引论:我们为您整理了13篇高层建筑结构优化设计范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。
篇1
我国科学技术不断进步,高层建筑结构优化设计是我国高层建筑设计与管理中较为重要的一个环节,其主要的目标就是在于提升高层建筑的结构合理性和经济性。但是,在我国高层建筑结构设计的优化过程中还存在很多的问题,无论是管理体制方面还是在具体的实施过程中,都存在很多的不足之处,所以我们需要加强高层建筑结构设计的优化工作,保证各个环节都能够做到科学严谨、合理,从而使得高层建筑结构设计的优化能够得到最大程度的保障,为我国的经济发展做出应有的贡献。
1 高层建筑结构设计的重要意义
目前,我国高层建筑结构设计大多数是运用钢筋混凝土作为最基本的材料。钢筋混凝土具有造价低、来源丰富、形状多样等特点,可以实现结构设计师的各种创意设计,还能有效地节省钢材。钢筋混凝土结构在耐久性、耐火性以及承载能力方面有着明显的优势,并且通过建筑设计师的巧妙设计,还能实现非常理想的抗震性。钢筋混凝土结构也有一些缺点,例如:断面大、自重大,而且费模费工。
伴随着社会的进步与发展,人们生活水平不断提高,高层建筑也正在飞速发展,并形成更具有商业化、城市化以及工业化的结果。科学技术的不断进步,出现的轻质高强的材料,为高层的建筑发展提供了有利的条件。近些年以来,高层建筑在世界各地不断涌现,因此,对高层建筑的结构设计特点与结构进行全面的了解成了首要的问题,唯有如此,才能达到先进的,安全的并且能保证质量的设计产品,才能真正提高高层建筑结构设计的品质,进而满足人们居住的条件。社会经济的快速发展,对高层建筑的结构设计来讲起到很大的促进作用,同时,对设计的质量也提出更高的要求,要把高层建筑结构设计的质量提高到更高的档次,就必须提高建筑设计师的设计水平,并且要把握结构设计中的独特的特点,把这些重要的要素结合在一起并进行有效的运用,才能实现高层建筑结构设计的完美品质。
2 高层建筑结构计算中要点和优化策略
2.1 优化高层建筑结构计算中的计算软件选用
在进行高层建筑结构设计时,应该按照实际情况选择适当的计算软件进行处理,在选择三维空间分析软件时不能选取力学模型相同的,特别是在遇到受力比较复杂的情况下,譬如在对框支剪力墙进行分析的过程中,因为其产生了多次的变换,所以选择软件的过程中需要特别注意。同时在分析局部受力比较繁琐的构件时,还需要根据分析的结果对配筋设计进行改动。
2.2 优化高层建筑结构计算中的计算参数取值
首先,将建筑物的抗震功能考虑到建筑结构设计中时,需要考虑结构的平扭转耦联,将其加到结构计算的过程中,要保证振型数等于或者大于十五,多塔结构的振型数需要大于或者等于九倍的原振型数,同时还需要保证振型参与质量大于等于结构总质量的90%,如果达不到这个要求,就会在后面的计算过程中出现较大的误差,计算结果也不再具有参考意义。
其次,计算高层建筑结构的内力位位移时,如果只考虑梁、柱等关键部位结构构件的刚度,而不计算非承重结构构件的刚度,那么最终测量计算出来的自振周期就会比实际测量的值大,这样最终设计出来的结构受到地震的作用也会相对较小。特别是在设计框架结构过程时建筑的刚度很大,过多的实心墙体运用会使得整个周期实测值变小;运用剪力墙结构时,较少的砖块使用量能够保证墙体的刚度较小,这样就能够保证测量值和实际计算值之间的差距较小。因此在对建筑结构进行设计过程中,在考虑建筑结构的抗震性能时需要将非承重结构的刚度等因素考虑进去,使用数据时也需要结合非承重墙相关方面的数据,通过一定的计算进行相应的改动,但是现在很多建筑设计师在对结构设计进行改进时,通常都是利用软件的默认值1.0,这样就会导致很多有其他结构的建筑都会存在很大的安全隐患,抗压抗震能力十分微弱。
3 高层建筑结构设计中的要点与优化策略
3.1 优化高层建筑结构设计中梁柱构造
如果梁的腹板高度hW≥450mm,就应该在梁的两侧分别依照高度来配置纵向安排钢筋,每侧纵向钢筋的截面面积不应该比腹板截面积(bhW)的0.1%还要小,同时间距不应该比200mm大。在实行抗震设计的过程中,框架柱应该达到剪压比的需要,它的截面关键应该让轴压比来掌控。不过在结构设计里面常常会产生轴压比μN达上限甚至超限的现象,但箍筋的体积配箍率ρV却无法达到规程需要的状况。这就违背了框架柱的强剪弱弯准则,同时对柱的延性产生了一定的作用。
3.2 优化高层建筑结构设计中过渡层设计
假使剪力墙结构在转换层或者是过渡层中,例如:底层框架剪力墙结构,这种结构在应对地震时能够展现出最大的抗剪切力合抗倾覆力矩,而且这种结构不利于它在地震中的受力。而且,因为受到了垂直均匀荷载的作用,转换层或者过渡层在受到剪力墙压剪以及拉剪作用,结构的横向荷载发生作用,会导致转换层或者过渡层剪力墙结构受到的很像承载力减少,同时结构的抗裂性也会降低。通过实验不难发现,一旦结构中的反复横向荷载和垂直同时作用时,转换层或者过渡层所受到的横向荷载以及承载力就会减少很多。可是如果按照平常的检验和计算对其进行检验时,如果结构的垂直荷载或者结构高跨比较小时,那么最后估算出来的剪力墙承载力就会比较大,这样会导致整个建筑的安全系数较低,抗震能力较弱。因此,在设计建筑结构转换层或者过渡层时应该在每个结构部分里加入构造柱和圈梁,这样就能够形成一个类框架系统,整个系统的抗震能力就得到了显著提升,结构过渡层或者转换层传送剪切力更加灵敏,延展性等各方面的性能会大大增强,整个建筑会更加趋于安全。
4 结语
综上所述,我国高层建筑正在不断发展,高层建筑的结构设计正在不断优化,其在高层建筑工程发展中慢慢体现出了极其重要的作用。在当前国内外经济形势的一片大好的发展背景下,加强高层建筑结构设计的优化管理,有着非同寻常的作用。与此同时,通过对高层建筑结构设计的科学优化,能够促进投资成本在工程项目的质量安全和环保节能等方面进行合理而均衡的分配,从而使高层建筑项目获得更高的增值,并进一步推动我国经济建设以及城市化步伐的加快。而负责高层建筑结构设计优化的相关人员,要对这些工作有充足的把握。在这种情况下,才会完成好高层建筑结构设计的优化等一系列工作,进而保证高层建筑工程项目设计管理的顺利进行。
参考文献:
[1]李源新.高层建筑结构概念设计与高层剪力墙结构的优化[J].科技创新导报,2012(15).
篇2
某高层建筑设计使用功能要求集展销、外贸、餐饮、办公、居住和旅游于一体.属综合性公共建筑。主楼占地面积9483m2,总建筑面积19737m2,主楼高73.6m,地面以上19层、地下1层,主楼建筑面积为12091m2;裙楼高3层。建筑面积为7646m2。建筑平面如图l所示。
1.1 结构承重体系设计
综合考虑裙楼部分大空间的设计使用要求以及主楼部分的抗侧移设计要求。裙房结构承重体系采用钢筋混凝土框架结构形式,主楼采用框架―剪力墙承重结构体系。
本建筑结构在主楼抗侧力构件设计中 剪力墙主要承担水平作用,框架承担少部分水平荷载作用和大部分竖向荷载作用。主楼平面形状基本上为正方形 楼梯均设置在角部位置,为提高主楼结构的抗扭能力,剪力墙结合楼电梯间设在主楼结构的两个对角位置,具体厚度根据高层建筑结构设计的变形限值,由刚度、承载力和延性三者间的最佳匹配决定。
1.2 建筑缝的处理设计
本建筑由主楼和裙房两部分组成。在二者的连接部位需设置建筑缝。考虑到主楼部分高度较大、结构有效重量大,裙房部分高度较低.因此二者问需设置防震缝和沉降缝。对于防震缝。为避免书楼和裙房间连接部位留出较大的宽缝,给裙房屋顶防水处理带来困难.本建筑采用“抗”的方法 在结构分析时.将主楼和裙房视为一个整体进行抗侧力设计计算:对于沉降缝,结合主楼需设一层地下室的建筑要求,设计中将主楼基础设计成桩基础。而将裙房基础设计成柱下条形基础,通过两类基础的沉降变形计算,相应调整和消除主楼和裙房两部分的不均匀沉降差。施工时,在主楼和裙房连接部位预留1.5m宽后浇带。通过施工手段局部调整高低两部分间的沉降差。
1.3 基础设计
根据《工程地质勘察报告》提供的场地工程地质条件。并考虑主楼和裙房间荷载分布的不均匀性特点,主楼部分结合地下室的设计采用深桩筏板基础.以提高主楼结构的整体稳定性。降低主楼部分的沉降变形。
裙房部分采用柱下条形基础 通过修工条形基础的宽度来调整基底反力.进一步控制裙房部分的基础沉降变形。使主楼结构和裙房结构在各自使用荷载作用下,能产生基本上一致的基础沉降变形量。
2 结构优化设计策略
钢筋混凝土框架―剪力墙结构是高层建筑结构中最常采用的承载体系之一,它同时具有框架结构建筑平面布置灵活。能获得大空间,建筑立面易于处理,以及剪力墙结构抗侧移刚度人、整体性好、抗震能力强的优点。在水平荷载作用下,具有较纯框架和纯剪力墙结构更为有利的水平变形曲线。但钢筋混凝土框―剪结构是一个具有双重承载体系的非常复杂的空间受力体系,力学分析难度较大.其优化设计就更为复杂和难以实现。所以,尽管国内外学者对此做过许多有益的尝试.但框―剪结构的优化设计还存在很多具有重大工程意义和科学意义的课题。2.1 框架结构的分部优化设计技术
钢筋混凝土框架结构属于具有多个多余约束的超静定结构,其荷载效应不仅与外荷载大小有关。还与结构构件的材料特征、几何构造特征有关。钢筋混凝土框架结构的分部优化设计。即是在结构整体内力分析完成后,根据梁柱各构件的控制内力进行截面优化设计,确定满足荷载效应水平要求的各结构构件的几何特征和配筋量的优化结果,由此导致原结构的几何特征和荷载特征发生变化。优化结构在现荷载作用下内力分布特征发生变化。各构件控制截面上的控制内力也发生相应变化。据此再进行新一轮的优化设计。因此框架结构的分郜优化设计实际上是一个迭代、渐进的寻优过程,计算结果虽不总能等价于整体优化设计结果.但通常能给出工程实用的满意结果。
钢筋混凝土框架结构的分部优化设计方法的具体步骤为:
(1)初始选型:根据结构平面、立面布置及建筑物设计使用功能,分析结构所受的竖向荷载和水平荷载及其传力路线,并考虑施工因素,归并框架梁、柱的类型,初选梁柱的几何尺寸;
(2)结构分析:按照结构的实际几何构造特征,计算结构所受竖向荷载及水平荷载,对钢筋混凝土结构进行空间内力分析。根据结构分析结果,将截面尺寸相同的构件的控制截面内力,根据其大小进行分类,并确定每一类构件的设计控制内力;
(3)截面优化设计:针对每一种梁柱构件的控制内力进行优化设计。得出优化约束条件下的结构几何构造特征和配筋特征的优化设计结果,从而构成新的优化意义上的设计结构;
(4)收敛性判断:在工程精度意义上选取一个较小的数值,作为检验结构收敛性的条件,进行收敛性判断。若优化结构与原结构基本一致,则认为优化结构是收敛的。可以转入下一步的可行性判断,否则转回第(2)步重新进行结构分析、优化设计;
