在线客服

高层住宅楼结构设计实用13篇

引论:我们为您整理了13篇高层住宅楼结构设计范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

高层住宅楼结构设计

篇1

高层商业住宅楼,采用框支剪力墙结构,地下1层,地上33层,建筑高度为99.70m。地下室作为停车库,1~3层为商场;第4层为设备转换层;5层及以上为住宅楼。当地抗震设防烈度为7度,场地土为类Ⅱ;按100年重现期计算的基本风压值0.35kN/,地面粗糙度C类。

2 上部结构设计

2.1抗震等级的确定

根据建筑平面使用功能要求,采用框支剪力墙结构形式。转换形式为梁式转换,转换梁板位于4层顶,为高位转换层建筑。抗震等级为框支框架一级,剪力墙底部加强部位一级,剪力墙非底部加强部位三级。建筑结构安全等级二级; 设计基准期50年;结构设计使用年限50年。框支柱和剪力墙混凝土强度等级为:地下2层~8层C55,8层~34层由C50递减至C30。

2.2 上部与下部结构的调整

本工程的结构设计特点在于根据建筑功能要求设置的设备层层高仅为3m,使得转换层的侧向刚度均较大于相邻以下三层和相邻上层的侧向刚度,从而在结构计算分析中需解决以下问题:

(1)如何使高位转换时转换层上部与下部结构的等效侧向刚度比满足《高规》附录E的要求;

(2)一层~三层的各层侧刚度比(本层侧移刚度与上一层相应塔侧移刚度70%的比值或上三层平均侧移刚度80%的比值)需满足《高规》第5.1.14条规定;

(3)经计算分析,最大转换梁截面为1300x2500, 最小为1000x2000,形成框支柱的剪跨比小于1.5。根据《高规》第6.4.2条注3,剪跨比小于1.5的柱,其轴压比限值应专门研究并采取特殊构造措施。

由于本工程的一层~三层作为商场,业主要求尽可能的减少上部住宅的落地剪力墙数量,以保证使用空间,给结构设计增大难度。为保证主体结构竖向刚度均匀,使转换层上下刚度接近,避免刚度突变形成薄弱层并且满足《高规》附录E第E.0.2条和公式规定,抗震设计时等效侧向刚度比宜接近1.0且≤1.3。因此采取以下措施解决上述的问题,具体措施包括以下几个方面:

(1)转换层上部在剪力墙满足《高规》规定的各项控制参数前提下,尽量减少数量,增大结构洞口,降低连梁高度,以减少上部楼层的侧向刚度。

(2)与业主和建筑专业协商降低一~三层的层高,由原层高5.1m,4.2m,4.2m改为4.8m,3.9m,3.9m;以增大转换层下部各层的侧向刚度。

(3)增大转换层以下各层墙体厚度。转换层以下各层均按一层厚度取值为350~450mm厚,转换层减小为30mm厚,上部为200~250mm厚,避免刚度突变;在一~三层周边将部分砖墙改为剪力墙(新增,与上部剪力墙不对应)以提高剪力墙的数量并增大侧向刚度。

经调整后,转换层上、下刚度比均满足《高规》附录E的要求;一~三层的各层侧刚度比亦满足《高规》第5.1.14条规定。

2.3设备转换层的设置

为避免出现剪跨比小于1.5的框支柱,对设备转换层的设置提出多个结构方案进行比较:

设备转换层采用轻钢结构体系,在主体结构完成后再施工;不考虑该层参与主楼的整体计算分析。 则转换层的实际层高为6.9m。经计算分析,转换层的侧向高度在保证建筑功能要求的前提下无法满足 《高规》附录E第E.0.2条中 “当转换层设置在3层及3层以上时,其楼层抗侧刚度尚不应小于相邻上部楼层侧向刚度的60%”。

直接加高设备层层高为4.6m以满足框支柱剪跨比大于等于1.5。这样,建筑总高度大于100m,无法实现。

确定设备转换层层高为3m。对剪跨比小于1.5的框支柱采取特殊构造措施。这样,最终采用方案。

由于目前国内并没有对剪跨比小于1.5的框支柱进行专门研究的规范和资料,因此结构设计时采用几点措施来提高框支柱的抗震性能和延性:(1)轴压比限值降0.1, 对于一级抗震的框支柱取0.5;(2)框支柱截面中部设置芯柱;(3)在框支柱内增设交叉斜筋;(4)增大框支柱的配筋率和配箍率。

3 结构计算分析

通过采用SATWE和PMSAP两个不同力学模型的结构分析软件进行整体内力位移计算分析,计算时按结构不规则且同时考虑双向地震作用和平扭藕连计算结构的扭转效应。采用弹性时程分析法进行补充计算――根据建筑场地类别和设计地震分组选用了两组记录地震波和一组人工模拟地震波进行计算对比。

各项计算参数结果如下表所示:

(1)周期

则Tt/Tl=2.763/3.332=0.83

T1(第一平动) T2 T3(第一扭动) T4 T5

3.332 2.985 2.763 0.967 0.780

(2)位移

最大层间位移角均小于1.4。见表2

荷载工况 顶点位移(mm) 最大层间位移角

X向风荷载 18.3 1.10

Y向风荷载 29 1.06

X向地震 37.5 1.36

Y向地震 32.3 1.36

(3)转换层上下等效侧向刚度比γe:X向γe=0.42,Y向γe=0.40。

(4)X向刚重比EJd/GH2=3.25;Y向刚重比EJd/GH2=4.04

刚重大于1.4,能够通过《高规》第5.4.4条的整体稳定验算;

刚重比大于2.7,可以不考虑重力二阶效应。

通过以上数据显示,计算结果正常,各项参数均满足《高规》条文要求,结构设计能达到“小震不坏,中震可修,大震不倒”的抗震设防目标。

4 框支柱设计

框支柱截面尺寸主要由轴压比控制并满足剪压比要求。为保证框支柱具有足够延性,对其轴压比应严格控制。

(1)该工程框支柱抗震等级为一级,轴压比不得大于0.6,对于部分因截面尺寸较大而形成的短柱,不得大于0.5。柱截面延性还与配箍率有密切关系,因而框支柱的配箍率也比一般框架柱大得多。箍筋不得小于φ10@100,全长加密,且配箍率不得小于1.5%。

(2)在工程中,个别框支柱还兼作剪力墙端柱,所以还应满足约束边缘构件配箍特征值不小于0.2的要求,折算成配箍率(C55混凝土)即为1.82%。框支柱为非常重要的构件,为增大安全性,对柱端剪力及柱端弯矩均要乘以相应的增大系数,每层框支柱承受剪力之和应取基底剪力的30%。因为程序计算时,一般假定楼板刚度无限大,水平剪力按竖向构件的刚度分配,底部剪力墙刚度远大于框支柱,使得框支柱分配的剪力非常小。然而考虑到实际工程中楼板的变形以及剪力墙出现裂缝后刚度的下降,框支柱剪力会增加,因而对框支柱的剪力增大作了单独规定。

5 结束语

综上所述,带转换层高层建筑结构设计不仅要尽可能地满足建筑的使用功能的要求,而且要使结构体系更加合理化,应从建筑功能、结构受力、设备使用、经济合理等多方面入手进行结构的选型和柱网布置,不断地提升住宅建筑结构的设计水平,从而满足建筑结构合理的使用要求。

篇2

某高层住宅,设计使用年限为 50年,建筑耐火等级为二级。抗震设防烈度为七度,主体为剪力墙结构,裙房为框架结构。地基基础设计等级为乙级,主体为筏板基础,裙房为柱下独立基础和墙下条形基础。总建筑面积为5231.08m2,东西长约45m,南北长约18m,主体为地上15层带 1层地下室,右边裙房为地上 1层带 1层地下室,前边裙房为地上 1层。

2 概念设计与总体指标控制

概念设计的目标是使整体结构能发挥耗散地震的作用, 避免出现敏感的薄弱部位导致过早地破坏,因此剪力墙的布置应以此为原则精心布置,方可使结构在整体上安全合理。目前很多设计剪力墙满布,造成结构体系刚度过大,引起地震力加大,虽然满足强度要求,但混凝土用量大,钢筋用量也随之加大,并且加大后的地震力有时集中于某些薄弱部位,造成安全隐患。

建筑结构平面布置时,概念设计应尽量使 x向和 y向抗侧刚度接近,剪力墙不宜过多以免刚度过大。在竖向布置上也要力求均匀,避免少数楼层出现敏感薄弱部位,使结构整体形成均匀的抗侧力结构体系,在此基础上,结合电算才能作出安全、经济、合理的结构。在本工程住宅楼主体剪力墙时,x向剪力墙墙肢较短,y向剪力墙墙肢较长,墙肢尽量多做成带翼缘的L形、T形等,不做“一”字形短墙;高厚比多在8以上,通过这些措施使结构总体指标控制在规范允许范围内。总体指标对建筑物的总体判别十分有用。

3 基础设计

高层建筑剪力墙结构设计由于考虑埋置深度的要求,一般均设置地下室。基础多采用筏板基础。合理选择筏板厚度及边缘挑出长度也直接影响结构整体安全和工程造价。该工程上部 15层带 1层地下室,根据勘察报告,取筏板厚为1000mm,经细算后筏板可减至800mm。由于地库室为单层框架结构,筏板基础厚度计算后定为250mm,为解决柱对筏板的冲切,对柱下局部范围加厚(见附图1)。经此处理经济性明显。因此,基础选型应作方案比较,才能选定经济合理的方案。而对于筏板厚度的取值,对高层来说一般筏板厚初选时可按楼层数计,即每层按 50mm厚增加。

筏板长度的设置应考虑地下室的使用合理性,通常采用设置后浇带来解决底板超长引起的收缩及温度裂缝。本项目采用添加剂以补偿混凝土的因水化热引起膨胀与收缩,或采用纤维混凝土等方法在一定范围内可不设或少设后浇带,并且对所设后浇带采取必要的保护和加强措施。该工程地下室长120m,大于规范要求的55m,故筏板基础 采后浇带来解决结构超长的问题。并在塔楼与地下室之间设置后浇带,解决两种不同荷载之间的不均匀沉降问题(见附图2),效果良好。

4 剪力墙设计

4.1 剪力墙布置

剪力墙布置必须均匀合理,使整个建筑物的质心和刚心趋于重合,且x,y两向的刚重比接近。在结构布置应避免“一”字形剪力墙,若出现则应尽可能布置成长墙( h /w > 8);应避免楼面主梁平面外搁置在剪力墙上,若无法避免,则剪力墙相应部位应设置暗柱,当梁高大于墙厚的 2.5倍时,应计算暗柱配筋,转角处墙肢应尽可能长,因转角处应力容易集中,有条件时两个方向均应布置成长墙;规范中对普通墙及短肢墙的界定是墙高厚比8倍及8倍以下为短肢墙,大于8倍则为普通墙。该工程剪力墙布置后,刚心和质心x向在同一位置,y向相差0.5m,大大减小了扭转效应;主梁搁置在剪力墙上的,在相应部位设置暗柱,以控制剪力墙平面外的弯矩。

