在线客服

分数乘除法的规律实用13篇

引论:我们为您整理了13篇分数乘除法的规律范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

分数乘除法的规律

篇1

教学重点:使学生掌握分式的乘除法运算。

教学难点:分子、分母为多项式的分式的乘除法运算。

教学方法:探究式、引导式、小组交流合作。

教学准备:多媒体辅助。

教学过程:问题1:一个长方体容器的容积为v底面的长为a宽为b,当容器内的水占容积的

时,水高多少?长方体容器的高为____,水高为____

问题2:大拖拉机m天耕地a公顷__,小拖拉机n天耕地b公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?大拖拉机的工作效率是

公顷,天,小拖拉机的工作效率是__公顷,天,大拖拉机的工作效率是小拖拉机的工作效率的__倍。

(1)学生小组活动:讨论并填空。(2)教师提问:这是一个什么运算?怎样计算呢?

(板书课题:16,2分式的运算1、分式的乘除法)

设计意图:有问题1、问题2创设问题情境,在学生感到新奇而不知所措的过程中激发学生强烈的求知欲、设置悬疑、无疑为学生对本节课的学习创设了良好的情绪状态,面从实际生活引入,体现了数学知识源于生活。

学生交流:分数乘法法则?分数除法法则?分数乘法法则:分数乘以分数,用分子的积作积的分子,分母的积作积的分母。分数除法法则:分数除以分数,把除数的分子、分母颠倒位置后,与被除数相乘。(1)教师叙述:通过上面分数乘除运算可先约分再相乘。但对于除法运算首先把除法化为乘法,然后约分、相乘。设计意图:通过对旧知识的复习、引导学生从旧知识中寻找新知识的生长点,符合新事物的规律、由浅入深、同表及里、逐渐深化。(2)探索新知:你能用代数式表示上题中((旧知再现)观察下列运算)的计算过程中吗?与同伴

通过类比,得出:①分式乘除法与分数乘除法类似;②“数”变为“式”后,其运算又有不同。

篇2

一、问卷引发的思考

笔者曾对五六年级学生作了一项问卷调查,了解学生对乘除法意义的掌握及相应的解决问题能力。为了便于比较,问卷以题组形式呈现:

题组1:

一种饼干的售价为每千克15元,3千克这样的饼干售价是多少?

一种饼干的售价为每千克15元,0.3千克这样的饼干售价是多少?

题组2:

2升桔汁的售价为8元,每升桔汁的售价是多少?

升桔汁的售价为4元,每升桔汁的售价是多少?

题组3:

某种农药2千克加水稀释后可喷洒1公顷麦地,喷洒6公顷麦地需要多少千克农药?

某种农药 千克加水稀释后可喷洒1公顷麦地,喷洒 公顷麦地需要多少千克农药?

应该说,这种以相同的数学结构出现的问题是很有暗示性的,且题目本身也相当基础,然而问卷结果却表现出了明显的差异:40位被测学生中,每项题组中的第一题综合正确率高达98.3%,而第二题的综合正确率仅为67.5%。这说明,学生对第一学段学习的乘除法问题掌握较好,进入第二学段却暴露出了明显的问题。具体看学生的错误类型,多是不知道该选择乘法还是除法来解决相应的问题,或是选择了除法,但不知将哪个数当被除数(如题组2第二题,很多学生用4× 或 ÷4来解决)。笔者以为,此类问题的存在固然可以从数量关系教学这一角度去分析,但这不应被等同于学生的实际思维过程,只有立足于学生已有的知识经验,探求已有经验对学生产生的影响及数域扩展后给学生带来的乘除法学习障碍,才能真正厘清学生的思维走向,进而对症下药。

二、分析与诠释

毫无疑问,在乘除法教学中,意义的教学是首要的。纵观整个小学阶段,乘除法意义实际上呈现不断发展的特点,这同时又可看成一个更为漫长的发展过程(如负数、无理数等概念引进后的扩展)中的一个环节。从宏观的角度看,二年级的乘除法意义学习阶段性十分明显,教师无疑会限于并强调“同数连加”的意义,这时学生所形成的内在表征就会有较大的局限性。特别是,由于学生在开始学习乘除法时所接触到的都是比较简单的情况,也即主要局限于正整数的乘除,从而就很容易形成以下的观念:“乘法总是使数变大,除法则总是使数变小;乘除法中各部分都是整数。”到了第二学段,数概念得到了进一步扩展,此时教师更多关注计算本身,对于乘除运算意义一般都只是寥寥数语带过,或简单地以“与整数乘除法意义相同”过场,而恰恰忽视了乘除运算意义在新数域的推广过程及所获得的新的含义,以乘法为例,增加了“已知整体求部分”,如“6的 是多少?”,相应的除法则是“求取整体”,即如“已知一个数的 是4,求这个数?”

显然,从这样的角度去分析,前面所提及的错误的发生也就不足为奇了,因为,这在很大程度上反映了这样的现实:第一组中,学生依据直觉意识到第二个问题的答案应小于15,进而,按照他们已建立的观念,乘法总是使数变大,而只有除法才能使数变小,因此,选择了除法;第二组中出现了分数,而学生头脑中的乘除法各部分应是整数,所以一下子就变得茫然,即便正确选择了除法,也不知该将哪个数放在前面;第三组第二题则是与学生之前建立的“同数连加”的乘法意义相冲突,因为这时分数的乘法显然已不能看成“重复的加法”,而是“求一个数的几分之几是多少”,因此就容易出错。

事实上,以上尽管通过分析学生思维找到了其错误的根源,但我们也应看到这种错误的“合理性”,站在学生的角度,他们不过是将仅仅适用于正整数乘除的某些“规律”错误地推广到了正有理数的情况,这当然应当被看成学生思维发展的一个必然过程。关键是,作为教师应清楚地认识学生在乘除法意义学习中的局限性和困难,采取适当的措施引导学生较为自觉地去实现对乘除法意义的必要的推广与更新。

三、小学阶段发展乘除法意义的策略研究

(一)丰富原型,加深对意义的多角度理解

格里尔在“作为情境模型的乘除法”一文中指出:为了使纯形式的推广在直观上能够被接受,必须辅以一些具体情境,在其中所说的推广可以被认为十分必要和完全合理的。对于乘除法意义本身而言,其内容是很枯燥的,但它植根于现实的沃土,意蕴丰富。在第二学段的教学中,我们仍应牢牢把握情境这条主线,实现乘除法意义的内涵发展。

在小学阶段,乘除法意义大致有以下几种:

(1)等量组的聚集。即通常所说的“连加”。在这一情境下,两个因数的地位并不相同,也就是过去所说的“每份数”、“份数”,从而,也就有两种不同的除法逆运算,即通常所说的“平均分”、“包含除”。