(5)可行性判断:对优化设计结果进行一次内力分析,检验其可用性。若整体分析能够满足工程设计要求,则可按此方案进行配筋和构造处理,作为最终的优化设计结果。否则需根据工程经验和结构内力分析结果进行局部调整,直到方案可用为止。
2.2框―剪结构的三阶段优化设计策略
框―剪结构的设计主要涉及三个方面的优化问题:① 结构最优设防水平的决策;②框架与剪力墙结构协同工作,以及承载力、刚度与延性变形能力间的最佳匹配设计;③ 框架―剪力墙结构构件的优化设计问题。
2.2.1第一阶段:最优设防水平I 的优化决策
根据地震危险性分析结果或地震区划规定,在预测地震烈度概率分析基础上,用模糊综合评判法计算结构的模糊延性向量和模糊抗震强度、损伤等级概率和震害损失的预估期望值E(Id),在满足最大投资约束和最大损失约束条件下,使k1C(Id)+K2K3E(Id)达到最小,求出最优抗震设防烈度Id。
2.2.2 第二阶段:剪力墙构件的优化设计
剪力墙结构构件的优化设计主要是结构刚度与延性指标的最佳组合,可用力学准则进行优化。结构刚度对结构的影响主要为结构的自振周期和侧向位移,结构延性对结构的影响主要为保持承载力前提下的变形能力。因此,可用结构整体的侧向位移量来协调结构的刚度和延性。我们根据高层结构设计规范对结构层问位移和顶点总侧移的限值来控制结构的刚度设计和延性设计。
2.2.3 第三阶段:框架结构的优化设计框架结构的优化
设计准则是一个结构准则,在一次整体分析完成之后,可按照前述方法对框―剪结构中的框架部分进行优化设计。
2.2.4 框―剪结构的优化设计步骤
(1)分析结构平面、立面布置特点,根据工程经验选定剪力墙抗侧力构件的布置位置及几何厚度;
(2)根据结构使用荷载特点,根据经验归并框架结构类型,并初步选定每一类型框架结构梁柱构件的几何尺寸;
(3)进行整体结构的空间内力分析;
(4)根据结构分析计算结果。检查结构的层间位移及顶点总位移是否满足规范要求。若满足规范要求,则转入第5步进行判断:若不满足规范要求.则直接返回第1步,进行剪力墙水平截面面积的修正;
(5)刚度最优化判断:比较结构实际侧移值和规范限值,若|且,则转入第6步进行计算;否则转入第1步,并用原剪力墙厚度乘以修正系数,来修正剪力墙几何尺寸,重新进行结构分析;
(6)分别进行剪力墙和框架结构构件的截面优化设计;
(7)收敛性判断:比较优化结构与原结构的接近程度,若优化结构与原结构基本一致,则认为优化结构是收敛的,可以转入下一步进行可行性判断。否则将优化结构作为原结构转回第3步重新进行结构分析、优化设计;
篇3
1.1高层建筑结构类型分析
高层建筑结构选型决定高层建筑的整体安全性和可靠性。常见的几种结构可类型为分为框架结构、框架-剪力墙结构、剪力墙结构、筒体结构等。①框架结构主要是由梁柱、楼板等部分组成,根据建筑功能的需求,完成对平面框架的布置。框架结构造价低,但在水平荷载影响下变形较大,抗震效果不佳;②框架-剪力墙结构,高层建筑中,剪力墙主要布置在电梯间,通过核心筒承担水平荷载,抵抗地震力,整体稳定性高。但是框架剪力墙结构容易受到平面布局限制,出现质心和钢心不重合的现象,结构扭转过大,可能会出现的安全隐患;③剪力墙结构,具有较好强竖向和水平向的承载能力,对高层建筑的整体刚到和稳定性具有显著的提升效果,重点在于剪力墙的布置及自重的控制;④筒体结构,在电梯间及建筑布置剪力墙,形成筒体,该结构具有更高的刚度。
1.2高层建筑结构选型的影响因素
高层建筑结构选型,除了受建筑需求影响外,其主要因素可归纳为:①环境条件。主要包括设防烈度、场地条件、基本风压等;②建筑方案特征。主要包括方案建筑的高度、高宽比、长宽比以及建筑体型,其中建筑体型包括平面体型和立体体型。平面体型是由平面规则性、平面对称性、平面质量和刚度偏心等组成,立体体型是由结构高宽比、立面收进体型、塔楼和层间刚度等组成;③建筑使用功能要求。高层建筑的使用功能大体上可分为住宅、办公楼、旅馆和综合楼等。某种功能的建筑可能只有某几种结构型式和它相匹配。比如高层住宅,由于其使用空间较小,分隔墙体较多,且各层的平面布置基本相同,因此这种功能的建筑就比较适合采用剪力墙或框架剪力墙结构;④结构抗灾水平及现场施工、后期使用、运营维护等。
1.3结构选型实施案例
本章节以某工程为例,该工程中主要包含的高层住宅和多层商务办公两部分,建筑的总占地面积95388.440m2,其中工程中主要以1号楼、2号楼、3号楼为高层建筑,且楼层均为36F,其中且高度分别为117.390m、119.400m、119.400m。本工程主要采用钢材、混凝土等材料。本章节以1号楼为研究对象,1号楼拟建楼层36层,设防烈度7度,基本风压0.75KN/m2,场地Ⅱ类。建筑对称布置,平面规则,其空间分隔小,隔墙多,且各层平面布置基本相同。通过考虑其竖向、水平向荷载、造价施工方面等因素,本工程采用剪力墙结构,通过合理布置剪力墙,控制结构的整体刚度及侧向位移等,使结构更安全、更稳定、更经济。
2建筑结构的优化设计
2.1结合建筑类型进行优化
汶川地震震害结果表明,对于教育类项目,如中小学,由于使用功能要求,相比其它建筑,教学楼竖向结构体系相对较弱,强度和刚度不足,并且建筑体型不对称,致使建筑在地震中易倾倒。因此教育类项目,应在建筑侧边及楼梯间布置剪力墙,以增强建筑结构的整体性与稳定性,使其具有良好的工作性能。针对文化体育类项目,例如图书馆、博物馆,根据其典藏书籍及文物的特点,其荷载大,使用空间大,平面不规则,在结构进行竖向布置时不必按照传统9m模数布置,某项目案列按12m模数优化柱网后,结构截面变化不大,但能更好满足建筑使用功能需求。
2.2结合建筑总高度进行优化
在某超高层中,通过对比分析钢骨砼柱—砼梁与钢管砼柱—钢梁,钢梁组合楼盖可有效降低梁柱截面,满足建筑使用净高要求,且中庭洞口各层交错布置,采用钢梁组合楼盖解决了传统支模难题;可有效控制塔楼标准层室内梁高,内部净高高出150~200mm;绝大部分构件都在工厂加工完成,最大化地提高建筑产品工业化水平,大大减少施工现场建筑垃圾;施工工期大大缩短。
2.3结合建筑荷载进行优化
越来越多的企业在项目建设过程中承受着巨额成本的压力,地下室优化的必要性不容忽视。在满足安全和建筑功能、效果的前提下,充分考虑覆土、消防车、人防等荷载,再进行平面布置,并进行多方案比选,项目实例表明,在常规8.5m×8.5m柱网情况下,荷载越大,采用大板结构,建筑物含钢量最低,最经济。在结构优化过程中应多方面考虑,对建筑安全、美观、经济等全面比较,以实现项目效益最大化。
2.4剪力墙结构优化理论在实际工程中运用
(1)在进行结构计算时,应通过软件分析,满足最大层间位移、周期比、位移比、轴压比等各项指标确要求。(2)通过适当的缩减剪力墙的长度,减轻自重,增加高层建筑内部使用空间。(3)剪力墙的肢截面控制,在具体的控制中,需要保障肢截面以简单、规则为基准,具体的门窗洞口,同样需要设计整齐成列,并形成明确的墙肢与连梁,进而使得应力可以的合理的分布,提升高层建筑的整体安全性和稳定性。(4)剪力墙过长的部分,采用的开设洞口的方式,完成对剪力墙的均分,再由的弱连梁对他们进行连接,避免剪力墙出现的脆性剪切破坏,影响高层建筑的整体质量和安全。(5)剪力墙应自上而下的连续性布置,减少高层建筑出现刚度突变的情况,保障剪力墙的连续性。设计过程中适当对剪力墙的厚度和混凝土强度进行调整,满足轴压比的要求。(6)对窗口梁和阳台梁等截面进行调整,完成对结构刚度及位移的微整,是结构布置更合理。针对高层建筑的结构选型设计的基本情况,可完成高层建筑的结构优化,从而使得高层建筑的空间效果、结构性能和高层建筑的整体综合效益等均可得到改善,在保障高层建筑基本功能的基础上,提升高层建筑的稳定性和安全性。
篇4
某高层建筑设计使用功能为餐饮、办公一体属综合性公共建筑。地下2层,裙楼4层,裙楼上南、北两塔楼分别高19层(72.5m)、25层(90.5m)。两塔楼于17、18、19层连体(结构上为两塔楼分别悬挑梁处理)。总建筑面积55018m2,其中基底面积为3525m2。
1.1 结构承重体系设计
结构设计中裙房部分主要考虑由恒载及使用活荷载等竖向荷载引起的荷载效应,主楼部分结构设计不仅考虑竖向荷载效应,还要考虑水平地震作用及风荷载作用下产生的荷载效应的组合。综合考虑裙楼部分大空间的设计使用要求以及主楼部分的抗侧移设计要求,裙房结构承重体系采用钢筋混凝土框架结构形式,主楼采用框架-剪力墙承重结构体系。本建筑结构在主楼抗侧力构件设计中,剪力墙主要承担水平作用,框架承担少部分水平荷载作用和大部分竖向荷载作用。主楼平面形状基本上为正方形,因楼梯、电梯间均设置在核心筒内,为提高主楼结构的抗扭能力,剪力墙结合楼电梯间在主楼范围内采取了加强处理,具体厚度根据高层建筑结构设计的变形限值,由刚度、承载力和延性三者间的最佳匹配决定。
1.2 建筑缝的处理设计
本建筑由主楼和裙房两部分组成,在二者的连接部位需设置建筑缝。考虑到主楼部分高度较大、结构有效重量大,裙房部分高度较低,因此二者间需设置防震缝和沉降缝。对于防震缝,为避免主楼和裙房间连接部位留出较大的宽缝,给裙房屋顶防水处理带来困难,本建筑采用“抗”的方法,在结构分析时,将主楼和裙房视为一个整体进行抗侧力设计计算;对于沉降缝,结合主楼需设二层地下室的建筑要求,设计中将主楼基础设计成桩基础,而将裙房基础设计成柱下条形基础,通过两类基础的沉降变形计算,相应调整和消除主楼和裙房两部分的不均匀沉降差。施工时,在主楼和裙房连接部位预留1.5m宽后浇带,通过施工手段局部调整高低两部分间的沉降差。
1.3 基础设计
根据《工程地质勘察报告》提供的场地工程地质条件,并考虑主楼和裙房间荷载分布的不均匀性特点,主楼部分结合地下室的设计采用深桩筏板基础,以提高主楼结构的整体稳定性,降低主楼部分的沉降变形。
裙房部分采用柱下条形基础,通过修正条形基础的宽度来调整基底反力,进一步控制裙房部分的基础沉降变形,使主楼结构和裙房结构在各自使用荷载作用下,能产生基本上一致的基础沉降变形量。
2 结构优化设计策略
钢筋混凝土框架-剪力墙结构是高层建筑结构中最常采用的承载体系之一,它同时具有框架结构建筑平面布置灵活,能获得大空间,建筑立面易于处理,以及剪力墙结构抗侧移刚度大、整体性好、抗震能力强的优点。在水平荷载作用下,具有较纯框架和纯剪力墙结构更为有利的水平变形曲线。但钢筋混凝土框-剪结构是一个具有双重承载体系的非常复杂的空间受力体系,力学分析难度较大,其优化设计就更为复杂和难以实现。所以,笔者以下谨通过已有的工程设计经验提出步骤性的建议,不作深入的学术探讨。希望国内外学者和工程设计人员今后对此能有更多有益的尝试,探讨更多有关框-剪结构的优化设计方面的课题,以推动我国节能事业的发展。
2.1 框架结构的分部优化设计技术