4.2剪力墙配筋及构造

4.2.1剪力墙配筋

该工程剪力墙一层墙厚为 250mm,其余地面以上墙厚均为200mm,水平钢筋放在外侧,竖向钢筋放在内侧。六层以下水平筋¢10@ 200双层双向,双排钢筋之间采用¢6 @ 400拉筋;六层以上¢8 @ 200双层双向,双排钢筋之间采用¢6@ 600拉筋。地下部分墙体竖向配筋¢14@ 200为主要受力钢筋,水平筋则构造配置,该工程均取¢12@ 150。地下部分墙体配筋大多由水压力、土压力产生的侧压力控制,简化计算后由竖向筋控制。

4.2.2 剪力墙边缘构件的设置

试验研究表明,钢筋混凝土设置边缘构件后与不设边缘构件的矩形截面剪力墙相比,其极限承载力提高约40%,耗能能力增大20%,且增加了墙体的稳定性,因此一般一、二级抗震设计的剪力墙底部加强部位及其上一层的墙肢端部应设置约束边缘构件;其余剪力墙应按《高规》第7.2.17条设置构造边缘构件。

对于本工程剪力墙来说,其暗柱配筋满足规范要求的最小配筋率,建议加强区0.7%,一般部位0.5%;对于短肢剪力墙,应按《高规》第7.1.2条控制配筋率加强区 1.2 %,一般部位1.0%;而对于一个方向长肢另一方向短肢的墙体,设计中往往按长肢墙进行暗柱配筋并不妥当,建议有两种方法:其一,计算中另一方向短肢不进入刚度,则配筋可不考虑该方向短肢影响;其二,计算中短肢计入刚度,则配筋中应考虑该方向短肢的不利影响。建议该短肢配筋率在加强区取1.0 %,一般部位可取0.8 %。该工程地面一、二层设置构造边缘构件,纵筋最大直径为¢14,加强区暗柱配筋率最大为 1.45%,最小0.8%;三层及三层以上为构造边缘构件,构造边缘构件纵筋配筋率普遍在 0.6%~0.7%。

4.2.3 剪力墙的连梁

剪力墙中的连梁跨度小,截面高度大,虽然在计算中对其刚度进行折减,但在地震作用下弯矩、剪力仍很大,有时很难进行设计,如果加大连梁高度,配筋值有时反而更大。连梁高度一般是从洞顶算到上一层洞底或从洞顶算到楼面标高。对于门洞,上述所示情况梁的高度是一样的;但对于窗洞,连梁高度如果从窗洞算到上一层窗底,有时则高度太高,这样高跨比太大,并且与计算图形不符,相应配筋亦较大,不合理。所以连梁高度计算与设计统一规定从洞顶算到楼板面或屋面,对于窗洞楼面至窗台部分可用轻质材料砌筑。对于窗台有飘窗时,可再增加1根梁,2根梁之间用轻质材料填充。连梁配筋应对称配置,腰筋同墙体水平筋。该工程连梁截面均为墙厚×400mm,大部分连梁纵筋为4¢14,箍筋为¢8@ 100;个别连梁纵筋为 4¢16,箍筋为¢8@100。

5结语

综上所述,在高层建筑转换层的结构设计时,既要尽可能地满足建筑的使用功能的要求,又要使结构体系更加合理,应从建筑功能、结构受力、设备使用、经济合理等多方面入手进行结构的选型和柱网布置,从而满足建筑结构合理的使用要求。

篇3

引言

部分框支剪力墙结构是由落地剪力墙或剪力墙筒体和框支柱组成的协同工作结构体系。这类结构类型由于底部几层有较大的空间,能适用于各种建筑的使用功能要求。因此,广泛应用于底层为商店、餐厅、车库、机房,上部为住宅、公寓、饭店、综合楼等高层建筑。但是,这种结构在受力上也有明显的缺点:传力不直接,结构竖向刚度变化很大,甚至是突变,地震作用下易形成结构薄弱层,加上构造复杂,给结构设计带来较大难度。为了满足建筑功能的要求,结构必须设置转换层进行结构转换,底部大空间框支剪力墙结构可以在建筑物下部形成一层或多层的大空间,通过结构转换层,用框架柱代替剪力墙以满足建筑功能的要求。文章结合实际工程,具体的探讨此类建筑结构的抗震设计。

1工程概况

某工程项目总建筑面积1..4925 万平方米。一层地下室面积3465平方米,地上一幢26层住宅,面积1.1460万平方米,总高80.8m。地下室一层,高4.8m;地上一层为商铺和居民活动空间, 高5.8 m; 二层为架空绿化层, 高5.4m, 三层及以上至屋顶层均为住宅,高为2.9m。该地区的基本风压0.65KN/ m2 , 抗震设防烈度7度,场地土的特征周期0. 45s ,设计基本地震加速度0. 10g ,结构的阻尼比为0.05 ,水平地震影响系数最大值为0.08 ,罕遇地震影响系数最大值为0.50 ,地面粗糙度为C类。剪力墙底部加强部位抗震等级为一级,其余部位为二级,框支框架抗震等级为一级,框架抗震等级为二级,。地下室主楼相关范围外抗震等级为三级。计算中考虑双向水平地震作用、扭转耦联影响及重力二阶效应,并对结构的稳定性进行计算。

2 结构计算分析

2. 1 转换体系的选取与计算

框支转换层楼板在地震中受力变形较大,其在整体电算中的模型选择很关键。由于工程转换梁上部层数多,地震时楼板将传递相当大的地震力,其在平面内的变形是不可忽略的。因此在进行整体结构分析时,转换层楼板采用弹性膜单元模拟计算。

2. 2 嵌固端与转换层楼板板厚的确定

工程以±0.000 板作为嵌固端,既保证上部结构的地震剪力通过地下室顶板传递到全部地下室结构,同时能够保证上部结构在地震作用下的变形是以地下室为参照原点。《建筑抗震设计规范》GB50011 - 2010(以下简称《抗规》)第6.1.14 条规定:当地下室顶板作为上部嵌固端部位时,结构地上一层的侧向刚度,不宜大于相关范围地下一层侧向刚度的0.5倍。故本工程地下室顶板厚度取200mm,同时,为了有效地将水平地震力传递给剪力墙,在应力集中的楼层,将楼板厚度加大,转换层楼板取180mm,与其相邻的层也适当加厚至150mm。

考虑抗震需要, 施工图阶段时转换层楼板采用C40混凝土,更有意提高转换层配筋率,使单层配筋率达到0.30 % ,以进一步提高转换层楼板和框支大梁共同作用的能力。考虑到梁宽大于上部剪力墙的两倍,宽度较宽,对边转换梁,板面钢筋不是简单地要求伸入梁内满足锚固要求即可,而是要求必须贯穿梁顶截面,以确保梁内扭矩在板上的有效传递。

2. 3 框支柱与剪力墙底部加强部位墙厚的设计

框支柱基本布置于上部剪力墙对齐的下方或就近区域,这样不仅能使竖向荷载的传力途径直接、明确,减少转换板的内力,同时,上下抗侧力结构对齐,对于抵抗水平地震荷载作用,改善转换板的复杂受力情况也是大有益处的。框支柱作为框支剪力墙结构体系中重要的构件,它的安全度直接决定了整栋建筑的抗震潜力,因而框支柱的延性和承载力成为设计的关键。框支柱应在计算的基础上,通过概念设计和抗震措施(构造措施) 进行设计。框支柱的抗震等级定为一级,为了增加其延性,轴压比不超过0.6 ,其最小配箍特征值比一级增加0.02 采用,且箍筋体积配箍率不小于1.5%。框支层剪力墙轴压比控制在0.5 以内,以保证剪力墙有足够的延性。抗震设计时,剪力墙的底部加强部位包括底部塑性铰范围及其上部的一定范围,其目的是在此范围内采取增加边缘构件箍筋和墙体横向钢筋等必要的抗震加强措施,避免脆性的剪切破坏,改善整个结构的抗震性能。《高层建筑混凝土结构技术规程》J GJ3 -2010(以下简称《高规》) 第7. 1. 4 条规定:剪力墙底部加强部位的高度应从地下室顶板算起宜取至转换层以上两层且不宜小于房屋高度的1/10。为了保证底部加强部位处剪力墙的平面外刚度和稳定性,《抗规》及《高规》分别规定了剪力墙底部加强部位墙厚的取值。其中,考虑到高层建筑结构的重要性,《高规》对墙厚的取值更加严格。针对本工程结构的特点,设计中有以下两点特别之处:

(1) 一般情况下, 高层建筑结构底部加强部位的剪力墙厚度应按照《抗规》6.5.1条规定取值。但对于本工程而言,由于底部层高较大,一般剪力墙墙厚bw取400 ,但对于电梯井处剪力墙布置较多,相对的轴力较小,其截面按照上述方法取值则显得的不是很经济合理,并且会影响建筑使用,所以取200mm厚。

(2) 在保证上部住宅剪力墙强度及层间位移满足规范的前提要求下,尽量减少上部剪力墙数量,减薄厚度,转换层以下厚度加大,以减少结构上部刚度,增大下部刚度。同时,由于转换层上下刚度的突变对上部相邻几层剪力墙造成的影响,故而除了对转换层上相邻数层剪力墙的水平及竖向分布筋和边缘构件钢筋予以加强外, 还在这些楼层中跨高比小于2 的剪力墙连梁内设置交叉钢筋以增强其耗能能力。

2. 4 转换层上、下结构侧向刚度比的确定

结构层刚度比计算经常需要选择层刚度比的计算方法,《高规》附录E给出了两种算法:

剪切刚度法――γe1=G1A1 h2/G2A2h1,考察的是抗侧力构件的截面特性及与层高的关系,属于近似计算方法。一般适用于剪切变形为主的结构及结构部位,如框架结构、结构的嵌固部位及底部大空间为一层的转换层之上层与转换层结构的等效剪切刚度比等。

剪弯刚度法――γe2=∆2 H1/∆1H2,计算的是转换层上部与转换层下部结构的等效侧向刚度比,考察的是结构特定区域内结构侧向变形角之间的比值,适用于结构侧向刚度变化较大的特殊部位,如底部大空间层数大于一层时转换层上、下的结构等。同时规范要求当转换层设置在二层及以上时,按γ1=Vi∆i+1/Vi+1∆i公式计算转换层与其相邻上层侧向刚度比不应小于0.6。

本工程转换层设置在建筑三层,故采用剪弯算法计算等效侧向刚度。

工程实践中,框支剪力墙结构体系是对结构本身来说是很不利的,为了加大底部大空间楼层的抗侧刚度,使上下刚度接近,《高规》规定:需要抗震设防时,转换层上下刚度比不应于小于0.5,同时不应大于1。为了满足此要求,对底部的落地核心筒及少量的落地剪力墙均予以加厚,落地核心筒周边墙体加厚至400mm(上部为250或200mm) ,同时转换层以下的混凝土强度等级定为C50,最终刚度比均控制在1.8 左右。转换层与其相邻上层侧向刚度比为0.71>0.6满足规范要求。