(2)倍数问题。

(3)配对问题。

(4)长方形的面积。

这几种原型在第一学段均已出现,但在学生头脑中的印象是浅显的、零散的,仅限于正整数,且并未形成对乘法意义的阶段性完整认识。随着学生数概念的发展,相应的乘法意义应与其相互促进。在教学中,教师仍应努力丰富学生头脑中的乘除法意义原型,提高其对意义的表征能力。

如在五上“小数乘法”单元,笔者设计了这样一道题:请用你喜欢的情境表达“1.3×5”的意义。

经过充分的思考、讨论、交流,学生中产生很多想法:有的编制了购物、长度、质量、面积等数学问题,有的画实物图或线段图,有的用文字或加法算式直接说明。作品很多,但均从不同角度反映了不同个体对乘法意义在小数域中的认识表征。此时,我不失时机地引导学生对作品进行归类,寻找异同,理解作品背后所表示的意义。学生在整理后发现:1.3×5既可以表示5个1.3(等量组的聚集),也表示5的1.3倍或1.3的5倍(倍数问题),还可以用在面积计算中等。也正是在这样的交流共享中,学生原先停留在正整数领域中的乘法意义有了进一步的发展,在丰富的原型中体会到乘法意义在小数领域的本质推广与延伸。

(二)制造冲突,促进学生对概念的主动更新

建构主义认为,对于学生在概念学习中发生的错误不应单纯依靠正面的示范和反复练习去纠正,而应以引发主体内在的“观念冲突”为必要前提,使其经历“自我否定”的过程。高年级学生正处于形象思维向抽象思维发展的过渡阶段,已经具备一定的思考能力,如果教师只是简单地将乘除法意义“教”给学生,缺少学习主体的自我内化过程,那么概念的发展就如浮光掠影。因此,教师应创设能引发学生概念冲突的情境,引燃学生思维的火花,引导学生主动对先前的乘除法意义的认识作出必要的调整,将新的含义悦纳到已有的知识体系中。

以分数乘法的教学为例,一位教师在教学中出现这样一组情境:

(1)我的绳子长 米,小明的绳长是我的3倍,小明的绳子有多长?

(2)我的绳子长3米,小明的绳长是我的 ,小明的绳子有多长?

引导学生通过画图、讨论得出算式,反馈时,教师适时追问:都是 ×3,表示的意义相同吗?这就引发学生的思维冲突:如果说第一题可用“3个 ”解释,那么后一题显然不能,这题的意义又该怎样表述?这样,在对同一算式不同含义的挖掘中,学生很直接地感受到只用以前的“同数连加”的乘法意义已不足以解释分数乘法出现的新问题,产生了认知冲突,有了扩展新含义的需要。

在此基础上,教师及时引导学生对第二题的算式意义进行研究,注意其发展变化。并指出在引入分数以后,“倍”的概念发展了,既包含了原来的“整数倍”、“小数倍”,也包括了这节课所学的“一个数的几分之几是多少”。这样,学生经历了“冲突——建构——顺应”的学习过程,新概念的融入便不再是教师强加,而是主动的更新与顺应。

(三)提取本质,引导学生转换关注视角

前文的分析中曾提及,学生在数域扩展后,容易将在整数乘除法意义学习中的一些“规律”错误地推广到小数、分数乘除法学习中,繁杂的数据构成了学生在学习小数、分数乘除法中的一大障碍。面对新题目,学生往往更多地关注情境中所包含的数量,而不注意其中的文字内容,以及内容背后的运算意义。对此,教师不妨立足学生的思维方式,化繁为简,抓住本质,以此修正认识误区。

基于这样的思考,笔者在实践中进行了尝试。以分数的除法意义教学为例,教材在编排中已经考虑到了学生的学习困难,采用由整数乘除法改编数据后过渡到分数乘除法的方式,帮助学生理解“分数除法的意义与整数除法的意义相同”,即“分数除法是分数乘法的逆运算”。从表面上看,学生通过旧有知识已经促成了新知理解,而事实上,学生此时的理解仅仅是在特定题组中的,脱离题组这根“拐杖”,学生又会受到数据的干扰。因此,我紧接着出示了一组题,要求学生只列式不计算:

(1)把 平均分成2份,每份是多少?

(2) 里面有几个1/5?

(3)10是 的几倍?

(4)一个数的是 是8,这个数是多少?

(5)两个因数的积是 ,其中一个因数是 ,另一个因数是几?

可以发现,这组题虽然脱离了具体的情境,但都直指除法意义本身。在学生列式后,我追问:你是凭什么选择用除法计算的?是否用除法计算,与题目中的数据有关吗?这时,学生就会走出情境,思考题目背后的意义,思考自己选择的初衷。“分数除法的意义与整数除法相同”,但具体表现在哪些地方呢?“平均分”、“包含除”、“倍数问题逆运算”、“已知部分求整体”等,这些都是除法意义在具体问题中的结构本原。学生知道了这一点,也就能避开数据产生的干扰,而更关注于问题本身的含义,将视角从“关注数据”转换到“关注意义”中来,进而,在面对复杂的情境、复杂的数据时,能以运算意义为依托,将问题简化。

综上所述,小学阶段乘除法意义的教学应着力在阶段性与发展性之间寻求平衡。换言之,对于任何数学概念的教学,教师都要立足于学生的思维状态,关注其对概念的不断更新、发展、重构,及时排除概念发展中的障碍,从而达成概念教学效果的最大化。

篇3

对于这部分的内容,我是这样教的:首先,从基本概念“分数的意义”入手,结合分数在语句的含义,让学生理解谁是单位“1”的理论依据。这样有理有据,学生比较信服,掌握起来就会得心应手。

比如,“男生人数是女生人数的1/3”这句话把谁看作单位“1”的量?我进行了如下的设计。我先提问:“1/3表示什么意思?”学生答:“1/3表示把单位‘1’平均分成三份,取这样的一份,即1/3。”我问:“男生人数是女生人数的1/3,这里的1/3,又表示什么意思?1/3是谁的1/3?”学生答:“女生人数的1/3,其含义是把女生人数平均分成三份,男生人数占其中的一份。”通过1/3与1/3在句子中的含义比较,学生就不难看出,女生人数就是单位“1”的量。

再如,针对“女工人数是男工人数的2/3”,我先问:“2/3表示什么?”学生答:“2/3表示把单位‘1’平均分成三份,取其中的二份,即2/3。”我问:“题目中的2/3是谁的2/3?”学生答:“男工人数的2/3,其含义是把男工人数平均分成三份,女工人数占其中的两份。”由2/3与2/3的语句中的含义比较,可以看出,男工人数是单位“1”的量。用同样的方法,学生就会很容易得出以下几个题目的单位“1”的量。

(1)甲数的3/4是乙数。

(2)合唱队人数的3/5正好等于舞蹈队人数。

(3)今年产量是去年的产量的4/5。

在分析的同时,教师在这几个例子中的单位“1”的量下面用彩笔分别画上横线,其板书如下:

(1)甲数的3/4是乙数。

(2)合唱队人数的3/5正好等于舞蹈队人数。

(3)今年产量是去年的4/5。

然后让学生观察,提问:单位“1”的量所处的位置在什么地方?同时教师手示每题中单位“1”的量。由于小学生观察力较强,通过找规律,学生便能很快找出单位“1”的量所处位置(在分率的前面)。正因学生懂得了单位“1”的来历,又自己总结出单位“1”所处的位置,所以寻找起来比较准确。经过这样的训练,学生对单位“1”的寻找正确率可达100%。

二、如何正确写出数量关系式

如何正确写出数量关系式,这是正确解答此类应用题的关键所在,所以正确写出数量关系式,是保障列式正确的关键一步,非常重要。分数乘除法应用题可分为简单分数乘除法应用题和较复杂的分数乘除法应用题两类。

1.对于简单分数乘除法应用题的教学,上课前教师可设计这样一组复习题:(1)男生人数是女生的3/4;(2)第一组学生数是第二组的1/3;(3)五班人数是六班的2/5;(4)现在成本是原来的4/5。然后,教师应注意从基本概念“分数乘法的意义”入手,提问:“求一个数的几分之几是多少,用什么方法?”(用乘法。)“女生人数的3/4是男生人数,怎样列式?”学生就不难写出:女生人数×3/4=男生人数。教师应让学生根据分数乘法意义,引导他们写出以下小题的数量关系式:

(1)男生人数是女生人数的3/4女生人数×3/4=男生人数;

(2)第一组学生数是第二组的1/3第二组人数×1/3=第一组学生人数;

(3)五班人数是六班的2/5六班的人数×2/5=五班人数;

(4)现在成本是原来的4/5原来的成本×4/5=现在成本。

教师引导学生观察:关系式中第一列的量是语句中的什么量?等号后面的量是语句的什么量?通过观察学生就能很容易得出写数量关系的规律:单位“1”的量×分率=分率所对应的量。只要掌握了关系式的写法,对于简单分数乘除法应用题的列式,就手到擒来了。即单位“1”的量已知,直接代入数字列式,反之,就可以用方程解答。

2.关于较复杂的分数乘除法应用题的教学,同简单分数乘除法应用题教学一样,也必须让学生学会写数量关系式。教学这部分知识,教师可以画线段图,使学生更直观看出两种量的相等关系。学生只要把关系式写正确,就会列出正确的算式,这也是正确解答此类应用题的关键。

比如,针对“男生人数比女生多1/5”,教师提问:“谁是单位‘1’(女生),1/5表示什么?”学生答:“把女生人数看作是单位‘1’,平均分成五份。男生人数比女生人数多其中的一份,即画线段图时,先画出女生人数的五份,再画出男生人数的六份。”

教师接着提问:“多1/5,指多谁的1/5?”(女生人数的1/5。)“那么,男生人数与女生人数之间是怎样的相等关系?”(女生人数+女生×1/5=男生人数。)

再如,“今年产量比去年增产了1/4,在此谁是单位‘1’?”(去年产量。)“今年比它怎样?”(多。)“1/4表示什么?”教师边提问边画线段图:

教师再提问:“比去年多了谁的1/4?”(去年的1/4。)所以今年与去年产量的关系是:去年产量+去年产量×1/4=今年产量。用同样的方法,教师再出示例题:今年用电比去年节约1/3,九月份烧煤比十月份少1/10,然后用同样的方法写出数量关系式。

以上几道例题的板书如下:

(1)男生人数比女生人数多1/5女生人数+女生人数×1/5=男生人数。

(2)今年产量比去年增产了1/4去年产量+去年产量×1/4=今年产量。

(3)今年用电比去年节约1/3去年用电-去年用电×1/3=今年用电量。

(4)九月份烧煤比十月份少1/10十月份烧煤量-十月份×1/10=九月份的烧煤量。

篇4

一、 分析教材,设计整体思路

分析教材,不难发现“稍复杂的分数乘除法实际问题”主要包括两类,一类是“部分数与总数”问题(部总关系),另一类是“多(或少)几分之几”问题(比多比少关系),共有6种例题。分别是:

第一类,部总关系,共有2种。

(1)六年级有500名同学,男生占 。女生有多少人?(2)六年级有女生300人,女生占六年级总人数的。六年级共多少人?

第二类,比多比少关系有4种。

(1)杨树有60棵,柳树比杨树多。柳树有多少棵?

(2)杨树有60棵,比柳树多。柳树有多少棵?

(3)杨树有60棵,柳树比杨树少。柳树有多少棵?

(4)杨树有60棵,比柳树少。柳树有多少棵?

在实际教学时,分成2个课时,第一课时教学“部总关系”的2道例题;第二课时教学“比多比少关系”中的前面2道,学生自主尝试后2道题。这样设计的好处在于,教材中对稍复杂的分数乘、除法实际问题的教学是离散的,而集中起来教学可以优化知识的结构。事实上由于这样的6道例题属于同一范畴的思维方式,解题的依据都是运用分数乘法的意义。同时将分数乘除法实际问题放在一起教学,又便于学生比较、分析这两者之间的区别与联系,有利于学生从整体上理解和把握稍复杂分数实际问题的解题思路。

二、 比较研究,形成数学模型

以教学“部总关系”为例,首先运用线段图分析题目中已知什么,要求什么,让学生明白这两道题的形式是相同的,只不过已知条件与要求的问题不同。

其次抓住关系句,让学生分析数量关系,进一步发现两道题的联系:本质上看这两道题是一样的,只不过第一题单位“1”的量是已知的,所以可以用乘法计算;第二题单位“1”的量是要求的,可以用除法或方程计算,但无论哪一道题,都是用“总人数-总人数×=女生人数”这样的一个相等关系来思考的。

其三是跟进练习,让学生进一步明确什么情况下用乘法计算,什么情况用除法或方程计算,帮助学生厘清乘除法实际问题之间的区别与联系,从而建立有效的解题模型。

三、 调整练习,促进思维发展

在尝试实践时,笔者将分数乘除法实际问题的练习重组,使两者之间的练习交叉分布。每次练习的过程中,既有分数乘法实际问题,又有分数除法实际问题,这样的练习设计,题目还是原来的题目,并没有增加数量,只是调整了顺序,因此没有加重学生的学习负担。但经过重组后的练习设计,更有利于学生从整体上去分析数量关系,并根据分数乘法的意义或所掌握的解题模型来判别是用乘法计算,还是除法或方程计算,而不是简单的模仿或记忆。

这样的处理,明显促进了学生思维能力的发展。在几次测试中,笔者所任教的班级解答这类实际问题的正确率比同轨班级高出许多,甚至第二类(比多比少关系)实际问题的正确率达到100%,也很少有学生将乘法与除法相混淆。这也说明,用整体思想来设计“稍复杂的分数乘除法实际问题”的教学是可行的。