钢筋混凝土框架结构属于具有多个多余约束的超静定结构,其荷载效应不仅与外荷载大小有关,还与结构构件的材料特征、几何构造特征有关。钢筋混凝土框架结构的分部优化设计,即是在结构整体内力分析完成后,根据梁柱各构件的控制内力进行截面优化设计,确定满足荷载效应水平要求的各结构构件的几何特征和配筋量的优化结果,由此导致原结构的几何特征和荷载特征发生变化,优化结构在现荷载作用下内力分布特征发生变化,各构件控制截面上的控制内力也发生相应变化,据此再进行新一轮的优化设计。因此框架结构的分部优化设计实际上是一个迭代、渐进的寻优过程,计算结果虽不总能等价于整体优化设计结果,但通常能给出工程实用的满意结果。
钢筋混凝土框架结构的分部优化设计方法的具体步骤为:
(1)初始选型:根据结构平面、立面布置及建筑物设计使用功能,分析结构所受的竖向荷载和水平荷载及其传力路线,并考虑施工因素,归并框架梁、柱的类型,初选梁柱的几何尺寸;
(2)结构分析:按照结构的实际几何构造特征,计算结构所受竖向荷载及水平荷载,对钢筋混凝土结构进行空间内力分析。根据结构分析结果,将截面尺寸相同的构件的控制截面内力,根据其大小进行分类,并确定每一类构件的设计控制内力;
(3)截面优化设计:针对每一种梁柱构件的控制内力进行优化设计,得出优化约束条件下的结构几何构造特征和配筋特征的优化设计结果,从而构成新的优化意义上的设计结构;
(4)收敛性判断:在工程精度意义上选取一个较小的数值,作为检验结构收敛性的条件,进行收敛性判断。若优化结构与原结构基本一致,则认为优化结构是收敛的,可以转入下一步的可行性判断,否则转回第②步重新进行结构分析、优化设计;
(5)可行性判断:对优化设计结果进行一次内力分析,检验其可用性。若整体分析能够满足工程设计要求,则可按此方案进行配筋和构造处理,作为最终的优化设计结果。否则需根据工程经验和结构内力分析结果进行局部调整,直到方案可用为止。
2.2 框-剪结构的三阶段优化设计策略
框-剪结构的设计主要涉及3个方面的优化问题:①结构最优设防水平的决策;②框架与剪力墙结构协同工作,以及承载力、刚度与延性变形能力间的最佳匹配设计;③框架-剪力墙结构构件的优化设计问题。
高层框-剪结构在水平荷载作用下的协同工作问题,主要是水平荷载在框架和剪力墙结构之间的分配设计,因此剪力墙数量和位置的设计是关键问题。这里,我们将框-剪结构的优化设计过程分为三个阶段进行,对不同阶段的不同问题,采取不同的优化准则进行优化设计。
2.2.1 第一阶段:最优设防水平Id的优化决策
根据地震危险性分析结果或地震区划规定,在预测地震烈度概率分析基础上,用模糊综合评判法计算结构的模糊延性向量和模糊抗震强度、损伤等级概率和震害损失的预估期望值E(Id),在满足最大投资约束和最大损失约束条件下,使k1C(Id)+k2k3E(Id)达到最小,求出最优抗震设防烈度Id。
2.2.2 第二阶段:剪力墙构件的优化设计
剪力墙结构构件的优化设计主要是结构刚度与延性指标的最佳组合,可用力学准则进行优化。结构刚度对结构的影响主要为结构的自振周期和侧向位移,结构延性对结构的影响主要为保持承载力前提下的变形能力。因此,可用结构整体的侧向位移量来协调结构的刚度和延性。我们根据高层结构设计规范对结构层间位移和顶点总侧移的限值来控制结构的刚度设计和延性设计。
2.2.3 第三阶段:框架结构的优化设计
框架结构的优化设计准则是一个结构准则,在一次整体分析完成之后,可按照前述方法对框-剪结构中的框架部分进行优化设计。
2.2.4 框-剪结构的优化设计步骤
(1)分析结构平面、立面布置特点,根据工程经验选定剪力墙抗侧力构件的布置位置及几何厚度;
(2)根据结构使用荷载特点,根据经验归并框架结构类型,并初步选定每一类型框架结构梁柱构件的几何尺寸;
(3)进行整体结构的空间内力分析;
(4)根据结构分析计算结果,检查结构的层间位移及顶点总位移是否满足规范要求。若满足规范要求,则转入第5步进行判断;若不满足规范要求,则直接返回第1步,进行剪力墙水平截面面积的修正;
(5)刚度最优化判断:比较结构实际侧移值和规范限值,若│max(δ/h)-[δ/h]│/[δ/h]≤ε1且│max(Δ/H)-[Δ/H]│/[Δ/H]≤ε2,则转入第6步进行计算;否则转入第1步,并用原剪力墙厚度乘以修正系数ζ=max{ζ1,ζ2}(ζ1=[δ/h]/max(δ/h),ζ2=[Δ/H]│/max(Δ/H)),来修正剪力墙几何尺寸,重新进行结构分析;
(6)分别进行剪力墙和框架结构构件的截面优化设计;
(7)收敛性判断:比较优化结构与原结构的接近程度,若优化结构与原结构基本一致,则认为优化结构是收敛的,可以转入下一步进行可行性判断,否则将优化结构作为原结构转回第3步重新进行结构分析、优化设计;
(8)可行性判断:对优化设计结果进行一次内力分析,检验其可用性。若整体分析能够满足工程设计要求,则可按此方案进行配筋和构造处理,作为最终的优化设计结果。否则需根据工程经验和结构内力分析结果进行局部调整,直到方案可用为止。
3 工程实例
篇5
1 工程概况
某项目建筑面积为33819.0m2,地下2层为停车库,地上1~3层为商业,4~30 层为住宅,顶部设有出屋面电梯机房及水箱间,采用框架—剪力墙结构。抗震设防烈度8度,设计基本地震加速度为 0.20g,设计地震分组为第一组,建筑物场地土类别为Ⅱ类,基本风压 Wo=0.40kN/m2。该建筑地下室~4层剪力墙厚度为:350mm;6 层~12层剪力墙厚度为:300mm;13层~21层剪力墙厚度为:250mm;22层~屋顶剪力墙厚度为:200mm;楼、电梯间剪力墙厚均为 250mm和 160mm。基础型式为桩和承合基础。采用中国建筑科学研究院 PKPM 系列软件进行上部结构和基础的计算。
2 结构体系选型
建筑物结构形式的选择对建筑的使用功能、结构可靠性、建筑的抗震性能、工程造价等具有很大影响。 因而在结构设计中体系选型显得十分重要。
剪力墙结构是一种由钢筋混凝土墙体作为抗侧力单元,同时承担竖向荷载和地震作用的一种结构体系;它刚度大,空间整体性好,用钢量较省;可以很好地适应墙体较多、房间面积不大的特点,故在高层住宅中应用极为普遍。但剪力墙结构墙体较多,不能布置商店和
公共设施等面积较大的房间。
框支剪力墙结构是一种将部分底层或部分层的剪力墙取消,代之以框架的结构体系;其主要是为了满足在底层布置门厅、餐厅、会议室等大面积公共用房的要求,以及在住宅楼底层布置商店和公共设施的要求。但框支剪力墙结构,底层柱的刚度小,上部剪力墙刚度大,形成上下刚度突变,在地震作用下底层柱会产生很大内力及塑性变形,对结构抗震性能极为不利;并且其转换层的混凝土和钢筋用量一般都很大,其工程造价很不经济。因此,在地震区不宜采用框支剪力墙结构。
框架—剪力墙结构是在框架结构中布置一定数量的剪力墙,可以组成框架—剪力墙结构的一种结构体系,这种结构既有框架结构布置灵活、使用方便的特点,又有较大的刚度和较强的抗震能力,因而广泛地应用于高层建筑中的办公楼和旅馆等。
本工程针对其具体情况,做多方案比较,最终确定了框架—剪力墙结构体系;既能满足了上部住宅楼、底部商业用房的建筑使用功能要求,又能满足建筑物在高烈度区的安全可靠性,同时这种结构形式也是较为经济合理的,可有效的控制工程造价。
3 基础及地基处理的设计
高层建筑基础的合理选型与设计是整个结构设计中的一个极其重要和非常关键的部分。 基础的工程造价在高层建筑整个工程造价中所占的比例较高,尤其在地质条件比较复杂的情况下更是如此。所以选用合理的基础形式或地基处理方式,对降低工程造价起着至关重要的作用。
该工程地基承载力特征值为200kPa,天然地基不能满足设计要求,根据工程地质勘察报告,可采取钻孔灌注桩或预应力管桩。由于场地为自重湿陷性场地,湿陷等级为Ⅱ级(中等),建议首先采用素土挤密桩对湿陷性土层进行处理。考虑甲方施工工期紧的情况,经过多方经济比较,最终取消了素土挤密桩处理,而是直接采用机械旋挖成孔的钢筋混凝土灌注桩穿越湿陷性土层。根据西安当地经验,旋挖成孔技术可提高灌注桩的承载力约 20%~50%,这就大大节约了施工时间,并减少了素土桩施工费用,而灌注桩所增加的桩长却很小。本工程桩基承台此次采用底平,主要是为了使位于地下室的设备管线埋设在各个承台之间的空隙,而不占用建筑面层。这样可大大减小基坑的开挖深度,减小工程量,从而降低工程造价。
4 结构设计
本工程通过抗侧力构件的合理布置,在地震作用下,使结构的各项目标参数均符合规范要求的前提下,不断优化,尽量减少剪力墙的数量和厚度, 使结构在 X、Y两个方向刚度基本接近,两个方向水平位移均接近规范限值,结构布置更加经济合理。从承载力方面来看,使框架、剪力墙的作用得到充分的发挥;从地震作用来看,减小了结构的侧向刚度,并因此减轻了建筑的自重,从而减小了结构的地震作用;也相应减少了基础工程的投资。
本工程楼层最大位移(楼层最大值层间位移角):X 方向地震力作用下的楼层最大值层间位移角:1/1084;Y 方向地震力作用下的楼层最大值层间位移角:1/859;满足了抗震规范与高规规定的剪力墙结构楼层最大值层间位移角限值均为:1/800 的要求。
5 材料选用
5.1采用高强度钢筋
在满足结构设计承载力要求的前提下,选择相对造价低的钢筋方案,可以达到降低工程造价的目的。大多数设计人员一般把重点放在配筋的计算上,往往忽视钢筋种类的选择。新Ⅲ级钢筋是近年来推广使用的新型钢筋,它比普通Ⅱ级钢筋提高强度近 20%,每吨价格增加不超过10%。因此新Ⅲ级钢筋的选用,在增加钢筋混凝土结构强度和建筑物安全储备的同时,还节省了用钢量。另外,钢筋的连接宜优先采用闪光对焊,且普通焊接或电渣压力焊接比搭接经济。
本工程基础和梁、柱及板配筋等大部分均采用 HRB400 级钢筋,HRB400 级钢筋强度 设计值与HRB335级钢筋强度设计值之比360/300 = 1.2 ; 据资料统计,用强度高的 HRB400 级钢筋取代强度低的HRB335级钢筋可节约钢材约14%,这是降低钢筋用量最直接的措施。
5.2采用轻质隔墙
本工程为减轻荷载,内隔墙采用轻质石膏板内隔墙体系,与轻质砌块隔墙相比,轻质石膏板内隔墙体系具有自重轻、干法作业,安装效率高,易于拆改、施工快捷,缩短工期的优点,近年来在高层住宅建筑中得以广泛应用。以99mm厚的轻质石膏板隔墙为例,其重量为23kg/m2,是相同厚度砌块隔墙重量的28%,可显著节省建筑承重结构和基础费用,降低土建结构造价。
6结束语
本文讨论的该工程通过以上几个方面的优化设计,在符合现行国家规范前提下,做到安全性能可靠,减少了建筑的混凝土用量和钢筋用量,取得了较好的经济指标,达到了较佳的设计效果。
参考文献:
[1]建筑抗震设计规范(GB50011-2010)[S].北京 :中国建筑工业出版社 ,2010.