2. 5 局部抗震设计

局部框支剪力墙结构的局部加强范围, 对本工程来说,取框支部分所临近2~3 个开间所包围的区域。在进行框支柱、梁内力调整时可按此加强有关剪力墙、框支柱和梁的内力。局部框支加强范围以外,可按剪力墙结构设计。两者交接部分应加强连接构造, 如板边设暗梁、梁板配筋加强等, 以保证水平剪力传递。

建筑专业为了立面处理的需要, 希望在建筑平面的角部开窗。墙体角部在地震作用下,是较敏感的部位,特别当结构平面不规则时,由于平面的扭转,引起内力重分布,将使震害加剧,使得此处的连梁分配更多的地震力,容易产生连梁的超筋问题。因此,需要对此处的连梁采取构造加强措施, 本工程主要采用了以下几点:

(1) 角部开窗的墙体为无翼缘墙体,《抗规》6. 4. 1 条规定墙体厚度,对于一、二级抗震墙当无端柱或翼墙时底部加强部位不应小于层高的1/ 12 ,非底部加强部位不应小于层高的1/ 16。本住宅层高2. 9m,故角部房间墙段厚度底部加强区取250mm,非底部加强区取200mm

(2) 由于角部墙体无翼缘, 延性较差, 应在墙体端部设置暗柱,并适当的加强配筋。

(3) 为了增加墙体平面外的稳定性, 可在每层楼板角部处附加钢筋板带配10Φ12mm钢筋, 两端各锚入暗柱内, 长度≥35d。

3.结语

部分框支剪力墙结构是一受力复杂不利抗震的建筑结构。因此,为满足使用功能和结构抗震设计的要求,同时使剪力墙的布置和用量较为合理,结构设计时需遵循一下的原则:

减少转换

平面设计布置转换层上下主体竖向结构时,要注意尽可能多的布置成上下主体竖向结构连续贯通,尤其是在框架核心筒结构中,核心筒宜上下贯通。同时应注意尽可能使水平转换结构传力直接,避免多级复杂转换。合理布置剪力墙的位置,使结构的刚度中心与质量中心相接近。

强化下部,弱化上部

为保证下部大空间整体结构有适宜的刚度、强度、延性和抗震能力,应尽量强化转换层下部主体刚度,弱化转换层上部主体结构刚度,使转换层上下部主体结构刚度和变形特征接近。如加厚下部剪力墙、提高混凝土强度等级,上部剪力墙减薄、开洞等处理。

计算全面准确

必须将转换结构作为整体结构中的一个重要组成部分,采用符合实际的受力变形状态正确模型进行结构计算分析。并应在结构整体计算后对局部特殊结构进行专门的有效受力分析。

加强结构抗震措施

在结构设计时,为满足建筑使用要求,往往造成结构布置不合理,设计时相应加强被削弱构件厚度和配筋,以弥补建筑造成的影响。另外还有其他构造措施如加强框支框架和落地墙配筋,控制轴压比增强构件延性;转换层加大板厚和配筋率等。

参考文献

篇4

我国处于地震多发区,结构抗震分析和设计已提到我国建筑设计的日程上了。国内虽有一些高层结构设计理念,但可靠性仍值得商榷。近年来随着人们对住宅要求的不断提高,原来普通框架结构已不能满足人们对住宅空间的要求。于是经过不断的实践和改进,出现了目前这种以剪力墙为基础,并吸取框架的优点的高层住宅建筑抗震结构设计。

1地震给建筑带来的危害

地震带来的危害已经不容忽视,房屋受到地震很多危害,地震来临时的风荷载对于高层建筑的危害是巨大的。如下图所示:由于震区砌体结构房屋普遍采用预知空心楼板,没有按照规范要求进行设计成装配整体式楼盖,地震发生时墙体受到破坏,导致楼板塌落,达不到装配整体式楼盖的效果。据有关方面调查,不规则建筑物,特别是沿竖向不规则的房屋建筑所受到的地震破坏较为严重,主要是结构底层是空旷结构,大多底层为大开间框架结构,由于底层形成薄弱层,达不到抵御刚度与强度的要求,在受到强烈地震时,出现底层倒塌、倾斜。此外,突出屋面的小塔楼结构由于沿竖向质量与刚度突然变化,容易产生鞭稍效应,从而在地震中绝大部分受到损坏。从地震受害的整体情况看来,框架剪力墙结构基本完好或只受到轻微破坏。但是有极少部分的框架结构受到严重破坏并倒塌,主要表现在柱上下端或框架梁、柱节点核心区域的剪切破坏。在地震中,框架结构的楼梯间震受到的破坏较为普遍,本应成为逃生通道的楼梯间却是倒塌最为严重的区域。同时,框架结构中最为常见的震害部位是填充墙破坏,在汶川地震中的表现非常明显。

2高层住宅抗震设计特点

随着建筑高度的不断增加,建筑的侧向位移也会随之而增加,所以设计高层建筑的过程中,不但要结构上有着足够大的强度,同时结构上还要有具体的刚度,让结构有个合理的自振频率,使水平力的作用层位移具体控制在一个范围内。结构还要有一个良好的廷性.相对一些较低的楼房来说,高楼的结构会更加柔和一点,在实际地震作用下其变形就会更大一点。其是影响建筑结构的耐震性的主要因素是结构的变形能力和承载力,所以为了让结构进入塑性的变形阶段之后还能有着较强的实际变形能力,预防高层建筑在一些大地震中倒塌。

3住宅高层建筑结构抗震设计时应注意的措施

抗震设计要刚柔相济,选择合适的结构形式。抗震设计的高层建筑建筑,当地下室顶层作为上部结构的嵌固端时,地下一层的抗震等级应按上部结构采用,地下一层以下结构的抗震等级可根据具体情况采用三级或四级,地下室柱截而每侧的纵向钢筋面积除应符合计算要求外,不应少于地上一层对应柱每侧纵向钢筋面积的1.1倍;地下室中超出上部主楼范围且无上部结构的部分,其抗震等级可根据具体情况采用三级或四级。9度抗震设计时.地下室结构的抗震等级不应低于二级。抗震设计与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级;主楼结构在裙房顶部上、下各一层应适当加强抗震构造措施。房屋高度大、柱距较大而柱中轴力较大时,宜采用型钢混凝土柱、钢管混凝土柱,或采用高强度混凝土柱。一次地震造成的破坏大小,不仅跟震级、震中距有关,还取决于震源深度、地质构造、地基条件和建筑物结构、材料、施工质量等因素,因此没法断言“房子能抗几级地震”。我国抗震设防烈度分6-9度,度数越高要求越严。

加强结构设计的优化,认清主次,通过多种目标与单一目标的优化使设计的效果令人满意。同时,还应加强房屋耐久性设计,在原来的结构设计方案中,建筑结构设计的耐久性往往没有得到设计人员充分的考虑,其实就是在规定的使用年限内对于用户的各种正常使用要求均能够满足。在实际情况中,许多方案设计都没有达到这些要求,出现这种情况的主要原因是设计时没有完全考虑建筑物在实际运作中由于环境、条件的影响,从而导致建筑的可靠指数明显降低。因此在对一般的高层进行混凝土进行设计时,主要都集中在造价、材料上,所以只有造价小、材料少的结构设计才是满意的设计,如今人们的生活水平不断的提高,对工程的质量要求也相应的得到提高,所以当建筑物的特殊使用要求或者技术要求与经济成为主要矛盾时,就要果断的放弃经济这个指标。结构体系的选择是高层建筑钢筋混凝土设计的重点之一,在一些地基基础比较稳固的地方,在上部结构能够满足变形限值的前提下,考虑到建筑的外观问题,可以尽量减小刚度。

在框架结构与顶盖结构设计中,填充墙会直接使结构的实际刚度大于设计时的刚度,所以这就会导致计算周期远远大于结构的实际周期,因此,计算出的结构剪力比较小时,这就会使房屋建筑的结构不安全,所以要把建筑物的结构计算周期进行适当的折减,只有这样建筑的效果才能有所改善。除了没有墙的框架结构,其余都要进行适量的折减。

4高层住宅结构抗震设计

4.1结构布置

建筑物结构平面应避免发生地震引起结构局部应立即中和扭转,结构的竖向布置要以整体的稳定性为前提,避免结构刚度突变。框架结构的刚度沿高度不应突变,避免形成短柱导致薄弱层产生。由于框架短柱在进行抗震作用时会发生脆性破坏,导致结构整体受到严重破坏,甚至倒塌,因此,在进行结构设计时,应尽量避免设计成短柱,如果难以避免,必须采取措施,如复合箍筋、螺旋箍筋等防止短柱受到粘着破坏或剪力破坏,增加短柱的耗能能力。为了避免形成较大的偏心距,梁与柱的轴线应重合,柱的截面不应过小。多层砌体结构建筑物由于砌体是较为脆性的材料,抗拉与抗剪的强度都比较低,因此砌体结构抗震性能较差,必须优选横墙承重,纵横墙的布置应均匀,达到砌体建筑物的高宽比限制。

4.2合理设置防震缝

为了降低建筑物抗震设计难度,提高抗震设计的可靠性,缝两侧上部结构要完全分开。通过实践验证,设置多道抗震防线对于建筑物抗震是非常有利的。

结束语

设计者应根据工程抗震概念各方面的知识和经验,作出正确的工程判断,找出结构安全与经济合理的最佳结合点,探求出一种实用可行的二步或三步设防的合理有效的抗震设计方法,以更好地适应社会经济和科学技术的发展。

参考文献

篇5

Keywords: anti-floating long structures, towers, chassis, mounted side, the model parameters

中图分类号:S611文献标识码:A 文章编号:

1.工程概况

本工程建筑占地总面积为12万平方米,由9个塔楼组成,每栋楼都带有地下室,该建筑为商住两用楼,地下负一层平时作为车库使用,其长度为240米,宽度为100米;最高的三栋为17层,高57.635米;本建筑具备的功能有地下车库、集中空调机房、应急发电机房、水泵房、高底压配电所等设备用房;建筑第一层为园林景观道路,地上部分十一层之下的是居民住宅,屋面以上为机房和屋顶水箱。抗震设防烈度为7度,基本风压为0.5kN/m2,建筑场地类别为Ⅱ类。

2.基础选型设计

通过对该建筑基础进行地质勘察,其基础采用打入式预制桩,荷载较小的车库等低层建筑将地下中粗砂土层作为桩的持力层;而对于荷载较大的17层的高层建筑选用强风化泥质粉砂岩作为桩基础的持力层,由于此土层在地下深层,所以基础桩长度很大,需穿过的其上部的土层较厚,所以工程用D50型号的较重的锤并且对设计桩长和沉桩灌入度进行双控。本工程中桩的长度在16和30米之间,桩径Ф400,其单桩竖向承载力特征值为1200kN;桩径Ф500,其单桩竖向承载力特征值为1750kN。