篇5

二、运用比较法,理解内涵,掌握概念

为了使学生正确地理解和掌握概念,就要揭示概念的本质属性,充分理解其内涵,而对事物进行比较是揭示概念本质属性和理解内涵的重要学习方法。如教学“整除”这个概念时,让学生对一些除法算式进行比较,如16÷8=2,9÷6=1.5,9÷1.5=6,10÷3=3……1,知道单有“商是整数而没有余数”这个条件,还不能判断一个数能被另一个数整除,还必须有“被除数和除数都是整数”这个条件才行。通过比较,学生正确地理解了整除的含义。再如教学“求比值”和“化简比”,要从意义、方法和结果三方面进行比较,“求比值”也就是求商,而“化简比”是把一个比较复杂的比化成一个最简单的整数比;“求比值”和“化简比”的方法可以通用,都可以用除法计算;“求比值”和“化简比”的结果是不同的,“求比值”的结果是一个“数”,可以写成分数、小数,有时能写成整数,而“化简比”的结果则是一个“比”,可以写成真分数或假分数的形式,但是不能写成带分数、小数或整数。比较以后,学生才能充分理解“求比值”和“化简比”的内涵。

三、运用比较法,新旧知识联系,形成知识网络

在教学一个新知识点时,如果能与以往学过的旧知识相联系,进行比较,弄清新旧知识的联系与区别,不但容易学会新知,还巩固了旧知,并且使知识系统化,形成知识网络。如教学“比的意义”时,将“比”“除法”和“分数”进行比较,可列表如下:通过这样比较,使学生明确比和除法分数的关系和区别,把比、除法、分数联系起来,形成知识网,为后面学习“比”的应用打下基础。

四、运用比较法,区别应用题的结构

正确选择解法在应用题的教学中,经常应用比较的方法来区别应用题的结构,以便分析数量关系,选择正确的解题方法。如低年级的加减法应用题、乘除法应用题、高年级的分数乘除法应用题。如教学应用题:(1)池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?(2)池塘里有12只鸭,鹅的只数是鸭的13,池塘里有多少只鹅?(3)池塘里有4只鹅,正好是鸭的只数的13,池塘里有多少只鸭?通过比较,学生知道了应用题在结构上的相同点和不同点,使他们懂得第(1)题,根据分数的意义和分数与除法的关系,要用除法来计算。第(2)题,根据一个数乘分数的意义,用乘法计算。第(3)题,根据一个数乘分数的意义,列方程解答,或根据除法的意义直接用除法计算。通过比较,使学生了解了分数乘除法应用题的结构和思路的异同,从而能正确解答分数乘除法应用题。

五、对比练习,异同结合

学习新课之后,不仅要集中练习所学的内容,还要练以前学过的内容,特别要练习与新学内容相似而容易混淆的题目,使学生既能深刻理解新的知识,又能掌握新旧知识之间的“同”和“异”,区别应用。如练习“归一应用题”,应带练“归总应用题”;学完“连除应用题”后的练习,也应有“连乘应用题”的题目。通过比较它们的解题思路,明确它们之间的相互联系,可使各个零碎的知识串成线、联成网,从而构建起完整的知识结构。这样的对比练习也便于学生辨别和巩固所学的数学知识,培养学生分析问题、灵活运用知识解决实际问题的能力。

篇6

长方体和正方体:从学生已有知识和经验出发,组织探索长方体物特征的活动。抽象图形,修正表象。自主活动,发现特征。通过自主的活动,发现正方体的特征。在具体的操作活动中,认识长方体、正方体的展开图。做好课前准备。突出实物和展开图中面的对应关系。变中求同,感悟规律。联系生活实际,自主探索表面积的计算方法。联系生活实际理解题意。让学生自主探索长方体表面积的计算方法。通过比较和交流,理解求长方体表面积的基本方法。通过实例,初步建立体积和容积的概念,感受体积和容积单位的实际意义。在比较体积大小中引入体积单位。在语言描述、实物比拟、动作比划中感受体积、容积单位的实际意义。在类比推理中认识 1 立方米。在摆长方体的活动中,探索长方体体积的计算方法。在观察、比较和推理中,自主发现体积单位之间的进率。实践活动“表面积的变化”的重点是引导学生发现表面积的变化规律。

分数乘除法 :分数乘法意义的教学要强调三点:从学生的已有知识和经验出发,循序渐进地组织探索分数乘法计算方法的活动。在解决问题的过程中,加深对分数乘法意义的理解。安排倒数的认识,为分数除法的教学作准备。合理安排教学内容,提高学习和探索活动的有效性。借助直观图示,理解分数除法的计算方法。列方程解简单的分数除法实际问题,沟通分数乘、除法的联系。安排分数连除和乘除混合,加深对计算方法的理解。精心设计练习,促进学生发展.

认识比:结合已有知识和经验理解比的意义。加大探索的空间,自主发现比的基本性质。沟通知识间的联系,形成解决问题的策略。引导学生经历探索规律的过程,培养学生的实践能力,提高数学素养。

分数四则混合运算:联系现实的情境和已有知识,引导学生把整数四则混合运算的运算顺序、运算律迁移到分数中来。引导学生经历解决实际问题的过程,发展解决问题的能力。适当把握教学要求,为教学相应的分数除法实际问题作准备。引导学生借助线段图理解实际问题的数量关系。加强比较练习,帮助学生更好地掌握解题思路。

解决问题的策略:从学生熟悉的问题情境引入,激发学生的探索欲望;引导学生借助示意图主动寻求解决问题的策略;引导学生从不同的切入点提出假设,找出问题的答案,充分感受解决问题的策略;重视检验过程,培养自觉检验的习惯。

可能性:在现实的问题情境中,结合游戏规则的公平性感受事件发生的可能性。在解决问题的过程中,探索求事件发生的可能性的方法。

认识百分数:结合具体的情境,理解百分数的意义。在解决问题的过程中,探索百分数与小数、分数互相改写的方法。应用百分数的意义解决简单的实际问题。引导学生经历调查活动的全过程,学会收集、整理、加工、描述数据的方法,积累统计活动的经验。

教学总目标:

知识与技能目标

篇7

师:(出示例1)上周末,老师在超市买了3盒水果糖,每盒水果糖重100克,3盒有多重?

学生根据数学信息列出算式:100×3=300(克)。

师:根据100×3=300(克),请改编成两道整数除法算式及问题。

学生同桌交流,教师巡视,汇报结果。

师:100g=■kg,结合前面的信息,你们能提出哪些问题,写出哪些分数乘、除法算式?