篇6
Keywords: high-rise residential building design
中图分类号:S611文献标识码:A 文章编号:
当前,高层建筑随着城市的发展和科学技术的进步而发展起来的, 在土地资源日益趋紧的今天, 高层建筑有利于节约用地、解决住房紧张、减少市政基础设施和美化城市空间环境。为了在日益激烈的设计市场竞争中求得生存与发展, 为业主提供优质的设计产品, 提高设计产品的经济性, 已成为每一个设计单位努力追求的目标。
一、高层住宅建筑结构设计的原则
1、 满足经济性要求。住宅作为商品, 开发商为有利可图, 要求投入少, 经济效益好,购房者则要求房屋设计布局好, 外观美, 房价适中, 质量上乘。因此, 结构设计应根据房屋的建造地点、平立面体形、层数多少, 在满足安全性、耐久性和舒适性要求的前提下采用经济合理的结构体系, 在构件设计中应精打细算, 严格执行规范构造要求, 注意避免不必要的浪费。尤其在地基基础设计中更应该注意方案的经济比较,因为地基基础设计方案合理与否对房屋造价至关重要。
2、 满足安全性和耐久性要求。住宅实行商品化后, 应成为广大住户的耐用消费品, 使用寿命长是区别于其他消费品的最大特点。因此, 结构安全性和耐久性是住宅结构设计的最基本的要求。在结构体系的选择, 材料的选用,都应该有利于抗风抗震, 以及在使用寿命期间维修改造的可能性。
3、满足舒适性要求。住宅建筑设计应该为住户起居的舒适性要求提供条件, 例如, 多种户型, 灵活分隔室内空间, 人居的热、光、声的环境等要求, 为此结构设计应较好地配合建筑和机电专业, 尽可能在居住空间中避免露柱露梁的压抑感和采用隔音较差的分隔墙材料, 使室内简洁明快, 隔声较好,给居住者创造一个幽静舒适的环境。结构方案中还应考虑住户日后改变分隔空间的可能性, 当采用剪力墙结构时, 宜采用大开间布置。
二、 高层建筑结构优化设计现状分析
1、只重视结构尺寸的优化,即在给定结构的几何形状、 拓扑和材料的情况下,求出满足约束条件的最优构件截面,而忽视结构整体的优化。已有的研究结果表明,形状优化比尺寸优化更有意义。 单纯的尺寸优化无法接近最优的结果,因此,也就不能完全令人信服。设计人员较普遍地认为,结构设计只要结构方案和布置合理, 上部结构又有比较成熟的计算机软件进行分析计算,构件截面只要通过计算结果满足规范即可, 认为上部结构相对下部结构,即地基基础部分,特别是软土地基的意义不大,因此对上部结构截面的优化所能达到的经济效益未予以充分的重视。
2、优化的目标还不能完全符合工程的需要。 由于实际结构问题往往十分复杂,存在设计变量多、 约束条件多、 受建筑功能限制较大等难点, 多种因素甚至不确定性因素使得目函数在建立后只能得到相对最优解。,目前尚没有实用的高层建筑优化分析软件, 而应用现有的各种计算机分析软件进行截面优化并不是简单的几次尝试就能达到效果的,因此,无论是机时,还是设计进度,都较难允许实施这种优化方法。 很多高层建筑设计项目,结构方案和布置还是比较合理的, 其构件截面也是同类型结构中常用的尺寸,但是计算分析后还存在某些薄弱环节,为了改善这种受力状况,增大构件截面却未能得到明显改善,反而增加了材料耗量。
三、高层住宅建筑结构优化设计方法
1、限制结构平面布置的不规则性避免产生过大的偏心而导致结构产生较大的扭转效应。高层建筑混凝土结构技术规程435条规定: 在考虑偶然偏心影响的地震作用下, 楼层竖向构件的最大水平位移和层间位移, A级高度高层建筑不宜大于该楼层平均值的 1、2倍, 不应大于该楼层平均值的 1、5倍。抗震设计的 A级高度钢筋混凝土高层建筑其平面布置宜简单、规则、对称、减少偏心。结构平面布置必须考虑有利于抵抗水平和竖向荷载,受力明确, 传力直接, 力争均匀对称, 减少扭转影响。结构刚度不对称也会产生扭转。所以在布置剪力墙时, 应使结构均匀分布, 令荷载合力作用线通过结构刚度中心, 以减少扭转影响。结构刚度不对称产生扭转时, 通过增加墙厚来调整扭转效应效果不佳。高层剪力墙结构住宅中剪力墙影响刚度, 而剪力墙为矩形截面, 惯性矩为 I Z = bh3 /12 , b为墙厚,h为墙长。剪力墙的长度对其刚度影响很大。首先分析哪部分结构刚度大, 哪部分结构刚度小, 增大刚度对结构有利, 还是减小刚度对结构有利, 通过增减剪力墙达到结构刚度均匀对称, 满足高层建筑混凝土结构技术规程435条对最大水平位移和层间位移的要求。
2、限制结构的抗扭刚度不能太弱。高层建筑混凝土结构技术规程435条规定: 结构扭转为主的第一自振周期 Tt与平动为主的第一自振周期 T1之比, A级高度高层建筑不应大于 0、9。扭转耦联振动的主方向, 可通过计算振型方向因子来判断, 在两个平动和一个转动构成的三个方向因子中, 当转动方向因子大于0、5时, 则该振型可认为是扭转为主的振型。当不满足以上要求时, 宜调整抗侧力结构的布置, 增大结构的抗扭刚度。如在满足层间位移比的情况下, 减小某些 (中部 ) 竖向构件刚度, 增大平动周期, 加大端部竖向构件抗扭刚度, 减小扭转周期。
3、高层建筑的基础形式应选用整体性好, 能满足地基承载力和层建筑容许变形的要求, 并能调节不均匀沉降, 达到安全实用和经济合理的目的。以下讨论平板式筏基和梁板式筏基经济合理的问题。平板式筏基与梁板式筏基相比较具有节约钢材、混凝土, 施工工期短等优点。住宅一般开间小, 即剪力墙间距小, 并且剪力墙刚度大,所以剪力墙完全可以起到梁板式筏基中基础梁的作用。采用中国建筑科学研究院编制的 JCCAD软件, 用有限元法对不同基础形式进行基础计算, 发现平板式筏基和梁板式筏基的板厚及配筋相差不多, 但梁板式筏基却有基础梁的配筋、混凝土用量和基础梁支模等情况。当采用梁板式筏基时有的基础梁的刚度达不到它所应起到的刚度作用, 计算时超筋。于是还要再增大梁的断面。从综合经济效益分析, 对于采用剪力墙结构形式的高层住宅平板式筏基比梁板式筏基更经济合理。
4、高层建筑平面凹入较深时构造处理。高层建筑平面不规则, 容易发生震害, 在不妨碍建筑使用的原则下可以采取以下措施: 设置拉 梁或拉板 (板厚为 250mm ~300mm ) , 拉梁拉板内配置受拉钢筋。满足梁板最小配筋率要求。
5、高层住宅转角窗处的构造处理。角部墙体开洞, 与角部墙体不开洞的剪力墙结构相比, 结构整体效应影响颇大, 结构的抗侧力刚度、自振周期、地震作用等均有不同程度的差异, 角部墙体开洞的剪力墙结构其外墙内力明显增大。开洞的角部各构件扭转效应明显, 特别是洞口处的连梁, 需配置抗扭钢筋, 转角处楼板宜局部加厚, 配筋宜适当加大, 在转角处板内设置连接两侧墙体的暗梁。
6、不规则楼板的计算。在居住建筑中由于平面使用功能的需要, 常出现不规则楼板, 以往处理方法在缺口设梁,这样影响建筑的美感。现在设计中改设暗梁, 梁适当加宽。楼板的承载力潜力较大, 计算时可按一般梁计算。通过结构优化设计来降低工程造价是控制工程
总之,结构设计没有绝对最佳的标准模式, 只有通过不断地探索、比较,去寻求相对的最优。因此我们每一个结构工程师应不断地追求尽善尽美的设计思想, 不只盲目照搬规范和依赖计算机程序作设计, 用自己的结构设计概念、经验、判断力和创造力为业主和社会设计出更好的建筑。
参考文献:
[1] 刘利峰. 钢筋混凝土建筑结构设计优化研究[J]. 科技资讯, 2010,(20) .
[2] 陈颖. 高层建筑结构优化设计分析[J]. 工程建设与设计, 2010,(08) .