本建筑的地下室抗浮设计用的地下水面的标高(一般是丰水期的高水位)按照黄海高程2.5米进行计算,其地下车库顶部需有0.8米的土厚,地下室净高为2.95米,顶板厚度为160mm,底板厚度为300mm,均为梁板结构,混凝土强度等级为C35,抗渗标号为S8。设计中,需要保证地下室的抗浮稳定性,本工程采取的措施有:①增加拟建建筑轮廓内部的工程桩的抗浮功能,设置能够抵消土壤中水对结构产生的上浮力的抗浮工程桩;为降低施工难度,在拟建建筑轮廓外部的抗浮桩适宜采用预制桩。通过进行有关的计算得出,本建筑的抗浮桩桩径与其单桩抗浮承载力特征值分别为Ф400(300kN)、Ф500(350kN)。②因为本建筑地下室面积很大,其基础和基坑施工所耗时间也很多,所以必须对其抗浮设计需采取措施:第一,在工程施工时需利用抽水设备抽水将施工所在地的地下水位至少降低至承台下500毫米,使所挖的土始终保持干燥状态;第二,当地下室混凝土浇筑完成之后,地下室主体施工至设计标高6.0米,且非主体地下室顶板覆土不小于每平方米10kN、施工面载小于每平方米10kN的时候,可停止第一条中所说的降水。

由于本建筑结构超长,需对其采取措施:①按照高层建筑设计有关规范的要求,在对地板进行设计时,应该考虑混凝土干缩和施工时水泥水化热等影响因素,采用施工后浇带的方法,在工程中设置了两条横向四条纵向的六条混凝土后浇带,其宽度均为800毫米,同向两条后浇带的距离为30到40米;②地下室外墙和车库顶梁板都采用了无缝施工技术,并且运用了高性能UEA低碱膨胀剂防止收缩龟裂从而使结构达到防水的目的,根据有关规范要求,在纵横方向各设置两条膨胀加强带以提高结构整体防水性,带间距为50—60米。由于本工程施工的建筑是高层建筑,所以完成基础等地面以下工程后,对返还填实的土的质量必须进行严格的控制,以保证建筑基础的稳定。地下室外墙和回填土之间的内摩擦角越大说明回填土越夯实,基础越稳定,抗剪强度也越大。

3.结构体系及计算模型

本建筑的三栋商住楼的结构为框架-剪力墙结构,抗震缝将建筑物分为9个塔楼,并且其结构刚度均匀独立,它们的地下室是相连的,这就使得建筑底盘很大,形成多塔楼大底盘结构。

①地下室嵌固位置:根据高层建筑设计规范和抗震规范的有关规定,当地下室的嵌固位置为地下室顶板时,其结构的侧向刚度必须大于其上部紧挨着的楼层的侧向刚度的2倍,且地下室至少为两层。若不能满足这个要求且不能增加地下室的侧向刚度,就不能选用顶板作为嵌固位置,而需选取其下合适的部位进行嵌固。本工程中由于地下室作为车库使用,其空间面积很大,导致其侧向刚度和水平刚度都不是很大,通过有关的计算分析,工程选用建筑基础底板作为嵌固点。

②多塔结构计算模型:第一种是离散模型,即将塔楼底盘也进行划分,将建筑看做是完全独立的各个塔楼单元,然后分别对其进行计算分析,采用这种模型进行计算由于忽略掉了塔楼之间的相互影响,所以其计算结果往往不够准确,但是整体模型在反应各塔楼的扭转特性上十分困难,且各个塔楼的周期比的计算应该采用此模型;第二种就是整体模型,这种模型将塔楼和底盘看作是一个整体进行计算和分析,所以在建筑设计计算时,凡是采用此模型能够实现的计算都应该优先考虑此模型。

③对于大底盘的措施:本工程建筑的底盘较大,其上部结构对非其本身范围以内的大底盘的有些竖向抗侧力构件影响较大,对其它的竖向构件影响很小,用振型图来判断大底盘竖向抗侧力构件对上部结构的作用,根据相关规定塔楼周围的最大范围在两个水平方向不宜大于其地下室一层层高的2倍。

④本工程中塔楼部分选用的计算和设计模型是离散模型,大底盘地下室选用的是整体模型,对于塔楼底部加强区的抗震构件的选取按照两种模型计算结果中较差的那个进行设计。

⑤应该注意的问题:第一,地下室质量产生的地震作用大部分被室外回填土吸收,但是并没有对其吸收标准做出明确的计算;第二,按照有关规定,对地下室结构中不满足最小地震剪力系数要求的地方没有进行调整,这就导致了结构整体地震作用基底剪力的减小,使得传递到基础的总地震剪力和倾覆力矩偏小。

4.结构计算及分析

在对建筑结构设计完成时,需对设计的合理性进行验算,本工程主要采用电算的计算方式,电算结果如表1所示。

对电算结果进行分析可知,建筑的结构刚度中心与建筑截面的几何中心偏离不大,偏心弯矩对基础的影响不大,剪力墙承受的第一振型底部地震倾覆力矩大于结构总底部地震倾覆力矩的1/2,结构的自振周期、位移值以及振型曲线都没有超限(见表1或如图1、图2所示),两个方向的竖向刚度较均衡,结构扭转很小,计算结果较为合理。

图1地震作用下特征阵型示意图

图2地震作用下位移曲线示意图

本工程设置中出现的问题,经过多次电算可知,①根据整体弹性内力、构件塑性设计原理对竖向荷载下框架梁端负弯矩进行降低的幅度要适当增大,调幅系数取0.8—0.9,这样在地震作用下梁端较易出现塑性铰,可吸收一部分地震作用;②为避免主梁承受过大的扭矩引起超筋超限,需适当减小梁的抗扭刚度折减系数,根据工程实际情况,适宜取0.5—0.65;③由于高层建筑需进行施工模拟计算,计算结果显示,与筒体相近的柱下轴力不够大,柱与筒体之间的梁配筋较大,并且随着高度的增大此现象更突出,最终导致截面超筋,和实际情况相差较大;④在框架剪力墙结构中,剪力墙主要承受水平作用下的剪力,但是这样导致了剪力墙的数量增加从而增加了结构刚度和地震作用,且这种结构耗费资金过大,此外,剪力墙的长度很大,且有相当强的翼缘与之相连,导致配筋过大,克服这个问题的方法是对部分墙肢人为地开施工洞,将其分为几段并连的小墙肢,从而合理分配各个墙肢的剪力,并且避免了超筋现象的出现,达到有关规范的要求。

【参考文献】:

[1]陈岱林,李云贵,魏文郎.多层及高层结构CAD软件高级应用.中国建筑工业出版社

篇6

现阶段,城市不断扩张,民用高层建筑数量持续增加,成为了现代工程建设中的一项重要内容。在高层建筑项目落实中,对建筑结构进行优化设计具有重要的现实意义,其是对设计单位结构设计的有效补充,确保建筑结构设计方案与相关规范要求相符,并在保证结构安全的基础上有效控制建造成本。

2工程概况

某高层住宅楼项目,地上27层、地下2层,总高度为91.3m,总建筑面积28584.02m2。此住宅楼设计采用剪力墙结构,地下2层是停车场。

3高层建筑剪力墙结构的优、劣势

在建筑结构设计中,结构体系选型十分重要,直接影响到结构安全性、抗震性能、造价以及后期的使用功能。我国现代民用高层钢筋混凝土建筑结构常见的有以下几种:框架结构、框架-剪力墙结构、剪力墙结构、框架-核心筒结构。本高层住宅楼项目采用的是剪力墙结构,此种结构在高层住宅中的应用之分普遍,与住宅的墙体多、面积不大的特点相适应,相应的此种结构往往不适宜公共建筑[1]。剪力墙结构体系有其优势、也有其劣势,具体归纳如下:①优势:承重墙、分隔墙连成整体,经济性良好,尤其在高层宾馆、住宅等十分适用;简洁、宽敞,用户可根据实际需求改造,使用功能较好;抵抗水平荷载能力强,侧移小;结构质量大,可吸收更多的地震能量,安全性高。②劣势:抗侧移刚度大,因此某些情况下易引发强烈地震反应,威胁结构安全;结构延性较差,由于采用的是构造配筋,配筋率不高,虽然结构较为灵活,但是延性却受到了影响。

4结构设计优化原则

基于高层建筑剪力墙结构的优、劣势分析,在结构设计时必须做好相关优化工作,本项目通过对原方案的计算分析发现,设计比较保守,结构位移角较小,具有一定的优化空间,因此决定遵照以下几点原则开展优化工作:确保结构整体安全、可靠;确保结构刚度合理,对特殊部分需做好加强处理;允许减小结构构件,但是必须经审核通过方可执行;合理控制建筑造价,获得更大的经济效益。

5结构设计优化方案

5.1优化方案

(1)调整剪力墙边缘构件范围:通过对原设计方案的计算分析显示,剪力墙边缘构件范围较大,现决定以《高层建筑混凝土结构技术规程》(JGJ3-2010)为准,合理减小剪力墙边缘构件范围。(2)优化剪力墙布置:对原设计方案中的剪力墙布置进行优化,调整楼、电梯形成的核心筒与结构平面四角部的剪力墙,以优化X、Y向抗侧刚度。具体优化方案如下:将部分“一”字型剪力墙,调整为“T”、“L”形剪力墙;将部分过长剪力墙肢,调整为带翼缘剪力墙;在大片剪力墙开设洞口,调整墙肢长度,具体调整情况见图1。

5.2优化结果

本项目优化后与原设计方案下的结构振型周期、最大楼层位移、层间位移角的对比情况,具体如表1所示。根据表1数据显示,优化后与原设计方案的各项指标均满足规范要求。根据最大层间位移相关数据显示,原设计方案较为保守,远小于规范要求,优化后,适当减小了结构抗侧刚度,最大楼层位移由原本的49.00、52.59(地震X、Y向)与28.83、46.86(风荷载X、Y向),升至59.12、53.25(地震X、Y向)与34.18、49.61(风荷载X、Y向);最大层间位移角由原本的1/1458、1/1198(地震X、Y向)与1/2587、1/1613(风荷载X、Y向),升至1/1386、1/1363(地震X、Y向)与1/2166、1/1519(风荷载X、Y向)。由此可知,在保证结构安全的基础上,其经济性有所增加[2]。优化后,X、Y地震作用下的楼层剪力也均有所下降,周期增加,结构延性增强,地震抵抗作用更佳。

6结束语

综上所述,高层建筑结构优化设计是保证建筑使用安全与可靠度的关键所在,此项工作较为复杂、繁琐,必须处理好构件与结构关系,以获得最佳受力状态,传力简单、承载性良好,每一个构件均实现协调运行。在保证结构安全可靠的基础上,结构优化也必须考虑建筑的经济性问题,合理控制材料用量,实现成本的有效降低与效益的增加。