生:小组合作完成变式,汇报结果。

师:(展示学生改编的问题及变式成果)

教师引导学生观察比较整数乘除法的问题和改写后的问题,得出整数除法和分数除法的联系及分数除法的意义,即分数除法就是已知两个因数的积与其中一个因数,求另一个因数的运算。

评析:“数学教学要从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”案例中教师就改变由复习旧知引入新知的传统做法,直接利用贴近学生生活实际事例引入课题,这样的导入引发学生参与的积极性,使学生感到数学就在自己的身边,在生活中学数学,让学生学习有价值的数学。

案例二:分数除以整数

师:(出示例2第一个小问题)把一张纸的■平均分成2份,每份是这张纸的几分之几?同学们小组动手探究一下吧!(活动要求:学生先独立动手操作,再在组内交流。通过折一折、涂一涂、算一算,能发现什么规律?有什么问题?)

小组讨论:(1)从折纸实验和计算来看,你发现计算分数除以整数可以怎样计算?(2)整数可以为0吗?

小组汇报:

方法一:把■平均分成2份,就是把4个■平均分成2份,每份就是2个■,就是■。

方法二:把■平均分成2份,每份就是■的■,也就是■×■。

■÷2=■×■=■=■

最后,同桌之间相互说说算理,四人小组比较以上两种方法。

师生小结:第一种情况会遇到被除数的分子不能被除数整除时,如把■平均分成2分,就不能用第一种方法;而第二种就能用,所以第二种比较简单。

师:(出示例2第二个小问题)如果把一张纸的■平均分成3份,每份是这张纸的几分之几?

生:(通过折纸独立完成例2第二个小问题。)

生:汇报结果。

■÷3=■×■=■

师:通过比较算式,你能发现什么规律?

师生小结:分数除以一个不等于0的整数,等于分数乘以这个整数的倒数。

评析:学生通过小组合作的方式,动手实际操作,通过折一折、涂一涂、算一算解决“把一张纸的■平均分成2份,每份是这张纸的几分之几?”这一问题,由此引出把■平均分成2份,每份是■的■,也就是■×■;在此基础上,学生独立完成例2第二个小问题:“■÷3=■×■=■”。让学生在合作交流中发现、归纳出分数除以整数的计算法则。通过图形和图示等直观手段,进一步理解了分数除以整数的算理,很好地突破了教学难点。在解决问题的过程中,培养了学生的动手操作、观察归纳能力。

案例三:一个数除以分数

师(出示例3,小明■小时走了2km,小红■小时走了■km。谁走得快些?):已知什么?

生:已知小明和小红各自的时间和对应的路程。

师:问题求什么?

生:求谁走的快些?

师:求谁走得快些?就是比较什么?

生:就是比较谁的速度快。

师:你能根据题意列出算式吗?

生:小明的速度是2÷■,小红的速度是■÷■。

师:小明■平均每小时走多少千米?

教师先引导学生画线段图分析:

学生小组合作计算,汇报展示成果,教师课件展示:

师生小结:一个数除以一个不等于0的分数,等于乘这个分数的倒数。

评析:案例三,教师仍采取了“放”的形式,让学生对例题中提出的问题积极思考,团结协作,尝试解决,较好地调动了全体学生参与教学活动的积极性,培养了学生的动手操作能力,同时,使学生对分数乘除法的内在联系有了进一步的认识。

总评:这是王庆书老师开展“小团队计算教学实践”活动的一个教学案例,这一案例的教学亮点主要有:

1.激发了学习兴趣,促进了思维的发展。

本案例的教学情境不仅使学生易于掌握教学知识和技能,而且增强学生学习过程中的情感体验,使数学学习变得生动有趣,能激发学生的学习兴趣。

2.化抽象为具体,化抽象为直观。

篇8

(掌握“凑十法”,提倡“递推法”。)

二、20以内退位减法

20以内退位减,口算方法和简单。

十位退一,个加补,又准又快写得数。

三、加法意义,竖式计算

两数合并用加法,加的结果叫做和。

数位对其从右起,逢十进一别忘记。

四、减法的意义竖式计算

从大去小用减法,减的结果叫做差。

数位对齐从右起,不够减时前位拿。

五、两位数乘法

两位数乘法并不难,计算过程有三点:

乘数个位要先算,再用十位乘一遍,

乘积末位是关键,要和十位来对端;

两次乘积相加完,层层计算记心间

六、两位数除法

除数两位看两位,两位不够除三位。

除到那位商那位,余数要比除数小,

然后再除下一位,试商方法要灵活,

掌握“四舍五入”法,还有“同商比较法”,

了解“折半定商法”,不足除数商九、八。(包括:同头、高位少1)

七、混合运算

拿到式题认真看,先算乘除后加碱。

遇到括号要先算,运用规律要改变。

一些数据要记牢,技能技巧掌握好。

八、加、减法速算

加减法速算你莫愁,拿到算式看清楚,

接近整百凑整数,如下处理无谬误。

加法不足减补数,超余零头加在后。

减法不足加补数,超余零头减在后。

九、多位数读法

读书方法很容易,首先四位一分级。

要从位读起,几千几百几十几。

级的单位读亿万,末尾有零都不读

(级末尾0不读,整个数末尾0不读)

中间夹零读一个,汉字表达没参和。

注读零的:

1、万级个级首位有零

2、整个万级是零

3、上级末尾下级首位都有0

4、每级中间有0

十、小数加减法

小数加减计算题,以点对准好对齐。

算法如同算整数,算毕把点往下移。

十一、小数乘法

小数乘小数,法则同整数。

定积小数位,因数共同凑。

十二、除数是小数的除法

除数的小数点一划,(去掉小数点)

被除数的小数点搬家,向右搬家搬几位,

除数的小数位数决定它。

十三、质数歌

一位质数2、3、5和7,

两位1、3、7、9前加1,

4后3,7前有9,7后1,

3、4、6后加7、1,

2、5、7、8后添9、3,

二十五个质数要记全。

十四、分数乘除法

分数乘法易学懂,分子分母分别乘。算式意义要搞清,上下能约更轻松。分数除法方法妙,原来除号变乘号。除数子母打颠倒,进行计算离不了。

十五、约分

约分、约分,相乘约净,省时省力。从上往下,从左到右,弄清数据,一数不漏。遇到小数,去点为整,位数不够,用“零”来补。

十六、互质数的判断

分数比化简,互质数两端。观察记五点:1和所有数;相邻两个数;两质必互质。大数是质数,两数定互质。小数是质数,大数不倍数。(是小数的)

十七、文字题

叙述形式有三种,读法意义和名称。解题方法要记清,缩句化简一步算。标点词语把句断,分层布列莫迟延。列式方法有两种,可用算式和方程。

十八、比较关系应用题

(一)相差关系

1、多多少,少多少,都是大减小。

2、已知条件说比多,比前用加比后减。

3、已知条件说比少,比前用减比后加。

(二)倍数关系

1、倍在问题里用除。

2、倍在已知条件里,求是前用乘,求是后用除。

(三)求比几倍多(少)几的数

根据倍数分乘数,根据多少分加减。

算除先加减,算乘后加减。

十九、找单位“1”