篇7
在现代建筑中,混凝土结构以其强度高、耐久性好、坚固抗震等优点获得了广泛的应用,并且近年来一些新材料、新技术的逐步应用,在很大程度上提高了混凝土结构的施工效率,减少了施工成本,但是在建筑设计中依然存在一些不合理的现象,因此必须进行优化,才能促进建筑行业的可持续发展。
一、高层建筑混凝土结构的基本要求和类型。
建筑因其高低的不同,它承受力的大小和方向也是不同的。对高层建筑来说,建筑结构承受力的方向同时有水平和竖向两种力的作用。这与低层建筑是不同的,低层建筑结构承受的力方向主要是竖向的荷载,水平力的作用对结构的影响不大。[1]水平荷载不仅仅在高层建筑中是一种主要的荷载,而且它和竖向荷载相互影响,相互作用,共同对建筑施加影响,成为混凝土就够设计中主要考虑的因素。
考虑到高层建筑的这些特点,在混凝土的选用上就需要提高混凝土的质量和数量。首先,我们要对混凝土出厂前进行相关的技术处理,目的是减少水泥的水化热作用,这样可以降低混凝土自身的温度,保证其质量。其次,施工前必不可少的要进行一些必要的应急准备措施,以防在施工时出现意想不到的情况,以确保精心组织、精心施工,万无一失地完成任务。最后,在施工当中,最好采用预拌泵送混凝土,加大对混凝土施工细节的注意,比如混凝土施工缝等。我们讨论的混凝土结构优化设计以及节约建筑成本,都应该在达到高层建筑混凝土结构的基本要求的基础之上进行。
目前我国采用的高层建筑混凝土结构按照时间的发展顺序主要以下几种[2]:
1、钢筋混凝土结构:
与钢结构相比,钢筋混凝土结构的优点在于整体性好、耐高温性强、舒适度较好、抗腐蚀强、成本低、刚度大、维护方便等。现在,随着我国混凝土技术的发展和混凝土理论(高强混凝土、钢管混凝土、钢混凝土、轻混凝土)的发展,我国的钢筋混凝土的发展已经达到了成熟阶段。在我国钢筋混凝土材料受到了很高的重视,应用在很大一部分高层建筑中。
2、组合结构:
相对于钢筋混凝土来说,组合结构更具优点。这些优点主要在于节约钢材、减少污染、提高科技含量、加快施工进程等。所以,对于高层建筑来说,组合结构可以在一定程度上取代钢筋混凝土结构,这就较少了高层建筑的横向和纵向的压力。不仅如此,组合结构在冶金、造船、电力、交通等方面也逐步开始得到应用。
3、新型结构:
相对于钢筋混凝土结构和组合结构,新型结构体系的区分标准是筒体的组成方式。新型结构体系主要有三种类型:框筒体系、筒中筒体系、多束筒体系。之所以称之为新型结构主要是因为与传统的单片平面结构相比,筒体结构可以承受更多的荷载力。在我国,筒体结构的应用并不少见,主要应用的高层建筑的特点是功能多、用途多、楼层高、层数多等。
二、高层建筑混凝土结构设计特点
与多层建筑的结构设计不同,高层建筑的结构设计需要考虑的因素更多,设计中所涉及到的问题更为复杂,设计难度更大。这是因为高层建筑不但增大了对地基基础的荷载与强度要求,同时其自身的结构构件柱、墙、梁、板的承载能力、抗震能力也都需要得到保证,只有这样才能确保建筑自身的稳定性与安全性[3]。
1、水平侧向力是影响高层建筑结构设计中关于变形设计的主要影响因素。高层建筑受到的水平力主要为日常的风荷载及地震荷载作用下产生的水平地震力。与普通多层建筑相比,高层建筑的结构中更需要考虑到侧向力对建筑结构的影响,这是因为高层建筑受到水平荷载会产生较大的水平位移,影响到建筑结构的整体稳定性和舒适性。因此在结构设计中要尤其注意考虑到这一点。
2、结构的刚度布置需适宜。有人认为在建筑结构的设计中,结构的刚度越大则其承载能力越强,抗震性能就越好。其实不然,高层建筑的结构并非是刚度越大越好,刚度及质量越大,吸引的地震力也越大,同时造价也会提高,所以高层建筑结构需同时具备一定的柔性,这样才能增大其抗震性能,保证其在外力作用下,不会因刚度和脆性过大而发生倒塌。因此在设计中应该将建筑的刚度控制在适宜的范围内,不可过大,也不可过小。这也就要求高层建筑应当具备一定的延性,同时满足建筑的承载能力和抗震能力。
三、钢筋混凝土结构优化设计应用分析
1、工程概况
某钢筋混凝土框架——剪力墙结构建筑由四层裙楼和A、B两栋高层建筑组成,地下两层为停车库和设备用房。总建筑面积约2万m2,房屋平面布置为不规则形状[4]。
2、结构设计要求
本工程采用钢筋混凝土框架——剪力墙结构,建筑结构的安全等级为二级。地震基本烈度为7度(0.1g,第二组,特征周期0.4s),抗震设防类别为丙类,抗震设防烈度为7度(0.1g,第二组)。地基基础设计等级为乙级。上部结构和负一层的框架抗震等级为二级,剪力墙为二级结构,负二层的框架抗震等级为三级。基本风压:Wo=0.35kN/m2,地面粗糙度为B类。
3、设计优化的原则
在满足结构设计现行规范和相关规定的前提下,通过大量计算和经验分析进行优化,遵循以下原则:保证结构的安全性和正常使用;保证结构具有合理的刚度,特殊部位应有局部加强;可以减小的结构构件,应进行有效的核减。
4、结构优化设计
高层框架剪力墙结构体系中,主要是水平荷载作用下,框架和剪力墙内力分配设计,其中剪力墙的设计位置和数量就是关键。
1)结构最优设防的选择
在预测地震烈度概率分析的基础下,使用专业地震安全评价报告的数据,采用模糊综合评定分析法计算结构的模糊延性向量和模糊抗震强度,损失等级概率和震害损失的概率预估期望值,在满足最大投资期望和最大损失约束条件下,求出最优地震设防烈度值。
2)框架与剪力墙协同工作,承载力、刚度、延性能力的最佳匹配设计
框架——剪力墙结构的设计主要是结构刚度和结构延性的最佳组合。结构刚度对结构的主要影响为结构的自振周期和侧向位移,结构延性对结构的影响主要为保持承载力能力的前提下的变形能力,因此可以采用结构整体的侧向位移量来协调结构的刚度和延性,按规范对层间位移量和顶点位移总侧移的限值来控制结构的刚度和延性设计。
3)框架——剪力墙结构的优化设计
框架——剪力墙结构优化设计的原则就是优化结构的各个杆件,结构模型计算时,通过一次性完成的结构构件的输入,然后逐步优化各个杆件,以达到结构杆件合适、配筋合理,节约工程造价。
4)基础优化设计
在地下室基础的初步设计工作中,原初步设计地下室基础拟全部采用筏板基础,经审核计算后,提出纯地下室基础部分采用独立基础加抗浮底板及抗浮锚杆的做法能做到节约钢筋、混凝土。同时保证结构安全,施工简便,能达到更加节省工程造价目的。
5)强化“强柱弱梁、强剪弱弯”设计理念
框架结构的柱、剪力墙设计要引起重视,要加强设计;而梁和板的配筋不宜调大,梁的设计变量主要是截面高、宽及纵向受拉钢筋的截面积和架立钢筋的截面积,优化设计主要针对以上设计变量进行优化,因此梁的截面尽量按正常值取定,少做宽扁梁,配筋率也应控制在 1.5%左右,次梁的箍筋宜分为加密区和非加密区。
四、结束语:
通过优化设计后,本工程的最终优化的结果为:节约钢筋65t,节约资金约32万元。高层建筑混凝土结构的优化设计方法多种多样,但是不论使用哪一种方法都要建立在施工的可行性的基础之上,施工技术必须严格依照设计标准。高层建筑混凝土施工技术是科学元素和技术元素的融合和应用,它的实现过程必然需要建筑施工各环节基础技术的支持和管理理论的强化。所以,设计与施工的相辅相成才是实现合理、科学节约成本的有效措施。
参考文献:
篇8
一、高层建筑结构的发展
(1)新型结构形式的应用不断增加。框架体系、剪力墙体系和框架一剪力墙(支撑)体系是高层建筑的传统结构体系。根据筒体的不同组成方式,分为框简体系、筒中筒体系和多束筒体系3种类型。筒体最主要的受力特点是它的空间受力性能。无论哪一种筒体,在水平力作用下都可以看成固定于基础上的箱形悬臂构件,它比单片平面结构具有更大的抗侧刚度和承载力,并具有很好的抗扭刚度。因此,该种体系广泛应用于多功能、多用途、层数较多的高层建筑中。而20世纪80年展起来的巨形结构(巨形桁架、巨形框架)、应力蒙皮结构、隔震结构等也都已经开始了广泛的应用。
(2)组合结构的高层建筑发展迅速。采用组合结构可建造比混凝土结构更高的建筑,不但具有优异的静、动力工作性能,而且能大量节约钢材、降低工程造价和加快施工进度。在不同的情况下,可以取代钢筋混凝土结构和钢结构,科技含量也较高,对环境污染也较少,已广泛应用于冶金、造船、电力、交通等部门的建筑中,并以迅猛的势头进入了桥梁工程和高层与超高层建筑中。在强震国家日本,组合结构高层建筑发展迅速,钢筋混凝土组合柱应用广泛。由于钢管内混凝土处于三轴受压状态,能提高承载力,从而可节约钢材。而香港的中国银行采用巨形组合柱的建筑设计方法,获得了十分可观的经济效益。随着混凝土强度的提高以及构造和施工技术上的改进,组合结构在高层建筑中的应用可望进一步扩大。
(3)智能建筑的发展异军突起。现代建筑技术和高新技术产业的结合促成了智能建筑的产生,在高层建筑中有更广阔的应用前景。智能建筑是建筑、装备、服务和经营四要素各自优化、相互联系、全面综合并达到最佳组合,以获得高效率、高功能与高舒适的建筑物。智能建筑是通过对建筑物的4个基本要素,即结构、系统、服务和管理,以及它们之间的内在联系,以最优化的设计,提供一个投资合理又拥有高效率的幽雅舒适、便利快捷、高度安全的环境空间。智能建筑的构成至少必须具备三大系统:设备管理自动化系统、通讯网络系统、办公自动化系统,并以此应用现代4c技术构成智能建筑结构与系统,结合现代化的服务与管理方式给人们提供一个安全、舒适的生活、学习与工作环境空间
二、设计中存在的问题
(1)只重视结构尺寸的优化,即在给定结构的几何形状、拓扑和材料的情况下,求出满足约束条件的最优构件截面,而忽视结构整体的优化。已有的研究结果表明,形状优化比尺寸优化更有意义。单纯的尺寸优化无法接近最优的结果,因此,也就不能完全令人信服。设计人员较普遍地认为,结构设计只要结构方案和布置合理,结构又有比较成熟的计算机软件进行分析计算,构件截面只要通过计算结果满足规范即可,认为上部结构相对下部结构,即地基基础部分,特别是软土地基的意义不大,因此对上部结构截面的优化所能达到的经济效益未予以充分的重视。
(2)离散变量优化问题。建筑物尺寸以及钢筋、型钢规格型号等都不是连续变化的,因此,传统的优化方法,如各种梯度算法、对偶算法等解析算法均无法胜任。而目.,由于问题的规模较大,随之带来的计算量急剧增加的“组合爆炸”问题也会使计算量急剧增加。
(3)优化的目标还不能完全符合工程的需要。由于实际结构问题往往十分复杂,存在设计变量多、约束条件多、受建筑功能限制较大等难点,多种因素甚至不确定性因素使得目标函数在建立后只能得到相对最优解。而且,目前尚没有实用的高层建筑优化分析软件,而应用现有的各种计算机分析软件进行截面优化并不是简单的几次尝试就能达到效果的,因此,无论是时间,还是设计进度,都较难允许实施这种优化方法。很多高层建筑设计项目,结构方案和布置还是比较合理的,其构件截面也是同类型
三、高层建筑结构优化设计
(1)对高层建筑结构方案进行优化采用何种方法,首先应分析这一问题的目标函数、目标函数中的各种变量这些变量之间的各种数学解析关系以及与各种变量有关的约束条件,在分析的基础上是采用间接优化还是直接优化方法来确定。高层建筑结构方案优化的目标就是材料耗量,材料耗量决定于构件的截面尺寸大小,截面尺寸必须满足通过力学分析得到各构件内力后的强度计算及位移变形等条件。因此,目标函数很难用明确的数学解析式来表达,不能用数学上求极小值的方法,也就是一般所说的间接优化方法来优化。高层建筑结构方案的优化只能采用直接优化法来解决,即给目标函数中变量以已知值,经过试算使其满足一定的约束条件,求得其目标值,并找出使目标值逐步变小而趋向最佳值的路线或方向,以达到目标函数的最优值。因此,可以采用满应力法进行高层建筑结构优化设计。
(2)满应力设计法是在桁架等杆系结构的设计中发展起来的,是结构优化中最简单、最易为工程人员理解的一种准则法。所谓满应力是指结构构件在荷载作用下的最大应力达到所用材料的容许应力,此时材料的强度得到充分利用,构件截面面积将是最小,故可作为桁架最轻设计或体积最小设计的一个准则。满应力设计法是结构在规定材料和几何形状的条件下,按照满应力准则的要求,修改构件的截面尺寸,使每一构件至少在一种工况下达到或接近其容许应力限值的优化算法。如果结构除了应力约束外还有界限约束,则要求每一构件应力约束和界限约束中至少有一个达到临界值。
篇9
现阶段,设计人员在设计高层建筑混凝土结构设计时,必须遵循其设计原则,以保障混凝土结构的稳定性和安全性。
1、适用性。主要是指混凝土结构设计必须以高层建筑计划使用年限为前提,保证高层建筑在计划的使用年限中的稳定性和安全性。
2、安全性。主要是指混凝土结构设计必须保障高层建筑在使用年限中的安全性,避免出现较大范围的混凝土裂缝等。
3、耐久性。主要是指高层建筑在是使用年限内,必须保障混凝土结构的耐久性,保障高层建筑工程的质量安全和正常使用。
4、可靠性。主要是指高层建筑在使用年限内,必须达到相关规定的稳定性、安全性和耐久性,有利于延长高层建筑的使用年限。
(二)设计要求
1、延展性。高层建筑混凝土结构的延展性主要作用是在遇到一些地质灾害时,能够有效的避免高层建筑出现较大幅的变形或是坍塌等问题。
2、侧向力。随着层数的不断增加,其高层建筑的水平作用力会不断的增加,其侧向力会发生变化。在高层建筑的结构设计中,需要重视其结构内力、变形等问题,将地震作用、外部环境等因素的影响予以考虑。