参考文献

篇7

1.含钢量的范围:根据对淄博地区我院所设计的多高层住宅楼含钢量的统计和从事工程审计工作交流,含钢量如下:多层砌体住宅楼为27Kg/O左右;小高层住宅(剪力墙结构)为45 Kg/O左右;高层住宅(17层)为50 Kg/O左右. 楼板用钢量一般在7~12 Kg/O,也有采用大板的项目达到15 Kg/O;梁用钢量一般在9~21 Kg/O,墙不对齐、梁搭梁较多时为高值,墙布置较多或采用大板时为低值; 墙用钢量一般在20~22 Kg/O;占总用钢量的40~50%,个别项目会达到60%;节点用钢量在0.5~3.4 Kg/O不等,如果开发商对经济性要求高,应要求建筑尽量简化节点,复杂高层的标准层比一般标准层多1.5~2 Kg/O,最近做的淄川人和小区住宅楼节点比较少,含钢量要降低不少。

2.影响含钢量的因素:对于住宅来说相同的结构形式含钢量也有多有少,影响因素很多,但对于一个工程来说,建筑方案已确定后,含钢量应该是一个确定的数值。

2.1自然条件:

地震设防烈度等级,地质情况,比如东岳国际住宅楼就是地基承载底,采用桩筏基础,这样含钢量自然就高。

2.2政策法规:为了增强结构的耐久性而需要增加很多合理的钢筋用量,比如板跨大于4.2米需要双层双向直径不小于8间距不大于200mm,等。

2.3设计参数

建筑专业的设计对含钢量影响最大,建筑规则性,具体的开间、进深、层高、平面形状的凹凸及竖向立面的缩进悬挑等。这也是结构设计最重要的工作,在建筑方案已定前提下,尽量选取合理的结构方案来降低含钢量。最近做的淄川人和小区6#楼,造型比较简单,一层地下室含钢量就会低一些,对一些复杂户型,如我院已做的付坡嘉园高层,户型比较复杂,平面规则性差,用钢量普遍较高。

2.4施工变更

施工阶段,会有各方面问题提出设计图纸的变更,这无形中就会出现增加含钢量的情况,根据有关决算部门的统计施工变更占总造价的10%,这其中就有含钢量增加的因素。

3降低含钢量的措施

3.1.选取适用的荷载

当建筑物高度增加时,水平荷载(风荷载及地震作用)对结构起的作用越来越大,除了结构内力明显加大外,结构侧向位移增加更快,弯矩和位移与高度成指数曲线上升关系。多层和高层建筑结构都要抵抗竖向和水平荷载作用,但是在高层建筑中,结构要使用更多的材料来抵抗水平力,抗侧力成为高层建筑结构设计的主要问题。在地震区,地震作用对高层建筑的威胁也比多层建筑要大。荷载输入值的计算是否正确,关系到整个工程的含钢量是否正常,应认真对待。填充墙开窗门洞处,应尽量精确计算荷载,包括面层厚度、扣除门窗洞口等,不得随意加大。尽量采用轻质材料,减轻结构自重。高层建筑室内填充墙宜采用各类轻质隔墙。在高层住宅建筑中采用轻质石膏板内隔墙体系,主要的土建结构造价(包括楼板、外墙、内墙、梁、基础结构体系等)比传统砖石混凝土体系的土建结构造价可降低 10%左右,而 GRC(玻璃纤维增强水泥的简称)轻质墙板容重仅相当于同厚度粘土砖砌体面密度的 1/3,大大减少了结构荷载,降低了整个建筑梁、柱及基础的截面积和含钢量。我院做的高层隔墙均为加气砼砌块,容重很小,减小了荷载,减小了地震力,剪力墙及梁的配筋均有所减少。

3.2适当减少剪力墙数量

剪力墙暗柱箍筋形式设计时,尽量避免重叠,因重叠部分不计入体积配箍率。约束边缘构件小箍筋采用封闭箍,构造边缘构件在剪力墙高度 2\/3 以上(从地面算起)采用封闭箍和拉筋间隔放置。纵向钢筋可选两种直径,“角部”放置较大直径钢筋。在规范允许的范围内进行优化设计,适当减少剪力墙数量,与建筑专业协商,开间布置避免错位,减少由于梁错位而增加的竖向构件。我院所采取措施标准层剪力墙分布筋水平、竖向分布筋均用φ8@200,大大降低了用钢量。剪力墙数量的多少可以根据位移比控制,我院所做高层均做到位移比控制在1/1200~1/1000, 从而减少剪力墙数量。为了位移指标接近规范低限而在剪力墙上开洞不一定经济,开洞虽然减少了洞口的混凝土及墙筋,但增加了两侧的暗柱及连梁,一般洞口要大于2米两侧还是普通墙时才可能节省,我院所设计剪力墙均考虑这个方面,考虑到普通剪力墙的肢长不大于1700mm,剪力墙结构洞在小于2.0m时不开洞处理,从而减少用钢量。

3.3结构构件采用高强度钢筋和高强混凝土

一般的住宅建筑,荷载不太大,而要满足电线埋设的要求,板厚不宜小于100mm,板的跨度不宜太小,应使板的配筋由内力控制而不是按构造配置。按此结果楼板配筋只有采用HRB400 才能达到节省钢筋的目的。采用高强度钢筋可以节省用钢量;而混凝土强度等级对减小配筋的作用很小。不管楼板是构造配筋还是计算配筋,采用 HRB400 钢筋可降低用钢量。楼板结构混凝土及钢筋用量一般与建筑层数无关,采用新型楼盖体系和高强钢筋可以有效减少含钢量。采用高强度钢筋,简支边支座钢筋的数量没有减少,由于住宅板跨较小,采用高强度钢筋后,板底配筋大部分仍为构造配筋,因此,节省钢筋的数量比理论计算数值减少,板垮越大,节省的钢筋越多。我院板设计一直采用HRB400钢筋,为了控制板的含钢量,我院均有一些措施:厨房、卫生间等板跨不大时,墙下尽量不设梁,设置附加筋,减少钢筋用量;现浇楼板均考虑塑性内力重分布,按弹性计算的弯矩,中间跨可乘0.8的折减系数,边跨双向板可乘0.9的折减系数,角区格不折减等。

结论:多高层住宅钢筋混凝土结构设计中要控制含钢量,需要从方案阶段开始到初步设计,注重结构概念设计,选择合理的结构体系,通过多方案比选,确定经济的结构布置,在施工图阶段细化设计,选取适用的荷载,从地基基础、地下室、上部结构的墙柱梁板等全方位构件着手,在满足规范构造要求的前提下,确定构件的截面尺寸及配筋,做到结构安全适用、技术先进、经济合理、方便施工。

篇8

Keywords: high building; Displacement Angle; foundation

中图分类号: TU97 文献标识码: A 文章编号:

1、工程概况

本工程总建筑面积114128m2 。1#住宅楼建筑面积22169 m2 ,地上29层,地下2层地下室。该工程建筑结构安全等级为二级,设计使用年限为50a,建筑抗震设防为丙类,抗震设防烈度为7度,地震作用和抗震措施均按抗震7烈度设防,设计基本地震加速度为0.2.g,设计地震分组为第一组,剪力墙抗震等级为二级。1#住宅楼采用现浇钢筋混凝土剪力墙结构,抗震等级为二级。

2、高宽比确定

高层建筑的高宽比,是对结构刚度、整体稳定、承载能力和经济合理性的宏观控制。根据《高层建筑混凝土结构设计规程》JGJ3-2002第4.2.3条条文解释“一般场合,可按所考虑方向的最小投影宽度计算高宽比,但对凸出建筑物平面很小的局部结构(如楼梯间、电梯间等),一般不应包含在计算宽度内。”根据规范提供的方法, 本工程高宽比超过《高层建筑混凝土结构设计规程》JGJ3-2002第4.2.3条表4.2.3-1抗震设防烈度为7度时,A级高度剪力墙结构高宽比不宜大于6的规定。因高宽比超过规范限值,因此,本工程在结构设计时应采取必要的加强措施。

3结构设计

3.1 结构选型

建筑物的结构设计,不仅要求具有足够的承载力,而且必须使结构具有足够抵抗

侧力的刚度,使结构在水平力作用下所产生的侧向位移限制在规定的范围内,基于上述基本原理,工程综合分析了结构的适用,安全,抗震,经济,施工方便等因素,选取结构为剪力墙体系,由钢筋混凝土框架承担竖向力和侧力。钢筋混凝土框架刚度布置相对比较均匀,在满足建筑功能情况下,尽量减少平面扭转对结构的影响。

3.2 主要材料

混凝土强度等级。墙、柱:-1~5层为C50,6~10层为C45,11~15层为C40,16~20层为C35,21~25层为C30,26~29层为C25;梁、板:-1~20层为C30,11~天面层为C25。钢筋采用普通钢筋HPB235级、HRB335级、HRB400级。

3.3板厚取值

现浇楼盖中,板的混凝土用量约占整个楼盖的50% ~60% ,板厚的取值对楼盖的经济性和自重的影响较大,在满足板的刚度和构造要求的前提下,应尽量采用较薄的板,双向板的最小板厚度为80 mm, 板的厚度与跨度的最小比值:四边简支板为1 /40, 连续板为1 /50。工程最大板跨为5m, 其余板跨均小于4 m, 考虑到工程为住宅楼,板内有埋机电暗管, 因此小于4 m的板跨板厚也取100 mm, 5 m板跨板厚取140 mm。

4结构计算分析

工程采用了中国建筑科学研究院的PKPM系列SATWE软件( 多、高层建筑结构空间有限元分析与设计软件)进行计算,施工图采用SATWE的计算结果,按15个振型进行结构计算分析。

4.1结构整体抗倾覆验算结果

===============================================

倾覆力矩Mr 倾覆力矩Mov 比值Mr/Mov零应力区(%)

X风荷载5250527.5 209207.725.10 0.00

Y风荷载2947079.2 429299.7 6.86 0.00

X 地 震5250527.5 252271.620.81 0.00

Y 地 震2947079.2 270002.410.92 0.00

从结果可以看出,由于Y方向较“薄”,造成Y风荷载作用时所产生的倾覆力矩远大于X风荷载及地震力产生的倾覆力矩,分别为X风的2倍、X地震的1.5倍、Y地震的1.6倍。

4.2结构整体稳定验算结果

X向刚重比 EJd/GH**2=7.24

Y向刚重比 EJd/GH**2=5.15

该结构刚重比EJd/GH**2大于1.4,能够通过高规(5.4.4)的整体稳定验算

该结构刚重比EJd/GH**2大于2.7,可以不考虑重力二阶效应

4.3 弹性层间位移角

根据广东省《高层建筑混凝土结构技术规程》(JGJ—2002)补充规定DBJ/T15-46-2005第3.5条“对于高度小于150m的剪力墙、筒中筒结构等弯曲型结构,当弯曲变形的影响明显,某层层间有害位移角小于层间位移值的50%,该层层间位移角限值可放宽至1/800。”本工程Y方向风荷载控制时的位移角1/851