单位“1“藏得巧,根据分率把你找。

“其中“的前站得好,”是、占、比“后坐得妙;

“问答式“能找到,补充说明要搞好。

百分数常遇到,不带“率“字有礼貌。

找出一对好朋友,然后确定乘除号。

找单位“1“的说明:

抓住含有不带单位名称的分数的“关键句“、“关键词”,进行剖析,这样就解决了不少学生对于分数应用题苦于不知“从何下手”进行分析数量关系。因此,使学生学会迅速找“关键句”、“关键词语”进行剖析数量关系,不仅能有利于掌握解答分数应用题的一般规律,而且也能培养学生的能力,发展学生的智力。先“找”后“析”是六年级学生普遍的学习规律,切记引导学生认真有序地进行分析。

分数应用题1、找 2、明 3、定 4、对应的解题思路。

二十、正反比例应用题

正比例,分三段,不变数量在中间,

前后归一分开列,然后等号来连接。

反比例分三段,不变数量在前面,

“如果”分开归总列,再用等号来连接。

你学会了吗??

顺口溜用题思路举例:

“求比一个数多几的数”的应用题

六年制数学课本第四册中“求比一个数多几的数”与“求比一个数少几的数”两种应用题,是大小两数进行比较,可以得到一个差。已知差与两数中的一个数,求另一个数,这就是求比一个数多几或少几的数。所以“比……多“与“比……少“两种应用题,都是求两个数相差的逆推题,题目结构相同。已知条件得”多几“与”少几“应用题,只是一个问题的两个侧面而已。学生解这类题最容易犯的错误,是见”多’ 就用加法算,见“少”就用减法算,凭个别字眼判定算法。

教学思路是:

1、分析数量关系,教给学生思考问题的方法。

2、充分发挥线段图的作用,使应用题的“事”转化为“理”,又由 “理”转化为“式”直观地表达出来,然后找出规律。

例:P17例5 光明小学种树,种了300棵柳树,种的杨树比柳树多70棵,种杨树多少棵?

一、 提问:有哪几种树? (柳树,杨树)

谁与谁比?(杨树与柳树比)

谁多?(杨树多) 谁少?(柳树少)

二、计算的关系式:柳树棵数+杨树比柳树多的棵数=杨树的棵数

三、算式表示:300+70=370(棵)

四、如果把第一个条件改为问题,问题改为条件,应该怎样算。

五、然后得出关键句:已知条件说比多(要求数在比前)比前用加,(要求数在比后)比后减。

解应用题儿歌

题目读几遍,从中找关键;

先看求什么,再去找条件;

合理列算式,仔细来计算;

一题求多解,单位莫遗忘;

结果要验算,最后写答案。

四舍五入法儿歌

四舍五入方法好,近似数来有法找;

取到哪位看下位,再同5字作比较;

是5大5前进1,小于5的全舍掉;

等号换成约等号,使人一看就明了。

长度单位认识歌

1厘米,很淘气,仔细找,才见你。

指甲盖1厘米,伸出手指比一比。

长短和我差不多,大约就是一厘米。

100个我是1米,我是米的小兄弟,

物体长了别用我,要不一定累死你。

除数是一位数的除法

除数一位看一位,一位不够看两位,(一看)

除到哪位商那位, (二商三乘减)

除数是两位的除法

除数两位看两位,两位不够看三位。

除到哪位商那位,记熟口诀定好位。

试商方法要灵活,不够商“1”“0”占位。

余数要比除数小,然后再除下一位。

除数当姐余当妹。 (四比五余)

四则混合运算的运算顺序

括号括号抢第一,

篇9

①有四个同学跳绳,②小明跳了240下,③小强跳的是小明的,④小明跳的是小刚的,⑤小亮跳的是小强的,⑥小亮跳的又是小刚的。

片断一:大问小提

几分钟过去了,因为要求太过笼统,学生无从下手。便将问题分解为以下两个要求。

要求一:编出用乘法或除法计算的。

生1:选②③,问题:小强跳了多少下?算式:240×

生2:选②③⑤,问题:小亮跳了多少下?算式:240××

生3:选②④,问题:小刚跳了多少下?算式:240÷

要求二:编出用乘除法混合计算的。

生1:选②④⑥,问题:小亮跳了多少下?算式:240÷×

生2:如果没有④,选①②③⑤⑥,问题:小刚跳了多少下?算式:240××÷

学生的回答已达到“乘除复合应用题”的教学要求:能根据不同的信息条件,能区别运用不同的计算方法。至此,可以进入巩固阶段了。

片断二:意外的收获

谁料,还有学生举着手,似乎还很激动。

生1:选②④,问题:小明比小刚少跳多少下?算式:240÷-240

一石激起千层浪,看到这样提出问题可以得到老师的肯定,其他学生边举手边嚷道:

生2:选②③,问题:小明和小强共跳多少下?算式:240+240×或240×(1+)

生3:选②③,问题:小明比小强多跳多少下?算式:240-240×或240×(1-)

生4:选②④,问题:小明和小刚共跳多少下?算式:240+240÷

生5:选②③⑤,问题:小明、小强和小亮三人共跳多少下?算式:240+240×+240××或240×(1++×)

……

二、课后思考

普通的一节《分数乘除法解决问题——整理与复习》,学生通过选择信息并解决问题,使它从分数乘除的意义开始逐渐向外延伸,最后向分数应用题的纵深拓展。

传统的课堂教学从某种意义上说,是在老师的控制下有序进行的,是“老师牵着学生走”。教师的课前预设体现的是教师的主观意愿,即教师的思维牵引学生的思维,学生处于被动地位,教师的思维在一定程度上限制了学生思维的自主性。《标准》在第二学段教学建议中指出:“教师要改变例题示范讲解为主的教学方式,引导学生投入到探索与交流的学习活动之中。”探究性学习课堂中,老师的引导与组织就是选择适当时机和方式“介入”,充分体现学生学习的主体地位和教师的组织与合作角色。

转变教学方式,开展探究学习势在必行。自主探究学习,需要教师及时分析整合学生学习过程中的反馈信息,在学生障碍阻塞处点拨,在融会贯通前疏通。只有这样,学生的探究才能取得成功,学习也才能确保获得可持续发展的不竭动力。教师应有必要的知识储备与教育机智;要遵循学科特点,课堂语言简练、准确,使学生在最短的时间摄取与处理教师提供的信息;要遵循学生的年龄特征与认知规律,做好“大问小提”,让学生明确学习任务。如果问题与要求太大,没有思考的方向,就会使思维活动不能深入而流于形式,也会影响学习的积极性和学习效率。