3、刚度要求。由于高层建筑容易受到水平作用力的影响,比较容易出现侧向位移的变化。在混凝土结构的设计中,在保证混凝土结构强度的同时,还需要保障混凝土的刚度、自振频率,最大程度的将水平位移的变化控制在允许范围内。
二、高层建筑结构中混凝土结构的具体设计方法
(一)单元结构布局设计的完善
高层建筑的结构设计的主要内容是对各个单元结构进行独立设计。单元结构设计通常应用于一些建筑结构比较简单、规则的平面设计,在设计过程中,需要注意适当的控制平面结构中的整体、突出部分的长度,确保各个部分的承载力和结构强度均匀。在竖向结构的设计中,通常采用一些比较均匀、规则的设计,能够有效的控制建筑外观与内部结构之间的问题。
在其设计过程中,设计人员需要制定结构设计方案,以现有的设计理念和设计专业知识作为依据,以高层建筑实用性、安全性和美观作为前提保障,对混凝土结构进行优化设计,保障其各个单位结构在水平方向和竖直方向的结构强度、承载力等均匀合理的分布。
(二)高强混凝土与钢筋使用的优化
混凝土和钢筋是高层建筑的主要施工原料,在具体的设计过程中,需要保障在高层建筑质量的前提下,对高强度的混凝土和钢筋的使用进行相关的优化,减少混凝土和钢筋的使用量,提高资源的配置效率。
例如,在地壳运动较活跃的地区进行高层建筑设计时,设计人员应该明确高层建筑的重量越大,地震的作用程度就越剧烈,在保障高层建筑的质量的前提下,对其进行优化设计,尽量的减少混凝土和钢筋的使用量,降低振动作用程度,提高其建筑结构的稳定性和安全性,延长其使用年限。
(三)对剪力墙平面结构设计的合理化
设计人员在对高层建筑混凝土结构进行优化设计时,还需要重视剪力墙平面结构布局对高层整体建筑结构承载力均匀程度的影响。在进行剪力墙平面结构的优化设计时,主要是通过以下几点:一是将高层建筑的基本结构功能作为其设计的依据,最大程度的将剪力墙进行集中化和均匀化设计;二是将找准高层建筑的设计基准,对剪力墙进行双向布置,尽可能的减少使用一些短肢剪力墙。
三、高层建筑中混凝土结构优化设计策略
(一)结构安全性
高层建筑的人群密度较高,在灾难发生时,不方便逃生,其灾难后果比一般的建筑要严重很多。在具体的设计过程中,设计人员必须重视混凝土结构的设计,并采取相关的优化策略,最大程度的降低灾难程度。其结构安全性优化策略:一是在保证高层建筑的整体功能和质量的前提下,将能够影响高层建筑结构稳定性、结构自振性和环境因素予以考虑,尽可能的减少混凝土和钢筋的使用量;二是需要综合的考虑高层建筑的承载力,应该将建筑结构承载标准与施工材料的最大承载力进行相关的计算,最大程度的减少高层建筑的自身重量,提高其自身的结构安全性。
(二)抗震性
地震对高层建筑的稳定性具有很大的威胁,在设计过程中,设计人员需要重视高层建筑的抗震性。在具体的设计过程中,设计人员尽可能的选择平面布局比较简单规则的,减少一些不对称或是过长延伸翼的使用,多使用一些对称的结构,对高层建筑的整体结构进行科学合理的规划设计,确保高层建筑的自身重量和结构强度能够均匀的分布,提高其抗震性。
(三)耐久性
耐久性主要体现在其混凝土结构的耐久性,其优化策略主要表现在以下几个方面:
1、混凝土材料的选择。设计人员需要在保障混凝土质量和基本性能的前提下,尽可能的选用一些在稳定性、抗入侵性等方面强的混凝土进行高层建筑的施工,在具体的施工过程中,可以添加一些外加剂增强混凝土自身结构的稳定性。
2、优化结构设计。在具体的设计过程中,需要充分的考虑不同构件所处的环境差异,将其混凝土结构的设计进行差异化的设计和材料的选用,保障其结构的稳定性,延长建筑的使用年限。
3、结构构造设计合理化。设计人员需要结合建筑的使用年限和环境特点,设计并使用45毫米厚的混凝土保护层,减少对高层建筑混凝土、钢筋的腐蚀程度,提高其整体结构的稳定性,延长使用年限。
四、结论
混凝土结构设计对高层建筑的质量具有至关重要的影响。本文从高层建筑中混凝土结构设计的原则和要求出发,对具体的设计方法进行相关的分析,提出了几点优化策略,提高高层建筑的稳定性、安全性和抗震性,延长其使用年限。
篇10
摘要: 结构设计是确保建筑质量的首要步骤,特别是对于高层建筑来说,由于建筑层数较多而且结构容易出现复杂情况,因此在进行设计时需要注意的问题尤其多。本文将结合结合笔者结构设计实践经验,探讨进行高层建筑结构设计时应考虑的问题,以及提出有效提高高层建筑结构水平的相应处理措施。
Abstract: The structure design is the first step to ensure the quality of building, especially for high-rise building, because there are many layers of the building and the structure is complex, many design problems should be paid attention to especially. Combined with the practical experience of structure design, This paper discusses the problems should be considered in the design of tall building structures, and puts forward corresponding treatment measures that can effectively improve the level of tall building structures.
关键词 : 高层建筑;结构设计;措施;设计参数
Key words: high-rise building;structure design;measures;design parameter
中图分类号:TU972 文献标识码:A 文章编号:1006-4311(2014)34-0119-02
作者简介:郭文起(1984-),男,河北馆陶人,工程师,研究方向为高层建筑结构。
0 引言
随着高层建筑的不断发展以及建筑内部的复杂性,给高层建筑结构设计带来更大难度。如何设计出经济合理可靠的高层建筑结构,是设计人员要面对的问题。而掌握高层建筑结构设计要点,正确合理地处理结构设计时所出现的问题,是结构设计人员必须具备的一项基本素质。
1 概述
房屋结构设计优化理念注重以实际为准则,根据工程建设的基本状况,以计划成本控制为中心来进行结构优化设计,其内容就是利用对建筑基础的结构、屋盖系统的结构方案以及围护系统结构方案等环节,建立起一种关于结构优化设计的模型,通过对各种不同的影响变量参数中的若干关键参数的科学的计算,确立最终的建筑工程结构设计的优化结果方案。
房屋建筑结构优化设计意义主要有两点:一是大大提高建筑结构经济性,房屋建筑进行结构设计优化可节省材料,有利于抗震,减少内外表面装修,提高了其受力性能,增强了建筑的经济性能;二是结构优化设计大大降低了建筑工程的总成本造价。节约用地,大量资料表明,房屋建筑进行结构设计优化能够有效降低工程成本造价25%左右,同时结构优化设计技术能够对施工材料的性能利用更加合理化,能够让建筑工程结构内部各个不同单元之间更加充分互协调,提升了建筑工程结构设计的经济性。
2 房屋建筑结构设计的基本方法
2.1 结构平面图 在绘制结构平面布置图时,是否要输入结构软件进行建模,当建筑地处抗震设防烈度为6度区时,根据建筑抗震设计规范,是可以不用进行截面抗震验算的,但必须符合有关的抗震措施要求。因此对于砌体结构来说可以不用在软件中建模,直接设计即可。
2.2 屋顶(面)结构图 当建筑是坡屋面时,结构的处理方式有梁板式及折板式两种。梁板式适用于建筑平面不规整,板跨度较大,屋面坡度及屋脊线转折复杂的坡屋面。折板式适用于相反的条件。两种形式的板均为偏心受拉构件。板配筋时应有部分或全部的板负筋拉通以抵抗拉力。板厚基于构造需要一般不宜小于120厚。此外梁板的折角处钢筋的布置应有大样示意图。至于坡屋面板的平面画法,通常使用剖面示意图加大样详图的表示方法。
2.3 大样详图 在建筑详图的准确无误的基础上,大样详图的绘制可在建筑详图的基础上直接绘制,也可在以前做过的详图的基础上来局部改进绘制。这阶段需要注意在保持建筑外形的前提下尽量地使结构受力合理和施工方便。在标高和外形尺寸上一定要和建筑专业协调一致。
2.4 楼梯 楼梯梯板要注意挠度的控制,梯梁要注意的是梁下净高要满足建筑的要求,梯梁的位置尽量使上下楼层的位置统一。局部不合适处可以采用折板楼梯。折板楼梯钢筋在内折角处要断开分别锚固防止局部的应力集中。注意梁下的净空要求,并要注意梯板宽度的问题。首段梯板的基础应注意基础的沉降问题,必要时应设梯梁。
2.5 基础 基础要注意混凝土的标号选择应符合结构耐久性的要求。(通常情况下可采用C25)基础的配筋应满足最小配筋率的要求(施工图审查中心重点审查部位)。条基交接部位的钢筋设置应有详图或选用标准图。条基交叉处的基底面积不可重复利用,应注意调整基础宽度。局部墙体中有局部的较大荷载时也要调整基础的宽度。基础图中的构造柱,当定位不明确时应给予准确定位。
3 建筑结构设计与工程造价的关系
3.1 设计方案直接影响投资据研究分析。设计费一般只相当于建设工程全寿命费用的1%不到。但正是这少于1%的费用对投资的影响最高却达到75%。在单项工程设计中,建筑和结构方案的选择及建筑材料的选用对投资都有较大影响。
3.2 设计方案影响经常性费用建筑结构设计不仅影响项目建设的一次性投资,而且还影响使用阶段的经常费用,一次性投资与经常性费用有一定的反比关系。但通过建筑结构设计人员努力可找到这两者的最佳结合,使项目建设的全寿命费用最低。
3.3 设计质量间接影响投资据统计。在工程质量事故的众多原因中,设计责任占40.1%,很多的工程质量事故都是由于产品设计不合理造成的。
4 建筑结构体系设计和选取
在选取结构体系时必须针对所设计的建筑实际情况进行评估分析,只有正确选取结构体系才能设计出经济合理的结构。目前高层建筑多采用钢筋混凝土结构,其结构体系主要有框架结构、剪力墙结构、框架剪力墙结构等。对于高层建筑来说主要以剪力墙结构和框架剪力墙结构为主,对于低层建筑则多采用框架结构。
框架剪力墙结构体系中以剪力墙作为主要抗侧力构建,而承受绝大部分水平荷载;而框架部门则主要承受竖向荷载。框架剪力墙结构中框架和剪力墙两者共同受力,合理分工。而剪力墙布置应均匀设置在建筑物的周边、电梯间等部位。由于该结构以框架结构为主,剪力墙为辅助,这种结构体系适用于25层以下的建筑,最高不宜大于30层。
剪力墙结构是用钢筋混凝土墙板来代替框架结构中的梁柱的,剪力墙作为竖向承重和抵抗侧力的结构,全部承受结构的竖向和水平力。这种结构体系通常采用平面布置形式,由于剪力墙受竖向荷载和水平荷载共同作用,剪力墙应双向或多向布置。同时由于该结构全部由剪力墙组成,其刚度要比框架剪力墙结构更好,该结构体系常用于40层以下的高层住宅建筑等,而且该结构高宽比不宜大于6,其高度也应考虑抗震要求。
5 计算简图的处理
笔者将结合一些工程结构设计探讨其计算简图的处理。对于无地下室的结构来说,基础埋深较深时,为了加强底层的整体性,可以在0.00m附近设置基础连系梁。由于基础连系梁的设计仅为构造设计,无法平衡底部柱脚的弯矩,其不可作为上部结构的嵌固部分,对于底层计算高度H应是取基础顶面至连系梁顶面的高度,即把基础连梁以下的部分作为计算简图的底层,而把实际建筑的底层作为计算简图第二层,层高取用连梁顶面标高至一层楼面标高距离。值得注意的是,这种情况下底层柱的配筋应取用基础连系梁顶面和基础顶面中较大内力设计值进行计算。对于带有地下室的结构来说,计算简图中合理确定上部结构的嵌固位置是非常关键的,这需要结合工程实际情况来分析。经设计实践验证采用这种方法计算简图经整体计算后,地震作用相对保守,结构设计比较安全。
6 结束语
总之,在高层建筑结构设计中,融入概念设计,不仅可以体现工程师设计理念,也能够对工程结构设计师专业水平和技术水平的标准进行有效衡量。因此分析概念设计在高层建筑结构优化设计中的应用,可以有效优化高层建筑结构设计。
参考文献:
篇11
Abstract: in recent years, the shear wall structure more and more applied to a high building, especially in large and medium cities. To satisfy the requirements of seismic condition, the new structure form and development, including the shear wall structure is widely used in high-rise residential. The following this paper discusses the present city is more common of the high-rise building structure optimization problems are analyzed and discussed on the personnel and the design of high-rise residential real estate choice of structural system.