4.4轴压比

计算结果分析表明,本工程各项整体指标均能满足相关规范的有关要求或未超出规范规

定的最大限值;柱的轴压比和各构件的强度及变形也均能满足规范的要求。

4.5桩基础设计

本工程采用PKPM系列JCCAD程序进行布桩、桩反力计算及承台配筋。由于Y向风荷载产生较大的倾覆力矩,最大桩反力为Y向风荷载控制,且最终的配桩数量要多于根据D+L结果估算的配桩数量。

5、地基与基础

篇9

一、高层住宅建筑结构设计安全性需要解决的问题

(一)设置嵌固端问题

通常情况下,高层住宅建筑都在建筑物中、人防顶板、地下室顶板等位置上设置。在高层住宅建筑中,人防以及地下室都具有十分重要的地位,但是,在高层住宅建筑结构设计过程中,设计师会将嵌固端设计忽略掉。例如,高层住宅建筑结构整体设计计算位置、高层住宅建筑嵌固端的上下层抗震等级一致性、嵌固端上下层中的刚度比限制问题等,在高层住宅建筑结构设计过程中,嵌固端设置具有重要地位,不能忽略其任何一方面,否则会直接影响到高层住宅建筑物的后期使用。

(二)建筑结构超高问题

高是高层住宅建筑最大的特征,建筑物自身的高度就很高,也正因如此,高层住宅建筑的结构设计难度有所增加。在国家抗震规范中已经对高层住宅建筑高度进行了严格控制和规定,特别是国家的新定范围里,十分明确地限制了高层住宅建筑物超高度问题。此外,当前高层住宅建筑在施工过程中会存在改动结构设计的情况,而施工计划却是按照原有建筑结构设计来进行施工,所以,高层住宅建筑实际施工情况与原定结构设计以及计划之间存在误差。由此,高层住宅建筑超高直接威胁到高层住宅建筑安全。

(三)适应新规范问题

在高层住宅建筑结构设计过程中,还存在着新规范与旧规范的适应问题,在建筑行业长期发展过程中,国家为高层建筑的结构设计工作制定了不同的规范。新规范和旧规范在细则方面变动比较大,新规范中有更多的限制条件来限制高层建筑,对于高层建筑安全性要求更严格。所以,在高层住宅建筑结构设计中,更加强调新旧规范更替性问题。

二、提升高层住宅建筑设计安全性的对策

(一)选用恰当的悬挑梁高度

在高层住宅建筑中,悬挑梁具有不可替代的作用,悬挑梁的作用主要体现在支撑方面。但是,在现在的高层住宅建筑中,设计师喜欢选择比较小的悬挑梁高,这样会导致高层住宅建筑的梁截面受压区中的应力太高。原因就在于,在设计师设计的过程中,设计师并没有对梁挠度进行详细的计算,由于梁高较小,导致梁截面受压区产生非线性的徐变,梁挠度越来越大,挑梁会出现严重变形,最终导致梁板出现裂缝[1]。伴随着挑梁变形越来越严重,裂缝也会越来越宽,直接影响到了高层住宅建筑的耐久性和适用性,更加挑战了高层住宅建筑结构的安全性。所以,在设计师对高层住宅建筑结构进行设计的过程中,选择梁高度的时候,要对梁挠度计算进行充分考虑,在高层住宅建筑结构计算过程中,减少计算存在的误差,将挑梁支撑力度增加。由于悬挑结构对于竖向的地震作用十分敏感,所以,将高层住宅建筑挑梁承载力增加,选用恰当的悬挑梁高度,不仅可以有效防止梁板裂缝的产生,更可以对高层建筑支撑力度进行保证,最终保证了高层住宅建筑的安全。

(二)为剪力墙开设洞口

国家对于高层住宅建筑的结构设计已经明确规定[2],要求在高层住宅建筑中,如果剪力墙比较长,则需要开设洞口,把剪力墙分为若干墙段,每一墙段的长度都比较平均,墙段与墙段之间还要采用弱连梁对其进行连接,每一个独立墙段的高度与墙段长度之比不宜小于3,此外,墙肢截面的长度要小于或等于8米。国家的这项规定能够有效防止高层住宅建筑剪力墙破损,将高层住宅建筑剪力墙延性提升,对脆性破坏进行规避。在高层住宅建筑结构设计的时候,要尽量在剪力墙上开洞,使其可以形成弱连梁,将建筑剪力墙支持力度提升。除此之外,设计师还要加大梁宽,或者进行梁水平腋的设置,使建筑梁柱节点处可以形成刚域,这样可以将建筑梁柱支撑的力度提升,从本质上避免框架结构中出现梁柱偏心距较大等问题。

(三)提升建筑地基承载力

由于高层住宅建筑自身对地基要求更高,建筑压力也比较大,想要提升高层住宅建筑安全性必须要打好基础。在对高层住宅建筑实施基础设计的时候,设计师要对地基埋深工作进行强调,对地基埋深程度进行计算,从高层住宅建筑室外地坪到基础底面,都需要进行地基埋深程度的计算。在选择地基的过程中,首先采用天然地基[3],原因在于,人们可以通过深埋地基这种方法来将天然地基稳定性和稳固性增加,将地基承载力提升,通过修正地基,可以提高地基承载力满足要求。通常情况下,高层建筑地下室的外墙会用钢筋砼墙,高层住宅建筑的地基外侧侧向刚度比较强,这便在高层住宅建筑地基侧向刚度方面将地基整体的稳定性提升。增加地下室地基整体结构的稳定性,有利于对高层住宅建筑的整体结构的协调变形,加强高层住宅建筑基础结构建设。

(四)遵循结构设计原则

在我国城市建筑过程中,高层住宅建筑不断增加,建筑结构变化越来越大,在高层住宅建筑结构设计中,新时代特征得以体现。当前高层住宅建筑结构设计过程中,重点和难点就是时代创新理念与质量安全相结合。在设计过程中,设计师要遵循设计基本原则,保证设计安全性。高层住宅建筑结构设计原则主要包括合理性原则、适合性原则以及适当性原则[4]。其中,高层住宅建筑结构设计的方案要具有合理性,结构设计的方案是后期高层住宅建筑行动的体系,因此,结构设计的体系必须要简洁和明确,设计师要对施工条件、地理环境、材料供应以及设计要求进行综合考虑,同时,选择结构设计方案的时候还要保证施工环境与工程要求相互统一。适合性原则是针对设计的基础方案提出的,要求设计师要根据地基环境以及工程选址条件来实施基础设计。

三、结 语

虽然我国高层住宅建筑的数量逐渐上升,但是,施工企业不能盲目追求施工进度和速度,必须要注重建筑质量以及建筑安全。因此,在高层住宅建筑结构设计过程中,要对时展趋势进行把握,掌握建筑结构设计规范,选择符合高层住宅建筑实际情况的方案,从本质上提升高层住宅建筑安全性能。此外,设计人员还要不断更新设计理念和设计意识,端正自身态度,认真负责,设计出安全、高质量的高层建筑结构。

参考文献:

篇10

1 工程概况

北京地铁14号线某盾构区间线路平面存在400m、360m半径曲线各一处,线间距10.0m~15.4m,区间结构覆土厚度13.3m~16.2m。

区间先后侧穿某住宅区混凝土框架结构一系列住宅楼,盾构区间与风险源水平净距最小约7.486m,对应竖向净距为7.106m,侧穿区段总长度为466.957m。场区抗震设防烈度为8度,设计地震基本加速度为0.2g。

图1.1 左K19+625.75里程相对位置关系图

2 区间结构模型

盾构区间一般为长通道结构,横向尺寸远小于纵向尺寸,故可以简化为平面问题求解。取纵向1m标准段作为计算单元【2】。

使用阶段盾构结构承受荷载

(1)荷载准永久组合:

结构自重、高层住宅楼附加应力、地面超载或地面车辆荷载、水土压力、列车荷载等。

(2)荷载偶然组合:

结构自重、高层住宅楼附加应力、竖向土层重、水土压力及地震等效静载等;

根据人防专业计算经验北京地区当结构覆土厚度大于6.0m时,五级人防荷载组合不控制结构强度;经初步估算8度地震对结构强度也不起控制作用。因此,本计算书中不再考虑人防、地震组合,仅计算基本组合,标准组合下结构强度与裂缝【3】。

3区间结构计算

3.1 计算参数

由于左线区间距离风险源更近,其受力也更为不利,因而选取左线衬砌进行计算。

稳定水位埋深:20.56m;

抗浮设防水位标高:35m;

区间顶部覆土13.316m,区间线间距10m;

风险源按地上最高22层,地下2层,与区间左线水平净距5.148m,竖向净距5.496m;

高层住宅楼基底附加荷载:按每层15KN/m等效计算,

p0=15×22+15×2-20×7.82=203.6KN/m。

3.2 结构受力计算

3.2.1 正常水位

正常水位位于地面以下约20m。

基床系数k=40MN/m3,采用匀质圆环法(水土分算),侧压力系数0. 4。

荷载组合图示如下

图3.1 正常水位荷载组合示意图

(1)按水土分算计算水土压力:

顶板处qv1=266.32 KN/m,qh1=106.53 KN/m;

圆心高程处qv2=326.32 KN/m,qh2=130.53 KN/m;

底板处qv3=386.32 KN/m,qh3=154.53 KN/m。

(2)地面超载:

竖向20 KN/m,侧向=8.0 KN/m。

(3)附加应力计算:

按照矩形均布荷载计算作用在隧道顶部的附加应力,经查表知:

pv1=(α1-α2+α3-α4)p0 =(0.2492-0.2326+0.2493-0.2326)×203.6=6.78KN/m;

ph1=6.78×0.4 =2.71 KN/m。

同样计算住宅楼引起的隧道圆心高度处和底部附加应力,

pv2=17.45KN/m;ph2=17.45×0.4 =6.98 KN/m;

pv3=27.22KN/m;ph3==10.89KN/m。

计算结构内力如下

表3.1正常水位下计算结果

3.2.2 抗浮水位

抗浮水位绝对高程35m。

荷载组合图示如下

图3.2 抗浮水位荷载组合示意图

经计算,抗浮水位下管片结构内力如下

表3.2正常水位下计算结果

4结论

本案例中,既有高层住宅风险段区间管片受正常水位下的荷载组合控制,每环管片需采用8*?25钢筋进行设计。

盾构下穿既有高层住宅楼的情况下,可以通过计算区间管片关键点处附加应力,再结合地层水土压力、地面超载、结构自重等荷载计算进行叠加,由此得出管片实际内力,并进行校验并配筋。

