仅在于赋予计算机更多的逻辑推理能力,而且更要赋予它情感能力。到21世纪中叶,人类生命的本质也可能发生变化,精神植入将对人类的知识和思考能力产生巨大的影响,人工智能机器人将在人类的生活中占据一席之地,成为人类生活的伙伴,并且创造出真假难辨的虚拟现实的仿真效果。

参考文献:

[1]胡建平. 提高应答机测距精度的环节与测量技术探讨[J]. 电讯技术,2003,(1).