教学中应适时运用评价的激励作用。《标准》评价建议:“……激励学生的学习热情,促进学生的全面发展。”“既关注学生数学学习的结果,更要关注他们在学习过程中的变化和发展。保护学生的自尊心和自信心……”课中因为一个学生的激动,得到了一次发言的机会,老师的肯定使其他学生的思维开始“决堤”……精彩就在意料外生成。

篇10

1.对比叙述方法。就是题意不变,仅改变题中某些词、句的叙述方法。如关系句中“苹果的筐数是梨的3/2”,改为“梨的3/2 相当于苹果的筐数”。 再如:我把例题改造成有一块果园,梨树的种植面积是6000平方米,桃数种植面积是梨树的3倍,桃数种植面积是多少平方米?学生准备练习后,我依次将其中“3倍”改为0.4倍、2/5、40%。引导学生小结:当数量之间的倍数小于时,通常说成几分之几(或百分之几),可以看作分数倍。那么求一个数的几倍用乘法计算,求一个数的几分之几也用乘法算,理解时可以把分数(或百分数)当作倍数来思考。这样就大大减轻了学生思考的负担,从中也渗透了类比的数学思想。

2.对比重点词语或关键句。重点词语是连接条件与条件,条件与问题的纽带。它是引导学生理解题意,分析数量关系,寻求解题方法的主要线索。比如把单位“1”的量和比较量交换位置,就直接关系到解题时是用乘法还是除法。再如,把关键字“多”改成“少”,,也直接影响到分率的计算。

如:梨树是桃树的3/5,梨树比桃树多3/5,梨树比桃树少3/5

3.对比已知条件。

如:一根绳用去一部分还剩15米,还剩这根绳的2/3,这根绳长多少米?

一根绳用去15米,还剩这根绳的2/3,这根绳长多少米?

通过对比,明确所给已知量对应的分率不同,解题方法就不同。

4.对比问题。就是条件不变,只改变应用题的问题。改变应用题的问题,不仅使题意发生了变化,而且使解题的思路和具体方法都随之发生了变化。

如:一根钢条长5/8米,用去1/4,还剩多少米?

一根钢条长5/8米,用去一部分后还剩1/4,还剩多少米?

5.系统题组训练。就是把应用题中的关键句、关键词,使题意大变,从而导致分析方法、解题方法的改变。

系统题组对比训练的教学过程,就是数量关系不断进行变化的过程。由于形式的多样性、灵活性和复杂性,有利于培养学生思维的广阔性、灵活性和深刻性。思维越广阔,变的途径就越多;思维越灵活,变的式样就越新颖;思维越深刻,变的内容就会越复杂。所以,有利于培养学生良好的思维品质。

篇11

1.求分率的分数应用题

(1)求a是b的几分之几。(2)求a比b多(少)几分之几。

2.分数乘法应用题

(1)求a的几分之几是多少。(2)求比a多(少)几分之几的数是多少。

3.分数除法应用题

(1)已知a的几分之几是b,求a是多少。(2)已知比a多(少)几分之几是b,求a是多少。

二、基本分数应用题的解题方法

1.求分率的分数应用题

“求一个数是另一个数的几分之几”此类分数应用题是求一个数是另一个数的几倍应用题的补充,如果一个数不是另一个数的1倍时,便产生了一个数是另一个数的几分之几。此类应用题解答的关键是掌握除法与分数的关系,即被除数相当于分数的分子,除数相当于分数的分母。例如白兔有25只,黑兔有45只,白兔只数是黑兔只数的几分之几?解答时用求倍数的方法列出算式,然后根据分数与除法的关系写成分数形式进行约分:25÷45=?对于“求一个数比另一个数多(少)几分之几”的应用题,关键的理解“多(少)几分之几”的含义,即多(少)的量是单位1的几分之几,用多(少)的量除以单位“1”列式,然后进行计算。例如:白兔有25只,黑兔有45只,白兔只数比黑兔只数少几分之几?问题应理解为白兔比黑兔少的只数是黑兔的几分之几,把黑兔的只数作为单位“1”,因此列式为(45-25)÷45=?

2.分数乘法应用题

“求一个数的几分之几是多少”的分数应用题重点是理解分率(几分之几)的含义,然后根据分数乘法意义进行列式计算。例如,黑兔有45只,白兔的只数是黑兔的■,白兔有多少只?“白兔的只数是黑兔的■”是表示把黑兔的只数作为单位“1”,平均分成9份,白兔的只数相当于5份。求白兔的只数时学生只要借助线段图根据分数乘法的意义就能列出算式:45×■只。解答“求比一个数多(少)几分之几的数是多少”的分数乘法运用题,重点是理解多(少)几分之几的含义,即多(少)的量是单位“1”的几分之几。先算出多(少)的量,再进行计算。也可根据线段图先算出对应量相当于单位1的几分之几,然后根据分数乘法的意义列式计算。例如:黑兔有45只,白兔的只数比黑兔少20只,白兔有多少只?“白兔的只数比黑兔少20只”表示白兔比黑兔少的只数相当于黑兔的■,可以先算出白兔比黑兔少的只数:45×■只,再算出白兔的只数:45-20=25只;或者借助线段图计算出白兔的只数相当于黑兔的几分之几:1-■,然后计算出白兔的只数:45×■只。

3.分数除法应用题

解答分数除法应用题的方法,一是找准单位“1”,二是根据题中的关系画出线段图,列出数量关系式,三是根据数量关系式选择合适的方法列式解答。例如:白兔有25只,是黑兔的■,黑兔有多少只?题中单位“1”的量是黑兔的只数,学生可以根据分数乘法的意义列出数量关系式:黑兔的只数×■=白兔的只数,求黑兔的只数可以根据“一个因数=积÷另一个因数”,列式:25÷■=45只,也可以设黑兔只数为x,列出方程■x=25,x=45。对于稍微复杂的分数除法应用题,选择方程解答是最为合适的方法。例如:白兔有25只,比黑兔少20只,黑兔有多少只?题中将黑兔的只数作为单位“1”,学生可以根据题意画出线段图,写出数量关系式:黑兔的只数-白兔比黑兔少的只数=白兔的只数,根据数量关系式列出方程x-■x=25.