【参考文献】

篇11

随着我国城市化建设进程的加快,人们对住宅,特别是小高层及多层住宅平面与空间的要求越来越高,高层住宅建筑大量采用了剪力墙结构。它相对于框架结构更为简洁、宽敞,使用功能更好,为住户的自行改造增大了灵活性,加大了使用面积,因此,在高层剪力墙结构设计中,既要发挥这种结构体系的优点,又要改进其工程费用较高的缺点,降低高层建筑剪力墙结构的造价和材料消耗量,这是考核结构设计水平的重要指标。本文根据笔者多年来的工程设计实践,探讨了使高层建筑剪力墙结构设计更经济的措施。

2、高层建筑目标控制参数

高层设计的难点在于竖向承重构件(柱、剪力墙等)的合理布置,设计过程中控制的目标参数主要有如下七个 :

2.1 轴压比

主要为限制结构的轴压比,保证结构的延性要求,轴压比不满足

要求,结构的延性要求无法保证;轴压比过小,则说明结构的经济技术指标较差,宜适当减少相应墙、柱的截面面积。

2.2 剪重比

主要为限制各楼层的最小水平地震剪力,确保周期较长的结构的安全。这个要求如同最小配筋率的要求,算出来的水平地震剪力如果达不到规范的最低要求,就要人为提高,并按这个最低要求完成后续的计算。

2.3 刚度比

主要为限制结构竖向布置的不规则性,避免结构刚度沿竖向突变,形成薄弱层。

2.4 位移比

主要为限制结构平面布置的不规则性,以避免产生过大的偏心而导致结构产生较大的扭转效应。

2.5 周期比

主要为限制结构的抗扭刚度不能太弱,使结构具有必要的抗扭刚度,减小扭转对结构产生的不利影响。周期比不满足要求,说明结构的抗扭刚度相对于侧移刚度较小,扭转效应过大,结构抗侧力构件布置不合理。

2.6 刚重比

主要是控制在风荷载或水平地震作用下,重力荷载产生的二阶效应不致过大,避免结构的失稳倒塌。刚重比不满足要求,说明结构的刚度相对于重力荷载过小;但刚重比过分大,则说明结构的经济技术指标较差,宜适当减少墙、柱等竖向构件的截面面积。

2.7 层间受剪承载力比

主要为限制结构竖向布置的不规则性,避免楼层抗侧力结构的受剪承载能力沿竖向突变,形成薄弱层。

3、高层建筑剪力墙结构优化设计分析

3.1高层剪力墙住宅的结构设计的经济分析

(1)剪力墙结构刚度大,整体性好,用钢量较省。在高层住宅中,开间均较小,分隔墙较多,采用现浇剪力墙,可将承重墙减少,比较经济。另外,剪力墙外观整齐,没有露梁、露柱现象,便于室内布置,因此在高层住宅中常采用现浇剪力墙结构。

(2)剪力墙结构设计中应注意的问题。剪力墙结构的坑侧刚度大,结构周期小,地震响应大;剪力墙结构墙体越多,建筑物的重量越大,地震反应也大,会造成浪费;另外,剪力墙结构墙体多为构造配筋,如果配筋太低,则结构延性差。

刚度较大的结构一般震害较轻,但是,一般情况下,建筑物的刚度越大,工程费用越高。因此,剪力墙结构应满足规范中的关于结构水平位移和地震力的要求,但如果要做到安全适用,经济合理,就必须在实际工作中有所判断,将结构水平位移和地震力控制在合理范围内,然后检查结构的内力和配筋。

3.2剪力墙结构构件的合适含钢量

在以结构设计规范为依据的实际情况中对某高层剪力墙住宅楼的结构计算作整体分析,同时从结构含钢量的角度作具体分析,从而优化其结构设计。

3.2.1现行规范对钢筋混凝土构件给出了最小含钢量

(1)剪力墙端部加强区关于暗柱、端柱、翼柱的构造配筋要求;

(2)剪力墙分布钢筋的配筋要求;

(3)连梁的配筋要求;

3.2.2因混凝土为泵送商品混凝土,水灰比大,收缩率较大

为满足要求并根据实际情况,高层建筑合适的含钢量见下表 1:

种类 受力纵钢筋

% 非受力纵筋% 箍筋

梁 0.6~1.5 0.3 0.25~0.4(1)

(包括暗柱) 0.5~1.5 0.812(2)

墙 0.35~0.5 0.35~0.5

板 0.35~0.6 0.35~0.6

表1高层建筑合适的含钢量

3.3优化结构设计,降低工程造价

(1)优化结构设计,使结构受力均衡,技术应用得当,整体安全可靠度一致,任一结构都能同时发挥其最大作用,这样设计出的结构才能达到既经济,又合理的目的。

从结构设计整体布局来看,在水平荷载作用下,剪力墙的暗柱配筋往往是构造配筋,暗柱断面的确定与剪力墙的布置有密切的关系,而构造配筋与暗柱断面又有着一一对应关系。由于剪力墙布置的差异,一片剪力墙两端暗柱的断面可能差6倍~10倍。配筋也相应差6倍~l0倍。而剪力墙在不同方向的水平荷载作用下是具有对称性的。这样设计出的结构就会造成极大的浪费,因此,首先调整剪力墙的布置,尽可能使之对称这样即节省了造价,又增加了结构安全性。

(2)造成结构浪费往往是由于设计人对某种结构概念理解不透而导致的。例如:某18层综合楼,由内简外框组成结构。外框柱距7.2m,外框与内简距离9 m设计人员将外框边梁做成lO00mm×750mm,目的是增加边梁的抗剪能力,引入剪力滞后的概念,加大外框结构的刚度。实际上,该工程由于外框柱距 7.2mm,很难产生剪力滞后效应,边梁采用lO00mm×750mm与采用350mm×750mm对外框的变形是相同的,不会增加结构的刚度,反而会因为增加重量,加大结构自身的负担,对结构不利。设计人员如果不能准确把握结构概念,就会造成浪费。

4、应用实例分析

4.1工程概况

本工程位于湖南常德市,所在住宅小区总建筑面积达50万M2,与本工程类似的住宅楼近二十多栋。如果通过对一栋楼进行结构设计分析,找到其中可优化改进的地方,就可使结构设计得到部分的优化、提高建筑产品的性价比、降低单价造价和整个小区的工程造价。

进行结构设计分析的住宅楼为地下一层,地上三十层的纯剪力墙结构。总建筑面积约1.49万M2,地下一层为车库,层高均为4.6m,首层架空,层高5.0m;二层及以上层为住宅,层高为3.0m。建筑类别为丙类。II类场地。

4.2结构整体计算

4.2.1整体计算结构

结构自振周期(取前三个振型)见表2

振型号 周期(s) 平动系数 扭转系数

1 2.3912 0.96 0.04

2 2.2316 0.96 0.04

3 2.0412 0.08 0.92

表2结构自振周期参数

4.2.2结构整体合理性判断

(1)楼层最小剪重比大于规范容许的“楼层最小地震剪力系数值”较多,结构整体布置还有可优化的空间。

(2)结构平均重量:13.6KN/M2,合理。

作用方向 X Y

楼层最小剪重比 2.46% 2.51%

有效质量系数 95.59% 94.49%

标准层面积 474 M2

总重标准值 42998

楼层最大层间位移与该楼层平均值的最大值 1.29 1.28

楼层最大水平位移与该楼层平均值的最大比值 1.22 1.26

楼层层间最大位移与层高之比的最大值 1/1206 1/1350

底部地震剪力(KN) 4384 4868

表3主要控制参数

(3)自振周期:参照(T1-(0.05~0.08)n=1.5~2.4S),周期在合理范围内。

(4)X方向楼层最大层间(水平)位移与该楼层平均值的最大比值为1.29,在规范许可范围内。

4.3剪力墙及连梁钢筋用量分析

墙厚根据规范及工程层数,层高情况取值如下:首层及地下层350mm,二~八层及以上墙250mm,其余墙200mm。

设计配筋采用的为包括配筋法。从节省造价角度考虑,可从以下方面适度调减钢筋:(1)暗柱、连梁等处构件根据计算结构按构造要求配筋(不包括局部按计算配筋的),其中,墙体分布筋基本与规范最小配筋及其它构造要求相吻合;(2)地下室外墙水平分布筋为φ14@200(二级)。

4.4楼板钢筋用量分析

考虑电气埋管要求楼板厚度最小取100 mm。大房间根据板跨,考虑轻质隔墙荷载分别取120 mm几种。

楼板采用弹性计算。采用的是普通的三级钢筋,楼板配筋大部分为φ8@200,配筋率0.025%;较合理。

5、结束语

高层建筑剪力墙的经济性设计受结构布置和剪力墙的形式、剪力墙的厚度、配筋率、结构自重及刚度等多种因素的制约。因此,在进行高层建筑剪力墙结构设计时,高度重视影响结构技术经济的因素,考虑综合效益,以达到降低工程造价和材料消耗量的目的,取得更加科学、合理、经济的设计结果。

参考文献

篇12

Keywords: high-rise residential buildings; Structure; design

中图分类号:TU318文献标识码: A 文章编号:

引言

自从改革开放以来,中国的建筑行业经历了一次次质的飞跃,尤其是在上个世纪九十年代至今,中国的房地产业异军突起,创造了一个又一个的发展奇迹。而随着近年来城市美化运动的不断兴起,城市在新建建筑和旧有建筑改造方面越来越多的选择了高层建筑,住宅建筑也是如此。如今,在城市的各种居住小区,高层住宅层出不穷,有数据表明,2001年全国城镇小区建设中高层住宅数量基本在3%左右,其中大多集中于北京上海广州等大型城市,十年过去之后的2011年,在新建住宅小区中,高层建筑的比例已经提升至22%,不但中大型城市普遍采用高层住宅设计,小型城市也在不断向这个方向发展。这固然有人口不断向城镇集中的原因,也有土地价格不断上涨的原因,所以高层建筑必将不断增多且有进一步发展的趋势,基于这样的形势,高层住宅建筑结构设计的地位变得越来越重要,而在常见的高层住宅建筑结构设计中,为了尽可能的让建筑使用更合理,成本更低,对其进行优化也是非常必要的。下面本文就以某高层住宅为例对其优化设计进行探讨。

1工程概况

某住宅位于A市比较繁华的地段,该住宅楼平面尺寸67.3m×17.9m,总共设计层数为二十七层,其中地下一层,地上为二十六层,顶部设有出屋面电梯机房及水箱间,建筑面积29276.46m2,采用了纯剪力墙结构,单元间设一道变形缝,抗震设防烈度七度,设计基本地震加速度为0.15g,设计地震分组为第一组,建筑物场地土类别为Ⅲ类,基本风压为0.40 kN/m2。变形缝左侧标准层剪力墙结构平面布置,其中地下室到第五层剪力墙厚度为:外墙250,内墙200;从第六层到屋顶剪力墙厚度为:外墙200,内墙160;电梯间剪力墙厚均为160。基础型式为筏板基础,CFG桩复合地基。采用中国建筑科学研究院PKPM系列软件进行上部结构和基础的计算。

2优化设计

2.1设计方案的优化

在纯剪力墙中,剪力墙作为抗侧力单元,同时承担竖向荷载和地震作用。本工程通过抗侧力构件的合理布置,在地震作用下,使结构的各项目标参数均符合规范要求,并在此前提下,不断优化,尽量减少剪力墙的数量和厚度,使结构两方向刚度基本接近,两个方向水平位移均接近规范限值,结构布置更加经济合理。并在本地区率先使用160厚剪力墙,从承载力方面来看,使剪力墙的作用得到充分的发挥;从地震作用来看,减小了结构的侧向刚度,从而减小结构的地震作用;并因此减轻了建筑的自重,也相应减少了基础工程的投资。

本工程楼层最大位移:X方向地震力作用下的楼层最大值层间位移角:1/1394;Y方向地震力作用下的楼层最大值层间位移角:1/1220;高规规定剪力墙结构楼层最大值层间位移角限值:1/1000。

2.2基础及地基处理的优化

高层建筑基础的合理选型与设计是整个结构设计中的一个极其重要和非常关键的部分。基础的工程造价在高层建筑整个工程造价中所占的比例较高,尤其在地质条件比较复杂的情况下更是如此。所以选用合理的基础形式或地基处理方式,对降低工程造价起着至关重要的作用。

该工程地基承载力特征值为250kPa,基底压力为415kPa,天然地基不能满足设计要求,根据工程地质勘查报告,可采取钻孔灌注桩或CFG桩复合地基,就这两种处理方案在满足承载力和变形的前提下加以比较。方案一:采用泥浆护壁钻孔灌注桩,桩径φ800,桩长18米,桩数174根。混凝土用量1574m3,钢筋用量45t。方案二:采用长螺旋钻孔泵压CFG桩复合地基,桩径φ400,桩长15米,桩数523根。混凝土用量985m3。初步估算,方案一造价为313.2万元,方案二造价为34.5万元,仅为方案一的11%。

2.3材料的优化

(1)采用高强度钢筋

基础和梁采用HRB400级钢筋,HRB400级钢筋强度设计值与HRB335级钢筋强度设计值之比为360/300=1.2;目前其综合价格比为1.05,据资料统计,用强度高的HRB400级钢筋取代强度低的HRB335级钢筋可节约钢材约14%,这是降低钢筋用量最直接的措施。

(2)采用轻质隔墙

内隔墙采用轻质石膏板内隔墙体系,与轻质砌块隔墙相比,轻质石膏板内隔墙体系具有自重轻、干法作业,安装效率高,易于拆改、施工快捷,缩短工期的优点,近年来在高层住宅建筑中得以广泛应用。以99mm厚的轻质石膏板隔墙为例,其重量为23kg/m2,是相同厚度砌块隔墙重量的28%,可显著节省建筑承重结构和基础费用,降低土建结构造价。

结束语

近年来,随着国家对土地的控制越来越严格,以及各种成本的增加,高层建筑开始应用于住宅,而且在很大程度上会成为将来主流的住宅形式。建筑行业的投资往往比较大,企业要想生存发展,就必须要做好相应的成本控制工作,而在目前的高层住宅建筑中,设计工作虽然开展的不错,但是还是有很多可以优化的地方,只要在满足相关的规范条件下,优化之后的高层住宅建筑往往可以取得较好的经济成果。在本文所列举的工程中,通过以上几个方面的优化设计,在符合现行国家规范前提下,减少了建筑的混凝土用量和钢筋用量,即取得了较好的经济指标,并达到了较佳的设计效果。

参考文献:

[1]王燕,王维.浅谈高层建筑结构分析与设计[J].山西建筑.2008(05).

篇13

Keywords: high buildings, shear wall, conversion layers, component design

中图分类号:TU318文献标识码:A文章编号:

1 工程概况

某高层住宅工程,采用框支剪力墙结构,总建筑面积为215300.18㎡,住宅首层架空,转换层以上为25层、27层、28层住宅。有两层人防地下室,总建筑面积:1210.9㎡,建筑类别为一类,抗震设防烈度为7度。

2住宅转换层结构设计

2.1确定抗震等级

本工程转换层以下为框架—剪力墙结构,转换层以上为纯剪力墙结构,是多层结构高层建筑,从而不能以单纯的框架结构或者剪力墙结构形式来确定抗震等级,而应该严格按照现行规范的不同章节,分别针对性地确定结构体系各部位不同结构构件的抗震等级。该工程属“框支剪力墙”结构,地上高度79.8m,转换层设在三层楼面(属高位转换),其框支框架抗震等级为一级,加强部位剪力墙抗震等级为一级,非底部加强部位剪力墙抗震等级为二级。

2.2调整上部与下部结构

建筑的侧向刚度宜下大上小,且应避免刚度突变,然而带转换层的结构显然有悖于此,因此《高规》对转换层结构的侧向刚度作了专门规定。对该工程而言,属于高位转换,转换层上下等效侧向刚度比宜接近于1,不应大于1.3。在设计过程中,应把握的原则归纳起来就是要强化下部,弱化上部,尽量避免出现薄弱层。可采用以下几点方法进行调整:

(1)应与建筑工程师协商,使尽可能多的剪力墙落地,必要时甚至可以在底部增设部分剪力墙(不伸上去)。这是增大底部刚度最有效的方法。除核心筒部分剪力墙在底部必须设置外,还通过与建筑专业协商,让两侧各有一片剪力墙落地,并且北部还有一大片L型剪力墙也落地。这些措施大大增强了底部刚度。

(2)底部剪力墙厚度应加大,而减小上部剪力墙厚度,转换层以下剪力墙厚度取为300~500mm,上部厚度取为200mm。

(3)底部剪力墙应不开洞,以造成刚度削弱太多。

(4)采用C55混凝土,以提高墙混凝土强度等级。

2.3合理布置平面结构

本工程转换层下部为框架-剪力墙结构,体形复杂,不规则;转换层上部为纯剪力墙结构,由于建筑布置的不对称,剪力墙的布置经过多次试算,最后结果是质量中心与刚度中心偏差不超过1m,结构偏心率较小。除核心筒外,其余部位剪力墙布置分散、均匀,且尽量沿周边布置,以增强整体抗扭效果。通过有关的计算结果,扭转为主的第一自振周期与平动为主的第一自振周期之比为0.81,各楼层竖向构件的最大水平位移和层间位移与楼层平均值的比值不大于1.4,均满足平面布置及控制扭转的要求。可见工程平面布局规则合理,抗扭效果良好。

3 住宅结构计算与分析

本工程主要运用中国建筑科学研究院PKPMCAD工程部编制的《高层建筑结构空间有限元分析与设计软件》SATWE进行分析计算。计算结果如表1所示。

表1:住宅楼(24层)前五个结构计算周期

X方向的地震作用最小剪力系数为1.77%,Y方向的地震作用最小剪力系数为1.91%。最大层间位移见2表:

表2:住宅楼(24层)最大层间位移

转换层位于三层,转换层上下刚度比为:X方向:0.9839,Y方向:1.1982

结论:2栋1座楼周期、位移均正常。

4住宅结构构件设计

4.1框支柱设计

框支柱截面尺寸主要由轴压比控制并满足剪压比要求。为保证框支柱具有足够延性,对其轴压比应严格控制。

(1)该工程框支柱抗震等级为一级,轴压比不得大于0.6,对于部分因截面尺寸较大而形成的短柱,不得大于0.5。柱截面延性还与配箍率有密切关系,因而框支柱的配箍率也比一般框架柱大得多。箍筋不得小于φ10@100,全长加密,且配箍率不得小于1.5%。

(2)在工程中,个别框支柱还兼作剪力墙端柱,所以还应满足约束边缘构件配箍特征值不小于0.2的要求,折算成配箍率(C55混凝土)即为1.82%。框支柱为非常重要的构件,为增大安全性,对柱端剪力及柱端弯矩均要乘以相应的增大系数,每层框支柱承受剪力之和应取基底剪力的30%。因为程序计算时,一般假定楼板刚度无限大,水平剪力按竖向构件的刚度分配,底部剪力墙刚度远大于框支柱,使得框支柱分配的剪力非常小。然而考虑到实际工程中楼板的变形以及剪力墙出现裂缝后刚度的下降,框支柱剪力会增加,因而对框支柱的剪力增大作了单独规定。

(3)为了加强转换层上下连接,框支柱其上部有墙体范围内的纵筋应伸入上部墙体内一层;其余在墙体范围外的纵筋则水平锚入转换层梁板内,满足锚固要求。抗震设计时,规范规定了剪力墙底部加强部位包括底部塑性铰范围及其上部的一定范围,其目的是在此范围内采取增加边缘构件箍筋和墙体纵横向钢筋等抗震加强措施,避免脆性的剪切破坏,改善整个结构的抗震性能。

4.2框支梁设计

框支梁截面尺寸一般由剪压比控制,宽度不小于其墙上厚度的2倍,且不小于400mm;高度不小于计算跨度的1/6。

(1)本工程框支梁宽度为500~1000mm。框支梁受力巨大且受力情况复杂,它不但是上下层荷载的传输枢纽,也是保证框支剪力墙抗震性能的关键部位,是一个复杂而重要的受力构件,因而在设计时应留有较多的安全储备。

(2)一级抗震等级的框支梁纵筋配筋率不得小于0.5%。框支梁一般为偏心受拉构件,梁中有轴力存在,因此应配置足够数量的腰筋,腰筋采用φ18,沿梁高间距不大于200mm,并且应可靠锚入支座内。框支梁受剪力很大,而且对于这样的抗震重要部位,更应强调“强剪弱弯”原则,在纵筋已有一定富余的情况下,箍筋更应加强,譬如某根700宽框支梁箍筋采用φ16@100六肢箍全长加密,配箍率达到1.18%。

4.3楼板设计

框支剪力墙结构以转换层为分界,上下两部分的内力分布规律是不同的。

(1)在上部楼层,外荷载产生的水平力大体上按各片剪力墙的等效刚度比例分配;

(2)在下部楼层,由于框支柱与落地剪力墙间的刚度差异,水平剪力主要集中在落地剪力墙上,即在转换层处荷载分配产生突变。

(3)由于转换层楼板承担着完成上下部分剪力重分配的任务,且转换层楼板自身必须有足够的刚度保证,故转换层楼板采用C40混凝土,厚度200MM,¢12@150钢筋双层双向整板拉通,配筋率达到0.41%。

(4)为了协助转换层楼板完成剪力重分配,将该层以上及以下各一层楼板也适当加强,均取厚度150MM。

5结束语

综上所述,在高层建筑转换层的结构设计时,不仅要尽可能地满足建筑的使用功能的要求,而且要使结构体系更加合理,应从建筑功能、结构受力、设备使用、经济合理等多方面入手进行结构的选型和柱网布置,不断地提升住宅建筑结构的设计水平,从而满足建筑结构合理的使用要求。

参考文献