Abstract:
Keywords: high building; The shear wall structure; Optimization design; analysis
中图分类号:[TU208.3]文献标识码:A 文章编号:
引言
高层建筑是社会生产发展和人们生活需求的产物,是现代化、商业化、工业化和城市化的必然结果。它反应了一个国家的建筑科技和经济发展水平。随着经济和社会发展的需求,以及城市人口密度的持续增长,高层建筑正逐渐成为城市建筑的发展趋势,也是城市现代化的象征。为了满足高层建筑的抗震性和经济性,对剪力墙结构的优化设计研究具有重要的理论和实践意义。
1、高层建筑剪力墙结构的概念设计
一幢高层建筑犹如一根竖直放置于嵌固于地基的开孔、带横肋的巨型空间构架式的“悬臂梁”。它不仅要承受“梁”内所有重力荷载的作用并保持稳定,而且要承受风荷载、地震等水平荷载的作用并保持一定的刚度,避免过大的水平位移和振动,保证“梁”内各种建筑装饰、填充墙等不受损坏,以提供“梁”内工作生活的人们有一个舒适的环境。
高层建筑结构同时承受垂直和水平荷载,还要抵抗地震作用,在低层结构中,水平荷载产生的内力和位移很小,通常可以忽略;而在高层建筑中,水平荷载和地震作用将成为控制因素。随着建筑高度增加,位移增加最快,弯矩次之。因此高层建筑设计不仅要有较大的承载能力,而且需要较大的抗侧刚度, 以保证水平荷载产生的侧向变形控制在一定范围内。 剪力墙结构在水平力作用下侧向变形的特征为弯曲型。
剪力墙结构承受竖向荷载及水平荷载的能力都较大。其特点是整体性好,侧向刚度大,水平力作用下侧移小,并且由于没有梁、柱等外露与凸出,便于房间内部布置。缺点是不能提供大空间房屋,结构延性较差。当地下室或下部一层、几层,需要大空间时(如商场、停车库等)即形成部分框支剪力墙结构。 在框架-剪力墙结构和剪力墙结构两种不同结构的过渡层必须设置转换层。
剪力墙结构由于承受竖向力、水平力的能力均较大,横向刚度大,因此可以建造比框架结构更高、更多层数的建筑。但是只能以小房间为主的房屋,如住宅、宾馆、单身公寓。而宾馆中需要大空间的门厅、餐厅、商场等往往设置在另外的建筑单元中。 为了适用任何方向的水平力(或地震作用),因此对于矩形平面,剪力墙在纵横双向均应设置;对于圆形平面,剪力墙应沿径向及环向设置;三角形平面,宜沿三个主轴方向设置剪力墙。
2、剪力墙结构优化的原则
一般来说,建筑结构的刚度越大,抵抗地震作用力就越大,结构也就越稳定,但是如果无限制增大结构的刚度势必会增加结构的工程造价;如果刚度过大,不仅对结构不利,还会对结构产生不利的影响,如:周期太短、层间位移过小等。剪力墙的特点是平面内刚度和承载能力较大,而平面外刚度和承载能力相对很小,在做结构优化的时候应该使结构层间位移角保持在合理的范围内,不能偏差规范限制太多;保证结构抵抗地震的作用力在规范要求范围内,并考虑个因素相互制约的影响。剪力墙结构优化是个十分复杂的问题,影响剪力墙的因素众多,而各因素又相互制约,因此在对高层建筑优化时应考虑定量和定型的分析研究。针对工程常见特点,在保证原结构建筑使用功能和规范要求下对结构作如下优化:
(1)尽量避免出现“一字型”剪力墙,避免楼面梁一侧或两侧搁置在“一字型”剪力墙或其连梁上。
(2)使得结构受力更加合理,能在满足规范要求的前提下,使剪力墙的结构性能达到最优,经济性更加合理。
(3)通过改变剪力墙的数量及其布置使得结构的楼层刚度、周期、层间位移角更加合理。
3、房地产企业结构成本控制的方法分析
随着房地产业的迅猛发展,地价猛涨,如何降低工程成本,并取得效益最大化是每个房地产企业不断的追求。在考虑建筑结构布置方案时就要考虑对结构进行选型优化,这就要不仅考虑到结构的合理性、实用性,还要考虑到结构的经济性。因为如何降低成本、增加利润是每一个房地产企业关注的问题。建设项目前期的设计阶段(方案设计、初步设计、施工图设计)影响整个项目投资的可能性在80%以上。其中,结构成本占到建安成本的40%—60%。很多建筑结构设计做的并不精细。通过降低成本以求提高经济效益是房地产行业共同追求和努力的目标之一,而结构成本的控制是房地产项目成本控制的关键。
为了与工程实际情况相符,假设混凝土的成本与混凝土的体积成正比。钢筋的成本与钢筋的体积成正比。在总造价上,暂不考虑模板及楼板等工程的造价影响。电算分析指数表明,竖向结构体系的截面面积虽然较小,但仍可保证满足承载力、刚度、位移的要求。显而易见,优化后的方案不仅节约了业主的投资费用,更重要的是节约了资源。
4、结构经济性优化措施
4.1 尽量合理的减小剪力墙厚度
增加剪力墙厚度,虽然能提高结构抗测力的能力,同时也增大了结构的地震力,但是由于影响剪力墙结构的因素众多,结构抗侧移能力与结构所承受的地震力两者不一定成正比变
化。剪力墙厚度的取值不仅影响到结构的自重、结构的质量和结构刚度,而且直接影响到工程造价的高低。因此,设计者在进行剪力墙优化布置时应尽量合理的减少墙厚。
一般情况下影响剪力墙墙厚取值的因素如下:①通过结构分析,依据结构的最大层间位移、最大层间位移比、周期比以及楼层刚度等控制因素,选取合理的剪力墙厚度;②根据规范对结构轴压比的规定;③稳定性及构造性要求。“高规”规定按稳定性要求确定剪力墙的高厚比,当不能满足时应按“高规”附录算墙体的稳定性。
4.2 严格控制剪力墙的配筋率
《混凝土规范》规定,抗震等级为一、二、三级的剪力墙的水平和竖向分布钢筋配筋率均不应小于0.25%;四级抗震等级剪力墙不应小于0.2%,分布钢筋间距不应大于300mm;其直径不应小于8mm。这在高层或者剪力墙墙肢较长的剪力墙结构中应该是合理的,但对于短小、低矮的剪力墙,应适当减小其水平筋的配筋率;墙的竖向最小配筋率应包括边缘构件中的钢筋,同时应注意避免竖筋过多使墙的抗剪强度小于抗弯强度,对抗震不利。
4.3 减轻结构自重
通过结构优化减少混凝土用量,减轻结构自重,可以减小结构内力、竖向荷载和水平地震作用力,特别是转换层和基础的钢材和混凝土。①楼板:楼板在整个建筑中占据着相当大的比率,减小楼板厚度即减少了单位建筑面积混凝土用量。将楼板厚度控制在满足板的厚度与计算跨度要求的比值,并满足防火和预埋管线要求的较小值,可使得混凝土的消耗量最低。②剪力墙:在考虑楼板的同时也应考虑剪力墙的混凝土消耗量最少。扩大剪力墙开间的间距,用轻质隔墙替代部分开间的墙体,能有效地降低混凝土用量。如果开间过大,可以在隔墙处
设置梁来保证减少楼板厚度的实现。由于住宅的开间和进深一般不大,梁宽可取隔墙墙厚,以免露梁。为减轻自重,剪力墙厚度可沿高度分次变化。
5、结束语
高层建筑投资大,建设周期长,对其进行优化设计以期获得最优结构方案并节约投资,一直是结构工程师所努力追求的。剪力墙的数量及其布置是影响到结构安全和经济合理的关键因素,因此对剪力墙结构进行优化研究具有一定的实际应用价值。剪力墙的数量和布置极大地影响着剪力墙的力学特性,也决定着剪力墙结构是否经济。
参考文献:
[1] GB50011-2010,建筑抗震设计规范.中国建筑工业出版社,2010.
[2]赵健生.高层住宅剪力墙结构优化研究[D].青岛理工大学.2009.
篇12
Key words: high-rise building; shear wall; optimization design
中图分类号:[TU208.3]文献标识码:A文章编号:
一、引言
剪力墙的优点主要在于整体性强、用钢量较小而且刚度大等,所以在高层建筑施工中得到了广泛的运用。特别是像旅馆这一类房间多的建筑结构当中,墙体所采用的一般都为剪力墙结构,这样可以让承重墙与分隔墙连为一体,从而使得其经济适用。另外,使用剪力墙结构,不会有露柱与露梁的现象出现,保持了外形的美观性,也拓宽了室内空间。虽然从上面几点来看,剪力墙具备较多的优点,但是从其他方面考虑,也存在较多的问题:
1) 由于高层建筑的剪力墙本身具有较大的抗侧刚度,也就使得发生地震时,剪力墙会出现较大的反应,所以在剪力墙的上部结构以及下部结构当中投入的资金都会相应的增加;
2) 墙体的浇筑主要是混凝土,使得其具有较大的重量,不仅会浪费材料,地震反应也较大;
3) 在剪力墙的结构当中,各个墙肢不具备较大的轴压,使得各个墙肢虽然具有一定的承载能力,但是因为轴压的问题,不能够正常的发挥出应有的性能。因此,在设计当中对于高层建筑的剪力墙,如果将缺点规避,发挥出剪力墙的优点,最终达到降低工程施工造价,提高施工质量,就成为设计者应当首先考虑的问题。随着近几年的一些成绩,我们可以看出,高层建筑剪力墙的研究已经引起了有关设计人员的足够重视。
二、在剪力墙结构构件当中对于含钢量的控制
随着社会大众越来越高的建筑要求,在高层建筑当中,剪力墙结构已经占据了相当重要的地位。想要高层建筑结构的设计具有较大的经济性,就需要从含钢量入手,对于剪力墙结构进行控制。所以,在对高层建筑的剪力墙结构进行设计时,要从实际出发,根据设计要求详细的进行结构的分析,从而确保在任何种情况下,能够控制好最经济的含钢量,并且也能够满足结构的安全要求。从笔者多年的施工经验、结构设计的累积来看,对于高层建筑物的剪力墙最为合适的含钢量都有了一定的标准,对于设计也就起到了一定的建设性和指导性的意见。合适含钢量统计表如表1所示。
三、选择效率较高的剪力墙结构方案
只有当建筑结构的施工安全得到了保障之后,才能够在诸多的方案中进行对比选择,并且还应考虑工程造价能够在最低限度的情况下,选取适合此高层建筑的结构形式。
在框支剪力墙的结构当中,短肢剪力墙结构也是一个很好的选择。在框支剪力墙的结构中,为了尽量将上下层的刚度变化适度,可以采用短肢剪力墙结构这一减少了剪力墙刚度的方式。例如使用加大下一层的刚度,其经济效益就较为明显。如果高层建筑物的层数大于18,最好还是选取普通剪力墙结构。如果将短肢剪力墙结构运用到层数过大的建筑结构当中,会导致其刚度不达标,从而导致结构的安全性能也受到其影响。
四、在剪力墙结构优化设计中的有效措施
1.需要对转换层结构设计尤为注重
从高层建筑的要求来看,现代居民希望建筑物所拥有的功能多种多样,考虑到现在大楼具有较强的综合性能,尤其是在使用方面,上部与下部的机构不同。因此,在选择高层建筑物自身的结构布置时,就需要考虑相应的变化,在设计布置当中,需要将转换层的结构设置好。我们需要重视剪力墙结构的设计,考虑到在高位转换的底部大空间当中,其结构相对复杂。因为在进行高位转换时,刚度和质量较大的转换层升高,有效的将其本身与上下的刚度调整到接近的地步是非常必要的,而对于转换层自身而言,其质量与刚度都不适宜较大,在最终时,是否能够确保转换层附近的层间位移角基本达到均匀的情况,就需要在水平作用力的作用之下,进行空间精确分析,检查其均匀情况。采用转换层结构形式时,在选择上,偏向于重量与刚度皆偏小的材料,在实际的计算中,对于参与到了组合的振型数需要多多的进行选择。通过计算,我们能够计算出在结构当中,哪一部分才是最薄弱的,然后再通过内力分配特点的具体研究,改善薄弱部位的设计性能,适当的对于构件的配筋进行相应的调整,从而达到改善薄弱部位性能的目的。
2.对于连梁设计的有效优化
在设计连梁的抗震与非抗震的时候,在高跨比的分类之上,主要是有小于2. 5 和大于2.5两种,并且对于截面配筋以及受剪承载力两个方面都有了相应的规范。而可以使用以下两种方式针对塑性调幅:1) 在进行内力计算之前,就需要拆减连梁的刚度;2) 在进行内力计算之后,连梁的剪力与弯矩的组合值还需要
乘上一个折减系数。
但是,我们应当明确的是,无论是选取了哪一种,都需要确定在实际使用阶段当中的剪力与弯矩的设计值,都要小于调整后的值。此外,在设计弯矩时,也必须大于设防烈度低一度的地震组合所得。从而对于正常使用情况之下,亦或是在小型的地震发生之后,对于裂缝进行有效防止,最终达到确保高层建筑物的安全性能。
3.转换层上下部结构优化设计
1) 在转换层的上下刚度的传递放纵,剪力墙布置存在的影响。如果要能够准确的传递上下两种不同结构形式的内力,首先需要考虑到刚度突变,而对于转换层上下的结构可以通过两种方式将刚度突变的问题加以解决:
a. 将上部的刚度减少,也就是在上部当中,能不设置剪力墙就尽量的避免设置,当满足了轴压比时,确保墙肢尽可能的短;
b. 将下部的刚度进一步的加大,在建筑满足了功能之下,再恰当的布置若干的落地剪力墙在大空间层之内,此外需要避免集中,将剪力墙均匀的分布于其中。
篇13
1.剪力墙结构的优缺点
1.1剪力墙结构的优势
剪力墙结构这种构造的刚度一般都很大,整体的性能较好,还能实现钢量的节省,尤其是在高层建筑住宅之中,以及一些旅馆和居住性的建筑之中,居室和客房的建设面积一般都很小,并且分隔墙还比较多,一般都是采用现浇剪力墙结构,这样就能实现把承重墙合二为一,这种结构相对而言还是比较经济和实惠的。
除此之外,也能实现室内的框架结构的简介,不会出现露梁和露柱的情况,外形上还是比较美观的,便于室内的装饰装潢设计。基于此,在许多的高层建筑和一些民居之中,一般都会采用现浇剪力墙的结构。
1.2剪力墙结构的缺点
当然,把剪力墙结构运用到高层建筑以及旅馆的建设之中,也必然存在一定的缺点和不足。因为剪力墙的结构抗侧刚度比较大,很显然的引起较大的地震反应,这就必然导致上部结构的基础费用的增加;因为混凝土的墙体较多,这就会相应的增加建筑物的重量,同样会导致建筑物的地震反应很强烈,同时造成很大的浪费;还有剪力墙的各个墙肢轴压比一般都很低,这就让个墙肢的承载能力得不到充分的发挥;还有剪力墙之中的墙体大多是构造的配筋,这个配筋率一般很低,这就导致结构的延展性能很差。
在高层建筑剪力墙的结构设计之中,怎样去发挥它的长处和优点,避免其费用过高是一个很关键的问题,需要我们在实际的建设施工只能不断的总结和改善。
2.高层建筑剪力墙结构优化设计分析
2.1高层剪力墙住宅结构设计的经济分析
因为剪力墙的刚度大,整体的性能较好,而且用钢量比较节省,在高层建筑之中,得到广泛的使用。高层建筑的住宅之中,开间一般较小,而且分割的很多,运用现浇剪力墙就可以实现承重墙的减少,是一种很经济的选择,还有这种结构能够实现墙的外观的美观和整齐,不会出现一些不必要的梁柱,方便对室内进行合理的布置和装饰。
在进行剪力墙的结构的设计中还需要注意几个问题,因为剪力墙的坑侧刚度很大,结构的周期很小,就会导致地震的响应大,如果剪力墙的墙体越多,建筑物的重量就会相应的增加,这就会导致资源的浪费,还有剪力墙的墙体飞结构一般的配筋率都很低,就会导致建筑的结构延性不好。
高层建筑的剪力墙结构中,刚度较大的结构一般受到震害都会相应的降低,但是建筑的刚度越大,需要的建筑材料就要增加,必然出现建筑的工程成本的增加,因此,对建筑物的剪力墙的设计和施工,需要满足规范之中的结构水平的位移和地震的要求相合。要想建设的安全和经济,就要根据实际的情况有所判断,把建筑的水平位移和地震力控制在一个适当的范围之内,做好对结构的内里和配筋的检查。
2.2剪力墙结构构建合适的含钢量
社会的发展要求建造越来越多的高层建筑,在现今的高层建筑建设之中,剪力墙的结构占据着重要的位置。想要实现建筑的经济性,就需要做好对钢含量的控制。因此在对高层建筑的剪力墙结构进行设计时,就需要依据实际的情况,一切从实际出发,依据设计的要求进行详细的结构的分析和设计,保障在任何的情况下,都能实现对钢含量的良好控制。在满足安全的前提下,控制好钢的含量。对于高层建筑的施工和设计,剪力墙最为合适的钢含量一般都有个标准,这对设计也就有了很好的指导。合适的钢含量如下:
表1 合适含钢量统计表
高层建筑适合的钢含量详见下表:
2.3优化结构设计,降低工程造价
2.3.1优化结构设计
实现优化结构设计,让解雇的受力均衡以及技术运用得当,实现建设整体的安全和可靠,只有任一结构都能同时发挥出最大的功效,这样的设计方式才能实现结构合理和造价合理。
我们从建筑结构设计和整体的布局情况来看,在受到水平荷载的作用下,剪力墙的的暗柱的配筋一般都是结构性的配筋,对于暗柱的断面的确定和剪力墙的布置之间有着密切的关系。而这里的构造配筋又和暗柱断面有着密切的一对一的对应关系。因为剪力墙布置的差异,一般的一片剪力墙的两边的暗柱的断面可能有着6倍到10倍的差异,配筋也就相应的出现相差6倍到十倍。但是剪力墙在不同的方向的水平的荷载作用是具有对称性的,这样的设计就会导致极大的浪费。这就需要先对建立墙的布置进行调整,要做到既能实现建筑建设的节约成本,由能实现结构安全性能的保障。
2.3.2结构设计与经济性的关系
建筑层数对单位建筑面积造价有直接影响,但影响程度对各分部结构却是不同的。屋盖部分,不管层数多少,都共用一个屋盖,并不因层数增加而使屋盖的投资增加。因此,屋盖部分的单位面积造价随层数增加而明显下降。基础部分,各层共用基础,随着层数增加,基础结构的荷载加大,必须加大基础的承载力,虽然基础部分的单位面积造价随层数增加而有所降低,但不如屋盖那样显著。承重结构,如墙、柱、梁等,随层数增加而要增强承载能力和抗震能力,这些分部结构的单位建筑造价将有所提高。
3.剪力墙结构优化设计中的有效措施
3.1对转换层结构设计的重视
从高层建筑的设计和施工的要求来看。现在的民居建设都希望实现建筑功能的多样化,这就需要建设者,对建筑的自身的结构进行布置时,需要考虑到相应的变化,在进行设计布置时,能够把转换层的结构布置好。需要重视对剪力墙的结构的设计,考虑在进行高位换装的底部大部分空间时,这个结构是相对较复杂的。在进行实际的计算中,对于那些参与到组合的振型数需要多多进行选择。我们通过计算,能够知道哪一部分是薄弱环节,再运用能力分配的特点,进行具体的研究。改善薄弱环节的性能状态。
3.2对转换层上下部机构的优化设计
在对转换层的上下刚度的传递和放纵,会对剪力墙存在影响。如果要实现不同结构形式的内里,首先需要考虑的是刚度的突变。还需要合理选择转换层上下部结构的刚度。如果剪力墙的转换刚度太大,不仅不能增大对地震的反应以及竖向的刚度,还会增加材料的使用。这从经济层面来考虑是极其不合理的。
4 结束语
在进行高层建筑的剪力墙的设计和使用时,需要考虑架构的抗侧刚度以及外观的状况,还要实现造价的降低,这都是高层建筑设计相关人员需要重视的。我们对高层建筑剪力墙的结构进行分析。提出优化的具体的解决策略,希望能够对高层建筑有以一定的指导意义。
参考文献:
[1]裴亚亚.刘伟.张景坤.地震方向对角部开洞高层剪力墙结构的影响[J].山西建筑,2011(7)
[2]郭兆伟.高层框架剪力墙结构抗震设计的技术要点分析[J].建材技术与应用 ,2011(1)
[3]徐煌彪.娄克勇.南昌"玉河明珠"22#楼工程上部结构优化设计[J].有色冶金设计与研究,2005(2)