三、基本分数应用题的解题技巧

1.培养学生尽快找准单位“1”

分析分数乘除法应用题的关键在于找准单位“1”,分数应用题中单位“1”是有规律可循的。“谁的”几分之几,“谁”就是单位“1”。如:一袋大米吃了它的■,吃了多少千克?其中“这袋大米的质量”就是单位“1”;“比谁多(少)几分之几”格式,“谁”就是单位“1”。如:一个捕鱼队五月份捕鱼2400吨,六月份比五月份多捕■,六月份捕鱼多少吨?其中“五月份捕鱼的吨数”就是单位“1”。

2.借助线段图和数量关系式培养学生分析能力和解题能力

篇12

复习时不要着眼于学生会不会做题,计算结果是否正确,而应(1)要着力使学生弄清基本概念,深刻理解算理,指导正确计算。比如,一个数乘以小于1的小数(分数),就是求这个数的几分之几是多少,深刻理解了这一点,就能理解这样求得的数为什么比这个数小的道理。(2)要重点指导学生根据知识间的内在联系概括规律。例如,复习整数、小数、分数的加减法法则后,让学生知道:整数加、减时,要注意数位对齐;小数加、减时,要注意把小数点对齐;分数加、减时,要注意当分母相同时才能直接相加或相减;而它们的共同特点是把相同单位的数相加或相减。这样,学生就从整体上、从本质上理解和掌握了加减法的计算法则。学生懂理会法,就能从根本上提高计算能力,发展思维能力。

二、要重视比较,沟通联系

总复习是为了使学生重温已学的数学基础知识,并进行系统整理,形成良好的认知结构,而不是对学过的知识重新讲授。因此,教学时要注意通过启发提问,引导学生回忆所学知识,并加以归类整理,使之系统化,纳入学生的认知结构。如师生一起把分散在一至五年级逐步学习的四则运算整理成表格(如课本102页的表),就可看出知识间的联系和区别:整数加法是最基本的运算,是“把两个数合并成一个数的运算”;整数乘法是“求几个相同加数和的简便运算”;根据分数的意义,一个数乘以分数(或小数)的意义是“求这个数的几分之几是多少”;整数、分数和小数的减法和除法分别是加法和乘法的逆运算。

分析比较有联系而又容易混淆的内容,使学生弄清它们之间的联系和区别。比如,小数乘法、除法的计算实际上都要按照整数、乘法、除法的法则计算,所不同的就是小数点的处理问题。小数乘法要看两个因数一共有几位小数,就从积的右边起数出几位点上小数点,小数除法要把除数的小数点去掉,转化为除数是整数的除法计算。

三、要重视培养计算能力

在很多情况下,学生的计算能力反映在运用运算定律、性质以及和、差、积、商的变化规律进行简便运算上。要举出实例授之以法,告诉学生拿到一道题目要观察题中各数有什么特点?数与数之间、运算与运算之间有什么联系?能否用运算定律、性质和运算技巧进行简便运算?(比如能不能凑整?能不能写成整百数与几的和或差……)训练时要培养学生简算的自觉性(这是计算能力的突出表现),练习中要避免出现机械指令性的“用简便方法计算”的要求,而强调凡能简算的就要简算或怎样算简便就怎样算。有时不妨在计算过程中间孕伏简算的情境,让学生观察后自觉地进行简算。如:2(3/25)-0.83-1/2÷2(16/17),学生算到2(3/25)-0.83-17/100时,要求学生观察题中数据,从而发现0.83与17/100可以凑成1,很快算得结果为1(3/25),以此来培养学生在任何一步计算中都时时有“能否简便些”的意识,提高计算能力。

分数、小数四则混合运算是小学全部计算知识的综合运用,其中在计算的某一步如何合理地确定把分数化成小数来算,还是把小数化成分数来算,直接反映计算能力。这个关键问题学生往往不易把握。复习时,要通过实例使学生掌握规律:在分数、小数加减混合运算中,题中分数能化成有限小数的化成小数来算比较简便,题中分数不能化成有限小数的,则把小数化成分数;在分数、小数乘除混合运算中,一般把小数化为分数来算较简便,但当小数与分数的分母可以“约分”时,直接“约分”比较简便。要选择典型题例引导学生在计算每一步时都要瞻前顾后,根据具体情况选择“化”的意向,如计算5(2/5)×[(1.6+1/9)÷0.84-1(7/18)],可问学生:

(1)小括号内应怎样算合理?让学生看出1/9不能化成有限小数,应把1.6化成分数来算;

(2)算式中((1(3/5)+1/9)÷0.84=)1(32/45)÷0.84这一步怎样算合理?让学生看出分数1(32/45)不能化成有限小数,同时分数除以小数,一般把小数化成分数较为简便。

四、要重视培养良好的计算习惯

1.认真审题。细心阅读题目,看清数字、运算符号,观察数的特点及数与数之间的联系,考虑按什么顺序进行运算?能不能简便运算?什么地方可以口算?估计题目的结果在一个怎样的范围内?

2.认真计算。在计算过程中要求学生书写工整,格式规范。

3.认真检查和验算。抄题后要检查有无错误,计算后通过估算和验算及时发现和纠正错误。

篇13

〔文章编号〕 1004―0463(2008)05(B)―0063―01

复杂的分数乘除应用题包括复杂的求一个数的几分之几是多少和复杂的已知一个数的几分之几是多少,求这个数。很多学生在解答上述两类应用题时很容易混淆其解法。下面,笔者对此谈谈自己的看法。

一、认真审题,找题中单位“1”的量

找题中单位“1”的量是解答分数应用题的关键,确定了该量之后,再看单位“1”的量是已知量还是未知量。如果是已知量,那么就用乘法解答,如果是未知量,就用除法解答。

二、认真分析题中的数量关系

现在结合以下四种题型进行分析。(1)学校有20个足球,篮球比足球多1/4,篮球有多少个?(2)学校有20个足球,篮球比足球少1/5,篮球有多少个?(3)学校有20个足球,足球比篮球多1/4,篮球有多少个?(4)学校有20个足球,足球比篮球少1/5,篮球有多少个?

这四道题的相同点:已知足球的个数,求篮球的个数。不同点:单位“1”的量不同。(1)(2)中单位“1”的量是已知量――足球的个数,而(3)(4)中单位“1”的量是要求量――篮球的个数,在(1)中要求量――篮球的个数比单位“1”的量多1/4,即要求量――足球的个数相当于单位“1”的量的(1+1/4),根据乘法的意义也就是求20的(1+1/4)是多少?可列式为:20×(1+1/4)。在(2)中要求量――篮球的个数比单位“1”的量少1/5,即要求量――篮球的个数相当于单位“1”的量的(1-1/5),也就是求20的(1-1/5)是多少?可列式为:20×(1-1/5)。在(3)中已知量――足球的个数比单位“1”的量多1/4,即要求的量的(1+1/4)是20。根据除法的意义可列式为:20/(1+1/4)。同理可得出(4)列式为:20/(1-1/5)。

三、找特征,抓规律

(1)(2)中已知量是单位“1”的量,因此用乘法解答。在这类题中,要求的量要么比单位“1”的量多几分之几,要么比单位“1”的量少几分之几。如果是多几分之几,就用单位“1”+多的分率,反之用单位“1”-少的分率。

(3)(4)中要求量是单位“1”的量,因此用除法解答。在这类题中,已知的量要么比单位“1”的量(要求的量)多几分之几,要么比单位“1”的量少几分之几。如果是多几分之几,就用单位“1”+多的分率,反之用单位“1”-少的分率。

根据以上四例的分析,将复杂的分数乘除应用题的结构特征及解法归纳如下: