在线客服

高层建筑结构设计实用13篇

引论:我们为您整理了13篇高层建筑结构设计范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

高层建筑结构设计

篇1

Key words: high-rise building; structure design; characteristic analysis

中图分类号:TU2文献标识码:A

1.建筑结构设计具有以下特点:

1.1科学性。建筑结构设计是以数学、力学为理论基础,借助现代计算机技术进行的一种应用性技术。

1.2应用性。建筑结构设计必须讲究经济效益,一个成功的建筑结构设计,技术上先进合理,经济上效益显著。

1.3复杂性。建筑结构设计的复杂性首先表现在设计中各种因素的不确定性,建筑结构设计是一个具有多解而没有标准答案的问题。

1.4实践性。建筑结构设计是一种工程实践活动,没有一个工程师是直接从大学毕业生马上变成一个成熟的工程师,而是必须经过一个较长时间的工程设计锻炼。

1.5创新性。建筑结构设计作为一种技术服务行业,在设计市场竞争激烈形势下,要想获得开发商的项目,必须提供比别人更加合理经济的结构方案,这就需要工程师的创新能力。

2.建筑结构设计的原则

适用、安全、经济、美观、便于施工是进行建筑结构设计的原则。钢筋混凝土高层建筑结构设计应与建筑、设备和施工密切配合,做到安全适用、技术先进、经济合理,并积极采用新技术、新工艺和新材料。高层建筑结构设计应重视结构选型和构造,择优选择抗震及抗风性能好而经济合理的结构体系与平、立面布置方案,并注意加强构造连接。在抗震设计中,应保证结构整体抗震性能,使整个结构有足够的承载力、刚度和延性。 结构设计不能破坏建筑设计,应满足、实现各种建筑要求;建筑设计不能超出结构设计的能力范围,不能超出安全、经济、合理的结构设计原则,结构设计决定建筑设计能否实现。

3.建筑结构设计中应注意的相关问题

3.1底部抗震墙框架结构

(1)底部抗震墙应双向布置,应注意纵向抗震墙不要偏少。

(2)上部抗震墙与底部框架、抗震墙应对齐或基本对齐。“基本对齐”要求:(对于7度设防区)每结构单元不宜多于一道或每三道抗震墙不多于一道与下部框架、抗震墙不对齐。尽量减少次梁托换的数量,减少传力途径。

(3)托墙梁支座处应设柱,对于支承于抗震墙的托墙梁支座应采取加强措施。

(4)底框结构转换层楼板应适当加强,避免开大洞。避免板标高变化产生错层。

5.2关于箱、筏基础底板的挑板问题

从结构角度来讲,如果能出挑板,能调匀边跨底板钢筋,特别是当底板钢筋通长布置时,不会因边跨钢筋而加大整个底板的通长筋,较节约;出挑板后,能降低基底附加应力,当基础形式处在天然地基和其他人工地基的坎上时,加挑板就可能采用天然地基;能降低整体沉降,当荷载偏心时,在特定部位设挑板,还可调整沉降差和整体倾斜;窗井部位可以认为是挑板上砌墙,不宜再出长挑板。虽然在计算时此处板并不应按挑板计算。当然此问题并不绝对,当有数层地下室,窗并横隔墙较密,且横隔墙能与内部墙体连通时,可灵活考虑;当地下水位很高,出基础挑板,有利于解决抗浮问题;从建筑角度讲,取消挑板,可方便柔性防水做法。

5.3建筑结构设计与暖通专业设计的协调

高层建筑空调设备(风道、冷热水管、空调箱、空调机组等)通常与电梯、电梯厅、楼梯、电气间、卫生间集中布置在核心区。构成维持整个高层建筑活动机能的关键部分。在竖向布置上又与给排水、电气等集中布置在设备层。结构设计时应充分注意核心区及设备层的特点:

(1)楼面负荷大。在内力分析及楼板设计时应考虑。

(2)预埋管道附件多,注意局部荷载超过设计荷载。

(3)设备层层高不同于标准层层高,而且应力集中,是抗震薄弱环节,要考虑抗震加固措施。各构件之间对协同工作的理解,还在于当结构受力时,结构中的各个构件能同时达到较高的应力水平。在多高层结构设计时,应尽可能避免短柱。其主要的目的是使同层各柱在相同的水平位移时,能同时达到最大承载能力,但随着建筑物的高度与层数的加大,巨大的竖向和水平荷载使底层柱截面越来越大,从而造成高层建筑的底部数层出现大量短柱,为了避免这种现象的出现。对于大截面柱,可以通过对柱截面开竖槽,使矩形柱成为田形柱。从而增大长细比,避免短柱的出现,这样就能使同层的抗侧力结构在相近的水平位移下,达到最大的水平承载力。

5.4提高建筑结构设计水平的措施

概念设计是展现先进设计思想的关键,各结构工程师的主要任务就是在特定的建筑空间中用整体的概念来完成结构总体方案的设计,并能有意识地处理构件与结构、结构与结构的关系。强调概念设计的重要,主要还因为现行的结构设计理论与计算理论存在许多缺陷或不可计算性,比如对混凝土结构设计,内力计算是基于弹性理论的计算方法,而截面设计却是基于塑性理论的极限状态设计方法,这一矛盾使计算结果与结构的实际受力状态差之甚远,为了弥补这类计算理论的缺陷,或者实现对实际存在的大量无法计算的结构构件的设计,都需要优秀的概念设计与结构措施来满足结构设计的目的。目前,部分已建建筑在其四角设置巨型钢管柱,从而极大地增强了角柱的强度和抗变形能力。在高层建筑结构设计中,柱轴压比的限值已成为困扰结构工程师的实际问题,随着建筑高度的增加,结构下部柱截面也越来越大,而柱的纵向钢筋却为构造配筋,即使采用高强混凝土,柱截面也不会明显降低。实际上,柱的轴压比大小,直接反映了柱的塑性变形能力,而构件的变形能力会极大地影响结构的延性。混凝土基本理论指出:混凝土构件的曲率延性,即弯曲变形能力主要取决于截面的相对受压区高度和受压区边缘混凝土的极限变形能力。相对受压区高度主要取决于轴压比、配筋等,混凝土的极限变形能力主要取决r箍筋的约束程度,即箍筋的形式和配箍特征值。

因此,为了增大柱在地震作用下的变形能力,控制柱的轴压比和改善配箍具有同样的意义,因而采用密排螺旋箍筋柱或钢管混凝土均可以提高柱轴压比的限值。材料利用率越高,该结构的协同工作程度也越高,尤其对我国这样一个发展中国家,结构设计的目的即是花最少的钱,做最好的建筑,这就要求设计时对结构材料的充分利用。

篇2

一、高层建筑结构的特征

高层建筑结构不但承受着由于外界的风产生的水平方向的荷载,同时也承受着在垂直方向的荷载,并且对于地震的抵抗能力也有要求。一般情况下,建筑结构受到低层建筑结构水平方向上的影响比较弱,然而在高层建筑中,外界地震的影响和外界风产生的水平方向的荷载的影响是主要的影响因素。随着建筑物高度的增加,高层建筑的位移增加较快,但是高层建筑过大的侧移不但影响人的舒适度,同时使得建筑物的使用受到影响,并且容易损坏结构构件以及非结构构件。基于此,在设计高层建筑结构时,首先控制侧移在规定的范围之内,所以,高层建筑结构设计的核心是抗侧力结构的设计。

二、高层建筑结构设计的原则

2.1选择合理的高层建筑结构计算简图在计算简图基础上进行高层建筑结构设计的计算,如果选择不合理的计算简图,那么就比较容易造成由于结构安发生的事故,基于此,高层建筑结构设计安全保证的前提是合理的计算简图的选择。同时,计算简图应该采用相应的构造方法保证安全。在实际的结构中,其结构节点不单是钢节点或者饺节点,保证和计算简图的误差在规范规定的范围内。

2.2选择合理的高层建筑结构基础设计按照高层建筑地质条件进行基础设计的选择。综合分析高层建筑上部的结构类型与荷载分布情况,考虑施工条件,相邻的建筑物的影响等各个因素,在此基础上选择科学合理的基础方案。基础方案的选择应该使得地基的潜力得到最大程度的发挥,必要的时候要求进行地基变形的检验。高层建筑设计要有详细的地质勘查报告,如果缺失,那么应该进行现场勘查并参考相邻建筑物的有关资料。一般情况下,相同结构单元应该采用相同的类型。

2.3选择合理的高层建筑结构方案合理的结构设计方案必须满足经济性的要求,并且要满足结构形式和结构体系的要求。结构体系的要求是受力明确,传力简单。在相同的结构单元当中,应该选择相同结构体系,如果高层建筑处于地震区,那么应力需要平面和竖向的规则。在进行了地理条件,工程设计需求,施工条件,材料等的综合分析的基础上,并和建筑包括水,暖,电等各个专业的相协调的情况下,选择合理的结构,从而确定结构的方案。

2.4对计算结果进行;隹确的分析随着科技的不断进步,计算机技术被广泛的应用在建筑结构的设计中。当前市场上存在着形形的计算软件,采用不同的软件得到的结果可能不同,所以,建筑结构设计人员在全面了解的软件使用的范围和条件的前提下,选择合适的软件进行计算。由于建筑结构的实际情况和计算机程序并不一定完全相符,所以进行计算机辅助设计的时候,出现人工输入误差或者因为软件本身存在着缺陷使得计算结果不准确的问题,基于此,结构设计工程师在得到了通过计算机软件得到的结果以后,应该进行校核,进行合理判断,得出准确结果。

2.5高层建筑的结构设计要采用相应构造措施高层建筑结构设计的原则是强剪切力弱弯变,强压力弱拉力,强柱弱梁。高层建筑结构设计过程中把握上述原则,加强薄弱部位,对钢筋的执行段锚固长度给予重视,并且要重点考虑构件延性的性能和温度应力对构件的影响。

三、高层建筑结构体系的选型

根据高层建筑结构的材料将高层建筑的结构体系分为钢筋混凝土结构体系,钢结构体系,钢筋混凝土混合结构体系以及钢筋混凝土组合结构体系。钢筋混凝土结构体系被广泛的应用在各类的工程结构中,具有混凝土和钢筋两种材料的协同受力性能特征,造价低廉,耐久耐火,成本低,整体性能优良,但存在着自重大,延性差,施工慢等缺点;钢结构体系的强度高,抗震性能比较好,施工方便,跨度大,用途多,但是存在着费用高,防火性能差,施工复杂等不足,钢筋混凝土混合结构结合了钢筋混凝土构件和钢构件的长处,不但增加了钢构件的材料强度,同时具有较高的抗震性能,成本低廉,然而这两种材料构件的连接技术还存在着不足;钢筋混凝土组合结构具有承载能力高,抗震性能强,比钢结构具有更优良的耐火性,施工速度快,但是存在着节点的构造比较复杂的缺点,一般被用于小屁偏心受压构件。

根据结构形式可以将高层建筑结构分为框架结构体系,剪力墙结构体系,框架一剪力墙结构体系。利用柱,梁等结构体系作为高层建筑竖向承重的结构,并且承受水平荷载,这种结构侧向位移大,框架结构内力大,适于50m高度以下的建筑 通过高层建筑的墙体当做抵抗侧力和竖向承重的结构体系,就是剪力墙结构体系。这种剪力墙结构的刚度大,整体性能好,不易受水平力作用发生变形,适应于高层建筑,但是由于剪力墙的间距小,使得平面的布置不灵活,因此,在公共建筑中不宜使用;利用框架和剪力墙组合的而构成的结构形式就是框架一剪力墙结构体系,这种结构形式不但具有实用性强,布局灵活的优点,同时承受水平负载的能力更高,在高层建筑中被广泛使用。在框架一剪力墙结构体系中,需要注意考虑剪力墙的位置,设计合理的剪力墙的数量,以及满足框架的设计要求。

四、高层建筑结构设计问题分析及对策

4.1高层建筑结构存在着超高的问题基于高层建筑抗震的要求,我国的建筑规范对高层建筑的结构的高度有严格的规定,针对高层建筑的超高问题,在新规范中不但把原来限制的高度规定为A级高度,并且增加了B级高度,使得高层建筑结构处理设计方法和措施都有了改进。实际工程设计中,对于建筑结构类型的改变对高层超高问题的忽略,在施工审图时将不予通过,应该重新进行设计或者进行专家会议的论证等。在这种情况下,整个建筑工程的造价和工期都会受到极大的影响。

4.2高层建筑结构设计短肢剪力墙设置我国建筑新规范中,短肢剪力墙是指墙肢的截面的高度和厚度比在5~8的墙,按照实际经验以及数据,高层建筑结构设计中增加了对短肢剪力墙的使用限制。所以,在高层建筑的结构设计中,必须尽可能的减少或者避免使用短肢剪力墙。

4.3高层建筑结构设计嵌固端的设置一般情况下,高层建筑配有两层或者两层以上的地下室或者人防。高层建筑的嵌固端一般设置在地下室的顶板或者人防的顶板等位置。因此,结构工程设计人员应该考虑嵌固端设置会可能带来的问题。考虑嵌固端的楼板的设计;综合分析嵌固端上层和下层的刚度比,并且要求嵌固端上层和下层的抗震的等级是一致的;高层建筑的整体计算时充分考虑嵌固端的设置,综合分析嵌固端位置和高层建筑结构抗震缝隙设置的协调。

篇3

1.1 概念设计的意义

高层建筑能做到结构功能与外部条件一致,充分展现先进的设计,发挥结构的功能并取得与经济性的协调,更好地解决构造处理,用概念设计来判断计算设计的合理性。

1.2 概念设计的依据

高层建筑结构总体系与各分体系的工作原理和力学性质,设计和构造处理原则,计算程序的力学模型和功能,吸取或不断积累的实践经验。

2 高层建筑结构设计的特点

高层建筑结构设计与低层、多层建筑结构相比较,结构专业在各专业中占有更重要的位置,不同结构体系的选择,直接关系到建筑平面的布置、立面体形、楼层高度、机电管道的设置、施工技术的要求、施工工期长短和投资造价的高低等。其主要特点有;

2.1 水平力是设计主要因素

在低层和多层房屋结构中,往往是以重力为代表的竖向荷载控制着结构设计。而在高层建筑中,尽管竖向荷载仍对结构设计产生重要影响,但水平荷载却起着决定性作用。因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比。另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。

2.2 侧移成为控制指标

与较低楼房不同,结构侧移已成为高楼结构设计中的关键因素。随着楼房高度的增加,水平荷载下结构的侧移变形迅速增大,因而结构在水平荷载作用下的侧移应被控制在某一限度之内。

2.3 抗震设计要求更高

有抗震设防的高层建筑结构设计,除要考虑正常使用时的竖向荷载、风荷载外,还必须使结构具有良好的抗震性能,做到小震不坏、大震不倒。

2.4 轴向变形不容忽视

高层建筑中,竖向荷载数值很大,能够在柱中引起较大的轴向变形,从而会对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩值减小,跨中正弯矩之和端支座负弯矩值增大;还会对预制构件的下料长度产生影响,要求根据轴向变形计算值,对下料长度进行调整;另外对构件剪力和侧移产生影响,与考虑构件竖向变形比较,会得出偏于不安垒的结果。

2.5 结构延性是重要设计指标。

相对于较低楼房而言,高楼结构更柔一些,在地震作用下的变形更大一些。为了使结构在进入塑性变形阶段后仍具有较强的变形能力,避免倒塌,特别需要在构造上采取恰当的措施,来保证结构具有足够的延性。

3 高层建筑结构设计的几个问题

3.1 高层建筑结构受力性能

对于一个建筑物的最初的方案设计,建筑师考虑更多的是它的空间组成特点,而不是详细地确定它的具体结构。建筑物底面对建筑物空间形式的竖向稳定和水平方向的稳定都是非常重要的,由于建筑物是由一些大而重的构件所组成,因此结构必须能将它本身的重量传至地面,结构的荷载总是向下作用于地面的,而建筑设计的一个基本要求就是要搞清楚所选择的体系中向下的作用力与地基土的承载力之间的关系,所以,在建筑设计的方案阶段,就必须对主要的承重柱和承重墙的数量和分布作出总体设想。

3.2 高层建筑结构设计中的扭转问题

建筑结构的几何形心、刚度中心、结构重心即为建筑三心,在结构设计时要求建筑三心尽可能汇于一点,即三心合一。结构的扭转问题就是指在结构设计过程中未做到三心合一,在水平荷载作用下结构发生扭转振动效应。为避免建筑物因水平荷载作用而发生的扭转破坏,应在结构设计时选择合理的结构形式和平面布局,尽可能地使建筑物做到三心合一。

在水平荷载作用下,高层建筑扭转作用的大小取决于质量分布。为使楼层水平力作用沿平面分布均匀,减轻结构的扭转振动,应使建筑平面尽可能采用方形、矩形、圆形、正多边形等简面形式。在某些情况下,由于城市规划对街道景观的要求以及建筑场地的限制,高层建筑不可能全部采用简面形式,当需要采用不规则L形、T形、十字形等比较复杂的平面形式时,应将凸出部分厚度与宽度的比值控制在规范允许的范围之内,同时,在结构平面布置时,应尽可能使结构处于对称状态。

3.3 高层建筑结构设计中的侧移和振动周期

建筑结构的建筑结构的振动周期问题包含两方面:合理控制结构的自振周期;控制结构的自振周期使其尽可能错开场地的特征周期。

(1)结构自振周期

高层建筑的自振周期(T 1)宜在下列范围内:

框架结构:T1=(0.1—0.15)N

框一剪、框筒结构:T1=(0.08-0.12)N

剪力墙、筒中筒结构:TI=(0.04—0.10)N

N为结构层数。

结构的第二周期和第三周期宜在下列范围内:

第二周期:T2=(1/3—1/5)T1;第三周期:T3=(1/5—1/7)T1。

(2)共振问题

当建筑场地发生地震时,如果建筑物的自振周期和场地的特征周期接近,建筑物和场地就会发生共振。因此在建筑方案设计时就应针对预估的建筑场地特征周期,通过调整结构的层数,选择合适的结构类别和结构体系,扩大建筑物的自振周期与建筑场地特征周期的差别,避免共振的发生。

(3)水平位移特征

水平位移满足高层规程的要求,并不能说明该结构是合理的设计。同时还需要考虑周期及地震力的大小等综合因素。因为结构抗震设计时,地震力的大小与结构刚度直接相关,当结构刚度小,结构并不合理时,由于地震力小则结构位移也小,位移在规范允许范围内,此时并不能认为该结构合理。因为结构周期长、地震力小并不安全。其次,位移曲线应连续变化,除沿竖向发生刚度突变外。不应有明显的拐点或折点。一般情况下剪力墙结构的位移曲线应为弯曲型。框架结构的位移曲线应为剪切型t框一剪结构和框一筒结构的位移曲线应为弯剪型。

篇4

结构要同时承受垂直荷载和风产生的水平荷载,还要具有抵抗地震作用的能力。高层建筑结构设计与低层、多层建筑结构相比较,结构专业在各专业中占有更重要的位置,不同结构体系的选择,直接关系到建筑建设的各项事宜等。其主要特点有:

1、水平荷载成为决定因素

任何一个建筑结构都要同时承受垂直荷载和风产生的水平荷载,还要具有抵抗地震作用的能力。在高层建筑中,尽管竖向荷载仍对结构设计产生着重要影响,但水平荷载却起着决定性的作用。随着高层建筑层数的增多,水平荷载成为结构设计中的控制因素。一方面,因为楼房自重和楼面使用荷载在竖构件中产生作用,而水平荷载也对结构产生倾覆作用,并由此产生高层建筑在竖构件中的作用力;另一方面,对高层建筑来说,竖向荷载和地震作用,也随建筑结构动力特性而发生大幅度的变化。

2、抗震设计要求更高

有抗震设防的高层建筑结构设计,除要考虑正常使用时的竖向荷载、风荷载外,还必须使结构具有良好的抗震性能,做到小震不坏、大震不倒。

高层建筑结构的分析

1. 轴向变形不容忽视对于高层建筑结构,由于层数多,高度大,轴力值很大,沿高度积累的轴向变形很显著,轴向变形会使高层建筑结构的内力数值与分布产生显著的改变。对连续梁弯矩的影响:由于中柱和边柱的轴向压缩变形不同,往往会使连续梁中间支座处的负弯矩值及跨中正弯矩值和端支座负弯矩发生变化。对构件剪力和侧移的影响,在考虑竖向杆件轴向变形与不考虑竖杆件轴向变形相比较,各构件水平剪力和侧移都会产生很大的误差。由此可见,在进行高层建筑结构设计时,构件的轴向变形必须列入到设计考虑的范围中来。

2、弹性假定

目前工程上实用的高层建筑结构分析方法均采用弹性计算方法。在垂直荷载或一般风力作用下,结构通常处于弹性工作阶段,这一假定基本符合结构的实际工作状况,但是在遭受罕见地震或强台风作用时,高层建筑结构往往会产生较大的位移,出现裂缝,结构进入到弹塑性工作阶段。此时仍按弹性方法计算内力和位移时不能反映结构的真实工作状态,应按弹塑性动力分析方法进行设计。

3、刚性楼板假定

许多高层建筑结构的分析方法均假定楼板在自身平面内的刚度无限大,而平面外的刚度则忽略不计。这一假定大大减少了结构的自由度,简化了计算方法。并为采用空间薄壁杆件理论提供了便利。一般来说,对框架体系和剪力墙体系采用这一假定是完全可以的。但是,对于竖向刚度有突变的结构,楼板刚度较小,主要抗侧力构件间距过大或层数较少等情况,会使楼板变形较大。特别是对结构底部和顶部各层内力和位移的影响更为明显。可将这些楼层的剪力作适当调整来考虑这种影响。

三、高层建筑结构选型

3、1高层建筑结构体系选型

高层建筑施工工艺的不同,不仅会影响到材料消耗、劳动力、工期及造价等技术经济指标,而且也会影响到建筑结构的受力状态,抗震性能等。所以在高层建筑结构体系选型时就要对施工工艺连同其它因素加以权衡,综合考虑。

3、2剪力墙结构体系

剪力墙结构中竖向承重结构全部由一系列横向和纵向的钢筋混凝土剪力墙组成,剪力墙不仅承受重力荷载作用,而且还要承受风,地震等水平荷载的作用。同框架结构相比,该结构测向刚度大,侧移小,属于刚性结构体系。从理论上讲,它可建造上百层的民用建筑(如朝鲜平壤的柳京大厦);但从技术经济的角度来讲,地震区的剪力墙一般控制在35层,总高110米为宜。由于剪力墙的间距比较小,一般为3~6米,所以建筑平面布置不够灵活,使用受限制。

3、3筒体结构体系

凡采用简体为抗侧力构件的结构体系统称为简体体系,包括单简体、简体一框架、简中简、多束简等多种型式。简体是一种空间受力构件,分实腹简和空腹简两种类型。实腹简是由平面或曲面墙围成的二维竖向结构单体,空腹简是由密排柱和窗裙梁或开孔钢筋混凝土外墙构成的空间受力构件。简体体系具有很大的刚度和强度,各构件受力比较合理,抗风、抗震能力很强,往往应用于大跨度、大空间或超高层建筑。

四、高层建筑结构设计应注意的问题

1、提倡节约

我国是发展中的国家,还是要尽量提倡节约, 目前我国规范中的构造要求,并非都比外国低。有的已经超过。外国大企业在北京买了按我国规范设计的大楼,说明我国规范不是进不了国际市场。现在对安全度进行讨论,应注意不要引起误导,千万不要误解提高建筑结构安全度建筑物就安全了,造成不必要的浪费。实践已经证明,现行规范安全度是可以接受的,这是重要的经验,不能轻易放弃。但考虑到客观形势变化,国家经济实力增强和住宅制度改革现状,可以将现行

设计可靠度水平适当提高一点,这样投入不大,却对国家总体和长远利益有利。

2、考虑受力性能

对于一个建筑物的最初的方案设计,建筑师考虑更多的是它的空间组成特点,而不是详细地确定它的具体结构。建筑物底面对建筑物空间形式的竖向稳定和水平方向的稳定都是非常重要的,由于建筑物是由一些大而重的构件所组成,因此结构必须能将它本身的重量传至地面,结构的荷载总是向下作用于地面的,而建筑设计的一个基本要求就是要搞清楚所选择的体系中向下的作用力与地基土的承载力之间的关系,所以,在建筑设计的方案阶段,就必须对主要的承重柱和承重墙的数量和分布作出总体设想。

3、提倡使用概念设计

所谓的概念设计一般指不经数值计算,尤其在一些难以作出精确理性分析或在规范中难以规定的问题巾,依据整体结构体系与分体系之间的力学关系、结构破坏机理、震害、试验现象和工程经验所获得的基本设计原则和设计思想,从整体的角度来确定建筑结构的总体布置和抗震细部措施的宏观控制。运用概念性近似估算方法,可以在建筑设计的方案阶段迅速、有效地对结构体系进行构思、比较与选择,易于手算。所得方案往往概念清晰、定性正确,避免后期设计阶段一

篇5

在高层建筑的发展,充分显示了科学技术的力量,使设计师从过去强调艺术效果转向重视建筑特有功能与技术因素。建筑结构设计人员要明确自己的责任,从结构方案的确定、结构计算、构造要求等多方面考虑,提高结构设计质量。

1 高层建筑结构设计的任务

结构设计应根据建筑物的重要性等级、建筑使用功能或生产需要所确定的荷载、抗震要求、设防标准等,对结构基本构件和整体进行设计,以保证基本构件的强度、变形、裂缝满足设计要求,同时保证结构体系的整体安全性、稳定性、变形性能,保证在突发事件发生时,结构保持一定的整体性,使人们的生命安全得以保证;保证合理用材,方便施工,同时尽可能降低建筑造价。总之,结构设计的核心是解决两个问题:一是满足建筑结构功能要求;二是经济问题。

2 概念设计

概念设计是根据理论与实验研究结果及工程经验等形成的基本设计原则和设计思想,进行结构的总体布置,并正确确定细部构造的过程,需要遵循相应规范条文进行合理的平面设计、竖向设计、基础设计等。概念设计包括建筑概念设计和结构概念设计两个方面。建筑概念设计是对满足建筑使用功能、造型优美、技术先进的总建筑方案的确定;结构概念设计是在特定的建筑空间中用整体的概念来完成结构总体方案的设计。结构概念设计旨在有意识地处理构件与结构、结构与结构的关系,满足结构的功能要求和建筑功能的需要,以及技术经济可能的设计原则,确定最优的结构体系,选择适用的建筑材料和合理的关键部位构造、结合适宜的施工及合理的效益达到房屋设计的统一。

3 高层建筑抗震概念设计若干原则

建筑抗震性能是概念设计的决定因素,概念设计应遵循一定的原则。

3.1 结构抗侧力结构的布置宜规则、对称,受力明确简单、传力合理不间断,保证良好的整体性。

3.2 结构构件应具有必要的承载力、刚度、稳定性、延性,构件应遵循“强柱、弱梁、更强节点、强剪、弱弯、强底层柱(墙)底”的原则。

3.3 结构中应尽可能设置多道抗震防线。结构体系中应由多个延性较好的分体,并由延性较好的结构构件连接起来协同工作,以便地震时结构能吸收和耗散大量的地震能量,避免大震倒塌。

3.4 对可能出现的薄弱部位,应采取措施提高其抗震能力,防止在局部上加强而忽视整个结构各部位的刚度、承载力协调。考虑上部结构嵌固于基础结构或地下室结构之上时,应使基础结构或地下室结构保持弹性工作状态,使塑性铰出现在结构嵌固部位。

4 高层建筑结构设计注意问题

高层建筑设计从体系选择、平面布置、竖向布置、抗震概念设计无一不体现设计师的水平,下面叙述几个需注意的问题。

4.1 结构体系选择

结构体系的选择,应从建筑、结构、施工技术条件、建材、经济等各专业综合考虑。结构的规则性问题。规范在这方面有相当多的限制条件,例如:平面规则性信息、嵌固端上下层刚度比信息等,而且,采用强制性条文明确规定“建筑不应采用严重不规则的设计方案。”因此,结构工程师在遵循规范规定上必须格外注意,避免后期施工图设计阶段工作的被动。结构的超高问题。在抗震规范与高规中,对结构总高度都有严格限制,除将原来的限制高度设定为 A 级高度建筑外,还增加了 B 级高度建筑,因此,必须对结构高度严格控制,一旦结构为B 级高度建筑或超过了 B 级高度,其设计方法和处理措施将有较大的变化。

4.2“设缝”

温度伸缩缝、沉降缝、防震缝是高层结构设计中较重要的构造措施。对温度伸缩缝,其影响因素很多,规范用规定结构伸缩缝的最大间距来控制,还规定了最大间距宜适当减小和适当放宽的情况,应根据实际工程的具体情况执行相关条文。如北京朝阳商业中心、广东佛山医院等工程地上结构长度均超过 100 米,由于采取了可靠措施,也未设温度伸缩缝而效果良好。沉降缝由于同一建筑物中各部分基础显著的沉降差产生,在设计中,通常用“放”、“抗”、“调”等办法解决,即设沉降缝、采用刚度大的基础、调整各部分基础形式或施工顺序。目前,广州、深圳等地多采用基岩端承桩,主楼、裙房间不设缝;北京的高层建筑则一般采用施工时留后浇带的做法。设计师应在实际中灵活掌握。防震缝在规范中有明确规定,但应据实际情况适当放宽或缩小。

4.3 侧向位移的限值

高层建筑结构的水平位移随着高度增长而迅速变大,为防止位移过大,规范对顶点位移和层间位移都作了限制。控制顶点位移 u/h的主要目的是保证建筑内人体有舒适感和防止房屋在罕遇地震时倒塌。但控制房屋在罕遇地震时倒塌与否的条件是结构极限变形能力而不是 u/h 限值。另外,为使结构具有较好的防倒塌能力,应在结构计算中考虑相关效应。控制层间位移u/h 的主要目的是防止填充墙、装饰物等非结构构件的开裂和损坏。

4.4 高层建筑结构设计中的扭转问题

建筑结构的几何形心、刚度中心、结构重心即为建筑三心,在结构设计时要求建筑三心尽可能汇于一点,即三心合一。结构的扭转问题就是指在结构设计过程中未做到三心合一,在水平荷载作用下结构发生扭转振动效应。为避免建筑物因水平荷载作用发生扭转破坏,应在结构设计时选择合理的结构形式和平面布局,尽可能使建筑物做到三心合一。在水平荷载作用下,高层建筑扭转作用的大小取决于质量分布。为使楼层水平力作用沿平面分布均匀,减轻结构的扭转振动,应使建筑平面尽可能采用方形、矩形、圆形、正多边形等简面形式。在某些情况下,由于城市规划对街道景观的要求以及建筑场地的限制,高层建筑不可能全部采用简面形式,当需要采用不规则L 形、T 形、十字形等比较复杂的平面形式时,应将凸出部分厚度与宽度的比值控制在规范允许的范围之内,同时,在结构平面布置时,应尽可能使结构处于对称状态。

5 结语

从城市建设和管理的角度看,建筑物向高空延伸,可以缩小城市的平面规模,为人们提供更多的生活工作空间,缩短城市道路和各种公共管线长度,从而节省城市建设与管理的投资,高层建筑设计成为城市建筑的发展趋势,随着经济和社会的发展,新的建筑形式层出不穷,给设计师提出了更高的要求。

高层设计中,建筑和结构是关系最密切的专业。建筑师往往根据建筑的使用功能和美学要求处理建筑体型,包括平面和立面;而结构师则根据受力的合理性进行结构设计,其中结构形式和结构体系的选择,结构总体布置等对结构的受力性能优劣性起决定性作用。结构的总体布置与结构体型密切相关,简单的体型易于得到规则和受力合理的结构总体布置,可使结构具有良好的抗震性能;反之,过于复杂的建筑平面和立面体型,将增加结构设计的困难,造成结构布置的不规则性。因此优秀的设计是建筑和结构的完美结合,需建筑师和结构师密切合作。在方案设计阶段,就应根据建筑物的高度、抗震设防烈度等具体条件合理选用结构形式和结构体系。

参考文献:

[1] 吕西林.高层建筑结构[M].武汉:武汉工业大学出版社,2008.

[2] 周芝兰.普通高等院校土木专业“十一五”规划精品教材建筑结构[M].武汉:华中科技大学出版社.2007

[3] 周云等.现代建筑工程技术研究与应用[M].广州:华南理工大学出版社,2006.

篇6

高层建筑是近代经济发展和科学进步的产物。进入20世纪以来,高层建筑在全球迅猛发展。高层建筑,是指超过一定高度和层数的多层建筑。在美国,24.6m或7层以上视为高层建筑;在日本,31m或8层及以上视为高层建筑;在英国,把等于或大于24.3m得建筑视为高层建筑。中国自2005年起规定超过10层的住宅建筑和超过24米高的其他民用建筑为高层建筑。高层建筑可节约城市用地,缩短公用设施和市政管网的开发周期,从而减少市政投资,加快城市建设。

一. 高层建筑结构设计的意义及依据

1.概念设计的意义

高层建筑能做到结构功能与外部条件一致,充分展现先进的设计.发挥结构的功能并取得与经济性的协调,更好地解决构造处理,用概念设计来判断计算设计的合理性。

2概念设计的依据

高层建筑结构总体系与各分体系的工作原理和力学性质,设计和构造处理原则,计算程序的力学模型和功能,吸取或不断积累的实践经验

二.高层建筑结构设计体系

.1 结构的规则性问题

新旧规范在这方面的内容出现了较大的变动,新规范在这方面增添了相当多的限制条件,例如:平面规则性信息、嵌固端上下层刚度比信息等,而且,新规范采用强制性条文明确规定“建筑不应采用严重不规则的设计方案”。因此,结构工程师在遵循新规范的这些限制条件上必须严格注意,以避免后期施工图设计阶段工作的被动。

.2 结构的超高问题

在抗震规范与高规中,对结构的总高度都有严格的限制,尤其是新规范中针对以前的超高问题,除了将原来的限制高度设定为A 级高度的建筑外,增加了B级高度的建筑,因此,必须对结构的该项控制因素严格注意,一旦结构为B级高度建筑甚或超过了B级高度,其设计方法和处理措施将有较大的变化。在实际工程设计中,出现过由于结构类型的变更而忽略该问题,导致施工图审查时未予通过,必须重新进行设计或需要开专家会议进行论证等工作的情况,对工程工期、造价等整体规划的影响相当巨大。

.3 嵌固端的设置问题

由于高层建筑一般都带有二层或二层以上的地下室和人防,嵌固端有可能设置在地下室顶板,也有可能设置在人防顶板等位置,因此,在这个问题上,结构设计工程师往往忽视了自嵌固端的设置带来的一系列需要注意的方面,如:嵌固端楼板的设计 嵌固端上下层刚度比的限制、嵌固端上下层抗震等级的一致性、在结构整体计算时嵌固端的设置、结构抗震缝设置与嵌固端位置的协调等等问题,而忽略其中任何一个方面都有可能导致后期设计工作的大量修改或埋下安全隐患。

.4 短肢剪力墙的设置问题

在新规范中,对墙肢截面高厚比为5~8的墙定义为短肢剪力墙,且根据实验数据和实际经验,对短肢剪力墙在高层建筑中的应用增加了相当多的限制,因此,在高层建筑设计中,结构工程师应尽可能少采用或不用短肢剪力墙,以避免给后期设计工作增加不必要的麻烦。

三、结构设计计算与分析阶段存在的问题

在结构计算与分析阶段,如何准确,高效地对工程进行内力分析并按照规范要求进行设计和处理,是决定工程设计质量好坏的关键。由于新规范的推出对结构整体计算和分析部分相当多的内容进行了调整和改进,因此,结构工程师也应该相当地对这一阶段比较常见的问题有一个清晰的认识。

1、结构整体计算的软件选择。目前比较通用的计算软件有:SATWE、TAT、TBSA或ETABS、SAP等,但是,由于各软件在采用的计算模型上存在着一定的差异,因此导致了各软件的计算结果有或大或小的不同。所以,在进行工程整体结构计算和分析时必须依据结构类型和计算软件模型的特点选择合理的计算软件,并从不同软件相差较大的计算结果中,判断哪个是合理的、哪个是可以作为参考的,哪个又是意义不大的,这将是结构工程师在设计工作中首要的工作。否则,如果选择了不合适的计算软件,不但会浪费大量的时间和精力,而且有可能使结构有不安全的隐患存在。

2、是否需要地震力放大,考虑建筑隔墙等对自振周期的影响。该部分内容实际上在新老规范中都有提及,只是,在新规范中根据大量工程的实测周期明确提出了各种结构体系下高层建筑结构计算自振周期折减系数。

3、振型数目是否足够。在新规范中增加一个振型参与系数的概念,并明确提出了该参数的限值。由于在旧规范设计中,并未提出振型参与系数的概念,或即使有该概念,该参数的限值也未必一定符合新规范的要求,因此,在计算分析阶段必须对计算结果中该参数的结果进行判断,并决定是否要调整振型数目的取值。

4、多塔之间各地震周期的互相干扰,是否需要分开计算。一段时间以来,大底盘,多塔楼的高层建筑类型大量涌现,而在计算分析该类型高层建筑时,是将结构作为一个整体并按多塔类型进行计算,还是将结构人为地分开进行计算,是结构工程师必须注意的问题。如果多塔间刚度相差较大,就有可能出现即使振型参与系数满足要求,但是对某一座塔楼的地震力计算误差仍然有可能较大,从而便结构出现不安全的隐患。

5、非结构构件的计算与设计。在高层建筑中,往往存在一些由于建筑美观或功能要求且非主体承重骨架体系以内的非结构构件。对这部分内容,尤其是高层建筑屋顶处的装饰构件进行设计时,由于高层建筑的地震作用和风荷载均较大,因此,必须严格按照新规范中增加的非结构构件的计算处理措施进行设计。

四、工程实例

1.工程简介

兰花广场兰花商厦位于辽宁省, 总建筑面积6.38万m2,工程由同济大学设计院设计,施工单位为中国二十二冶集团有限公司,地下1层,地上为29层,总建筑高度为102.38米,其中地下一层采用箱形基础,底板厚度800mm,地上29层,钢筋混凝土框架-剪力墙结构, 除地下一层顶板外露部分厚度为 600mm外,其余部分楼板为模壳密肋板结构,厚度为120mm,本高层建筑采用抗震性能好、功能合理的现浇钢骨混凝土框架-剪力墙结构,利用楼、电梯间设置钢筋混凝土剪力墙且连接成筒体作为主要的抗侧力构件。混凝土强度等级为C60,钢筋骨架采用HRB400,框架采用宽扁梁框架以增加楼层净高,宽扁梁截面为800×700,端部加腋为800×650,混凝土强度等级为C40;为抵抗高层建筑的外力影响,在混凝土内筒剪力墙转角处设置十字形钢骨,以改善剪力墙的受力性能、提高剪力墙的延性、减少剪力墙刚度退化,中心筒墙体厚度为600mm,混凝土强度等级为C40。

五.高层建筑结构发展趋势

随着城市人口的不断增加建设可用地的减少,高层建筑继续向着更高发展,结构所需承担的荷载和倾覆力矩将越来越大。在确保高层建筑物具有足够可靠度的前提下,为了进一步节约材料和降低造价,高层建筑结构够构件正在不断更新,设计理念也在不断发展。高层建筑结构也正朝着结构立体化,布置周边化,体型多样化,结构支撑化,体型多样化,材料高强化,建筑轻量化,组合结构化,结构耗能减震化等方向发展。

六、结论

近些年来,我国的高层建筑建设发展迅速。但从设计质量方面来看,并不理想。在高层建筑结构设计中,结构工程师不能仅仅重视结构计算的准确性而忽略结构方案的具体实际情况,应作出合理的结构方案选择。高层建筑结构设计人员应根据具体情况进行具体分析掌握的知识处理实际建筑设计中遇到了各种问题。

参考文献

[1]、《混凝土结构设计规范》.GB 50010―2010.

[2]、行业标准《高层建筑混凝土结构技术规程》(JGJ3― 2002)中国建筑工业出版社,2002。

篇7

前言

结构工程师应以力学概念和丰富的工程经验为基础,从结构整体和局部两个方面对计算结果的合理性正确判断计算结果,确认其可靠后,方可用于工程设计。高层建筑结构设计、计算是一项复杂的工作,它要结构设计人员既要有扎实的理论功底,又要有丰富的工程经验,这样设计出来的建筑物才能达到既安全、可靠,又经济、合理。

一、高层建筑结构设计要点

1、结构选型

对于高层建筑结构而言, 在工程设计的结构选型阶段,应注意以下几点:

(1)结构的规则性问题。新旧规范在这方面的内容出现了较大的变动, 新规范在这方面增添了相当多的限制条件,例如: 平面规则性信息、嵌固端上下层刚度比信息等, 而且, 新规范采用强制性条文明确规定“建筑不应采用严重不规则的设计方案。” 因此, 结构工程师在遵循新规范的这些限制条件上必须严格注意, 以避免后期施工图设计阶段工作的被动。

(2)结构的超高问题。在抗震规范与高规中, 对结构的总高度都有严格的限制, 尤其是新规范中针对以前的超高问题, 除了将原来的限制高度设定为A 级高度的建筑外,增加了B级高度的建筑, 因此, 必须对结构的该项控制因素严格注意, 一旦结构为B级高度建筑或超过了B 级高度,其设计方法和处理措施将有较大的变化。在实际工程设计中, 出现过由于结构类型的变更而忽略该问题, 导致施工图审查时未予通过, 必须重新进行设计或需要开专家会议进行论证等工作的情况, 对工程工期、造价等整体规划的影响相当巨大。

(3)嵌固端的设置问题。由于高层建筑一般都带有二层或二层以上的地下室和人防, 嵌固端有可能设置在地下室顶板, 也有可能设置在人防顶板等位置, 因此, 在这个问题上, 结构设计工程师往往忽视了由嵌固端的设置带来的一系列需要注意的方面, 如: 嵌固端楼板的设计、嵌固端上下层刚度比的限制、嵌固端上下层抗震等级的一致性、在结构整体计算时嵌固端的设置、结构抗震缝设置与嵌固端位置的协调等等问题, 而忽略其中任何一个方面都有可能导致后期设计工作的大量修改或埋下安全隐患。

(4)短肢剪力墙的设置问题。在新规范中, 对墙肢截面高厚比为5~ 8的墙定义为短肢剪力墙, 且根据实验数据和实际经验, 对短肢剪力墙在高层建筑中的应用增加了相当多的限制, 因此, 在高层建筑设计中, 结构工程师应尽可能少采用或不用短肢剪力墙, 以避免给后期设计工作增加不必要的麻烦。

2、地基与基础设计

地基与基础设计一直是结构工程师比较重视的方面,不仅仅由于该阶段设计过程的好与坏将直接影响后期设计工作的进行, 同时, 也是因为地基基础也是整个工程造价的决定性因素, 因此, 在这一阶段, 所出现的问题也有可能更加严重甚至造成无法估量的损失。

在地基基础设计中要注意地方性规范的重要性问题。由于我国占地面积较广, 地质条件相当复杂, 因此, 作为建立在国家标准之下的地方标准。地方性的“地基基础设计规范”能够将各地方的地基基础类型和设计处理方法等一些成熟的经验描述和规定得更为详细和准确, 所以, 在进行地基基础设计时, 一定要对地方规范进行深入地学习, 以避免对整个结构设计或后期设计工作造成较大的影响。

3、结构计算与分析

在结构计算与分析阶段, 如何准确, 高效地对工程进行内力分析并按照规范要求进行设计和处理, 是决定工程设计质量好坏的关键。由于新规范的推出对结构整体计算和分析部分相当多的内容进行了调整和改进, 因此, 对这一阶段比较常见的问题应该有一个清晰的认识。

(1)结构整体计算的软件选择。目前比较通用的计算软件有: SATWE、TAT、TBSA等, 但是, 由于各软件在采用的计算模型上存在着一定的差异, 因此导致了各软件的计算结果有或大或小的不同。所以, 在进行工程整体结构计算和分析时必须依据结构类型和计算软件模型的特点选择合理的计算软件, 并从不同软件相差较大的计算结果中,判断哪个是合理的、哪个是可以作为参考的, 哪个又是意义不大的, 这将是结构工程师在设计工作中首要的工作。否则, 如果选择了不合适的计算软件, 不但会浪费大量的时间和精力, 而且有可能使结构有不安全的隐患存在。

(2)是否需要地震力放大, 考虑建筑隔墙等对自振周期的影响。该部分内容实际上在新老规范中都有提及, 只是,在新规范中根据大量工程的实测周期明确提出了各种结构体系下高层建筑结构计算自振周期折减系数。

(3)振型数目是否足够。在新规范中增加一个振型参与系数的概念, 并明确提出了该参数的限值。由于在旧规范设计中, 并未提出振型参与系数的概念, 或即使有该概念,该参数的限值也未必一定符合新规范的要求, 因此, 在计算分析阶段必须对计算结果中该参数的结果进行判断, 并决定是否要调整振型数目的取值。

共振问题。随着大底盘, 多塔楼的高层建筑类型大量涌现, 在计算分析此类高层建筑时, 是将结构作为一个整体并按多塔类型进行计算, 还是将结构人为地分开进行计算, 是结构工程师必须注意的问题。如果多塔间刚度相差较大, 就有可能出现即使振型参与系数满足要求, 但是对某一座塔楼的地震力计算误差仍然有可能较大, 从而使结构出现不安全的隐患。此外,当建筑场地发生地震时, 如果建筑物的自振周期和场地的特征周期接近, 建筑物和场地就会发生共振。因此在建筑方案设计时就应针对预估的建筑场地特征周期, 通过调整结构的层数,选择合适的结构类别和结构体系, 扩大建筑物的自振周期与建筑场地特征周期的差别, 避免共振的发生。

非结构构件的计算与设计。在高层建筑中, 往往存在一些由于建筑美观或功能要求且非主体承重骨架体系以内的非结构构件。对这部分内容, 尤其是高层建筑屋顶处的装饰构件进行设计时, 由于高层建筑的地震作用和风荷载均较大, 因此, 必须严格按照新规范中增加的非结构构件的计算处理措施进行设计。

二、工程概况

1、某高层住宅楼位于市中心的繁华地段,总建筑面积约20 万m2。由五幢高层住宅楼组成,地下部分2 层,底层架空、无裙房;2 层以上为住宅。五幢高层建筑下的2 层地下室连为一体。五幢高层结构平面体型较不规则,建筑结构长宽比3.7~6.9,高宽比5.4~10.3。本工程为丙类建筑, 工程的结构安全等级为二级,采用大直径钻孔灌注桩、桩筏基础。

工程位于较高抗震设防烈度区,同时又是高风压地区,抗震设防烈度为六度(0.15g),Ⅱ 类场地,建筑基本风压值为0.70kN/m2。

2、结构体系的确定

根据建筑功能的使用要求, 本工程为高尚住宅区,底层架空为酒店式大堂,并引入室外景观造景,为此,建筑对底层柱及剪力墙的布置位置有严格的要求,上部住宅部分要求室内方正实用。为了满足上述的要求,本工程采用框支剪力墙结构,在二层楼面设置转换层。因上部墙体多数无法直接落地或落于框支梁上,因而采用了箱高为230cm 的箱形转换结构。利用箱体增加转换层的整体刚度,同时箱体的上下层板又增加了框支梁的抗扭性能。配合建筑使用功能合理布置抗侧力构件, 以合理控制结构的总体刚度,使之既满足抗震要求又满足抗风的要求。将核心筒剪力墙落地,在建筑物及局部突出部位设置70-90cm 厚的L 型剪力墙, 避免出现独立框支角柱,同时将中部部分剪力墙落地,以保证落地剪力墙的数量,满足上下刚度比的要求。本工程结构体系复杂并采用箱形转换,存在高宽比及长宽比超限等问题,进行了超限高层建筑工程抗震设防专项审查。

3、计算分析

(1)计算程序的选用

本工程属于结构体系复杂的高层建筑,结构设计采用两种软件分析计算; 一种是PKPM系列的SATWE 程序该程序采用墙元模拟剪力墙,是国内应用比较广泛的软件之一。同时另采用体单元模型的ANSYS 有限元分析软件进行复核。

(2)程序使用的注意事项

a在平面输入时应正确指定转换构件,确保程序计算时能按相关规范规定,对转换构件在水平地震作用下的计算内力进行放大,对框支柱的水平地震剪力进行调整等。

b对于一字型墙肢出现与其平面外方向的楼面梁连接时,为抵抗梁端弯矩对墙的不利影响, 在程序计算中将梁与墙相交处作铰接处理,减少梁对墙产生的平面外弯矩。此时,在墙与梁相交处设置暗柱,并按计算确定其配筋。

c剪力墙之间的连结梁应根据具体情况

指定为连梁或框架梁。对一端或两端与剪力墙相交的梁会在程序中默认为连梁,计算中程序会对其刚度进行折减后再计算其内力;而对跨高比较大(>5)的连梁,其受力模式接近框架梁,此时应将该类梁人工定义为框架梁,以求内力分析的准确。

4、结构分析的主要结果

本工程以最不利的一幢(即北楼三)的计算结果。

(1)ANSYS 程序计算结果见表1;

表1ANSYS 计算结果

(2)表2 为SATWE 程序计算结果,在计算中,控制以扭转为主的第一自振周期与乎动为主的第一自振周期之比<0.85;结构最大层间位移与平均层间位移之比<1.2。表2 SATWE 计算结果:

(3).本工程采用由中国建筑科学研究院工程抗震研究所提供的地震波进行计算分析,地面运动加速度峰值55gaL。弹性时程分析法的计算结果与振型分解反应谱法的计算结果基本一致;弹性时程分析时,每条时程曲线计算所得的结构底部剪力均不小于振型分解反应谱法求得的底部剪力的65%, 多条时程曲线计算所得的结构底部剪力的平均值大于振型分解反应谱法求得的底部剪力的80%。

4、框支层结构设计

(1)框支柱设计

本工程框支柱抗震等级为二级, 轴压比限值为0.7。框支柱主要截面取1300X1300~1300X2300,计算结果表明,所有框支柱的受力较为均匀,轴压比从0.42~0.51,因此,箱形转换层下框支柱的变形一致性较好。框支柱的剪力设计值应按柱实配纵筋计算并乘以放大系数1.1,剪压比控制在0.15 以内。柱内全部纵向钢筋的配筋率不<1.2%, 箍筋沿柱全高采用不小于Φ12@100 井字复合箍, 体积配箍率均不<1.5%,使柱具有-定的延性,实现强剪弱弯。框支柱在上面墙体范围内的纵向钢筋伸人上部墙体内一层,其余柱筋锚入梁或板内。

(2)剪力墙设计

本工程核心筒落地剪力墙厚40cm,除核心筒外, 在建筑四角布置70~90cm 厚的L 型剪力墙。为了使混凝土的受压性能改善,增大延性,设计中控制墙肢的轴压比不大于0.5。墙体的水平和竖向分布筋除满足计算要求外, 同时也满足0.3%的最小配筋率的限值。底部加强区的剪力墙中按规范要求设置约束边缘构件,约束边缘构件的纵筋配筋率控制≥1.2% , 箍筋不<Φ12@100,体积配箍率控制≥1.4%,同时,对长厚比<5 的短墙在计算中按柱输入计算进行比较,其结果显示,短墙按墙和按柱计算的结果大致一致。

(3)框支梁的设计

本工程框支梁抗震等级为二级。对于两端搁置于框支主梁上的框支次梁,其受力类似简支梁,跨中底筋较大,支座面筋基本按构造要求配置。

本工程的框支主梁的梁高230cm (即箱体高度》于梁顶和梁底各设置一层20cm 厚的箱板,梁截面尺寸按剪压比0.15 控制。梁主筋配筋率除满足计算外,还不小于0.5%,上部主筋沿梁全长贯通,下部主筋全部直通到柱或墙内,沿梁腹部设置不小于Φ16@150 的腰筋,于梁中部设置-排Φ20 的抗裂纵筋,抗裂纵筋根数同箍筋肢数,梁箍筋全长加密。

对其他框支梁,因其受力较大,在靠近柱支座处的应力集中尤为突出,部分梁的计算结果表明,梁端抗剪不足,经过核查该梁各截面剪力设计值,发现框支柱截面内有大部分剪力不足的截面,对此情况的梁截面尺寸不做调整,而对于确实抗剪不足的梁采用梁端水平加腋的方式解决该梁的抗剪能力不足的问题。

4、箱形转换层楼板的设计

箱形转换层的箱体高度为230cm, 箱体的上下层板厚均为20cm。对箱体的上下层板应采用ANSYS 有限元软件进行内力分析。分析结果显示,各荷载工况条件下,箱体上层板都为受压,平均最大压应力为1.2MPa, 箱体下层板均为受拉, 平均最大拉应力为2.0MPa。在设计中,将楼板裂缝控制在0.2mm 以内, 实配双层双向Φ16@150 的通长钢筋。

结束语

在高层建筑结构设计中,结构工程师应从结构的安全、使用功能、建筑美观等方面进行全盘考虑,运用掌握的知识和经验处理实际遇到的各种问题,才能设计出安全合理的高层建筑结构。

参考文献

[1] 赵天赋,李虹.高层建筑结构设计研究[J]. 今日科苑. 2009(12)

[2] 赵明华,赵小慧.如何对高层建筑结构进行设计分析之探析[J]. 民营科技. 2010(05)

篇8

Keywords: high building; Structure; design

中图分类号:TU318 文献标识码:A 文章编号:

1高层建筑结构体系的类型

1.1 框架-剪力墙体系

由于框架结构体系强度和刚度的限制,不适合建造高度较高的建筑,但可以通过在建筑平面合适的位置设置大的剪力墙以代替一部分框架,形成框架-剪力墙体系,增强建筑的刚度和强度,这种结构就是框架-剪力墙体系。在水平力承受方面,框架和剪力墙能够通过刚度足够高的连梁和楼板协同工作,形成混合结构体系。这种结构的框架体系负责主要承担垂直载荷,而剪力墙主要负责承担水平载荷,二者相互协同。由于框架-剪力墙体系具有弯剪型的位移曲线,这增大了这种结构的侧向刚度,减小建筑物的水平位移,不仅减小了框架结构承受的水平力,还使得内力在竖向的分布更加均匀,因此这种结构的建筑物高度要大于采用框架结构的建筑物。

1. 2 剪力墙结构体系

所谓剪力墙结构体系是指建筑的受力主体全部由平面剪力墙构件组成,在这种体系中,全部的竖直载荷和水平力由单片剪力墙来承受。剪力墙结构体系是刚性结构,位移曲线是弯曲型的,因此它的刚度和强度都非常高,并且具有延性,传力直接切均匀,有较好的整体性,具有很强的抗倒塌能力,因此剪力墙结构体系是一种比较好的结构体系。

1.3 筒体结构

筒体结构是在全剪力墙结构和框架-剪力墙结构的基础上发展而来的,将密柱框架和剪力墙集中在房屋和内部,从而形成空间封闭式的筒体,这就是筒体结构。由于筒体结构是将若干片纵横交接的框架或者剪刀强围起来,形成类似童装的封闭骨架,并且通过楼层面加强连接,不仅可以形成比较大的使用空间,还具有刚度好的优点,能够承受较大的水平载荷和竖向载荷,因此广泛应用在超高层建筑中。

2. 高层建筑结构选型

2.1高层建筑结构选型和施工的关系

不同的结构体系建筑施工工艺会有所不同,这不仅影响建筑结构的受力情况和抗震性能,还会影响材料的消耗、劳动力、造价及工期等方方面面。因此,在选择高层建筑的结构体系时要综合权衡施工工艺及各备选结构的特点,选择出最优的方案。对于现浇钢筋混凝土高层建筑来说,其结构方面的造价主要有模板、施工和材料几个部分。统计发现,模板的费用是造价中最主要的部分,占总造价的比例达到33-55%,因此,选择合理的模板体系,会有效降低总体造价,还能对施工进度和劳动力消耗带来有利影响。

2.抗震体系选定的原则

抗震是高层建筑必须考虑的总要因素,在考虑抗震性时,可以结合以下因素:(1)结构设计要有明确的计算简图以及合理的地震力传递路线;(2)建筑结构要有良好的言行和足够的承载力,要具有足够的好能潜力,保证在遭遇地震时有充足的防御倒塌的能力;(3)要具有躲到抗震防练,当部分结构或构件因损坏而失效时,不会影响整体的载荷能力和抗侧力;(4)强度和刚度在竖向和水平方向的分布要均匀,并根据设计需要合理布局,防止局部突变或消弱情况引起薄弱环节的出现,有效防止地震时应力的过大集中或塑形变形集中等危险情况的发生。

当然,在选择并确定高层建筑结构方案时,还应综合考虑建筑安全的重要性、建筑高度、设防烈度、场地类别、地基条件、施工条件和材料供应多方面的因素,结合相关技术指标和经济性分析,以选择最恰当的结构体系。

3高层建筑结构分析与设计方法

3.1高层建筑结构分析中常用的基本假定

高层建筑结构主要是由框架、剪力墙和筒体等竖向抗侧力构件通过水平楼板作为连接中介,并构成大型空间的结构体系。因为完全精确的通过三维空间结构进行分析存在着诸多困难,因此实践中的各种分析方法都对计算机模型进行了一定程度的简化,并做出一些基本的假定。

(1)弹性假定。这是在高层建筑工程实践中运用较多的假定方法,由于风力或垂直载荷的作用,结构常常处于弹性工作阶段,因此通常情况下,这种假定比较符合实际情况。然而,如果遇到强台风作用或者遭遇罕见地震时,高层建筑未出现较大的位移,并可能出现裂缝,此时结构就进入弹塑性工作阶段,如果仍然按照弹性假定来分析的话,在计算内力和位移时就可能出现错误,无法真实反映结构的工作状态,需要改用弹塑性动力分析方法。

(2)小变形假定。这也是实践中采用较多的一种基本假定方法。在这种假定下进行分析设计时,有可能受到几何非线性问题(P-效应)的影响,研究发现,如果建筑物顶点水平位移和建筑物高度H之间的比值/H>1/500时,就要注意P-效应的影响。

(3)刚性楼板假定。许多高层建筑在结构分析时通常都假定楼板在自身平面内具有无限大的刚度,并忽略平面外的刚度,这样不仅在很大程度上减少了结构方面的自由度,使得计算更为简便,也为空间薄壁杠杆理论的采用提供了便利。通常说来,这种假定在框架结构体系和剪力墙结构体系时非常适用的,但是对竖向刚度有突变的结构来说,由于楼板刚度比较小,并且主要抗侧力构件存在层数偏少或间距过大的情况,这样楼板就有较大的变形,在结构顶部和底部的各层内力和位移上的影响也尤为明显,此时就需要对这些楼层的剪力作出适当的调整,以避免不利影响的发生。

(4)计算图形的假定。由于二位协同分析方法忽略了抗侧力构件平面外的刚度和扭转刚度,并且对公共节点在楼面以外的唯一协调(主要是竖向位移和转角的协调)也缺乏考虑,因此具有缺陷性,尤其是用在空间工作性能明显的筒体结构中。为了解决这一问题,高层建筑结构主要使用三维空间分析作为整体分析的计算机图形,因为三维空间分析的普通杆单元每个节点都有6个自由度,按符拉索夫薄壁杆理论进行分析的杆端节点还需要考虑截面翘曲,具有7个自由度,这就使得分析更加准确。

3. 2高层建筑结构静力分析方法

(1)框架-剪力墙结构。框架-剪力墙结构在内力和位移计算时有很多方法可以选择,实践中应用较多的是连梁连续化假定方法。通过以剪力墙和框架水平位移或转角相等的位移协调为条件,提取参数并建立位移和外荷载之间的微分方程,并带入相关数据来求解,因为考虑因素和采用未知量的不同,不同的方法也有不同的解答形式。这种结构在计算中,一般将结构转化成等效壁式框架,建立杆系结构矩阵位移法来求解。

(2)剪力墙结构。由于剪力墙的受力特性和变形状态主要由剪力墙的开洞情况决定,根据受力特性的不同,可以将单片剪力墙分为联肢墙、单肢墙、特殊开洞墙、框架墙和小开口整体墙等类型。不同类型的剪力墙截面应力分布不尽相同,因此,要结合具体类型来计算内力和位移。在机算中,可以通过平面有限单元法,这种方法具有计算精确和适用性广的优点,但是由于算法复杂,自由度多,耗时较长,因此目前主要用于应力分不复杂的剪力墙结构中,比如特殊开洞墙和框架墙过渡层。

(3)筒体结构。按照对计算机模型处理方法的不同,筒体结构有三种分析方法:等效离散化方法、等效连续化方法和三维空间分析等效离散化方法是把连续的墙体离散成等效的杠杆,以方便适用合适的杆系结构方法进行分析。所谓等效连续化方法是指将结构中离散钢杆件进行等效连续化处理,具体方法有有限条法、能量法、拟壳法、框筒近似解法和微分方程解法等。三维空间分析法是比以上两者更加精确的计算机模型方法,主要通过空间杆-薄壁杆系矩阵位移法来实现,目前这种方法多应用在筒体结构体系的分析上,也是工程中广泛使用的模型方法。

参考文献:

[1] 肖峻. 高层建筑结构分析与设计[J]. 中华建设,2008(12).

篇9

随着社会经济的快速发展以及建筑功能的多元化,城市人口的不断增长和建筑用地的日益紧张以及城市规划的需要,这些都像催化剂一样催促着高层建筑能够快速的发展。除此之外,因为轻质高强度材料的开发和新的设计计算理论的发展,抗风和抗震理论得到了不断的完善,新的施工技术以及设备不断涌现,尤其是计算机的普及应用以及结构的分析手段不断得到优化,为高层建筑的快速发展提供了必要的技术条件。下面我们就对高层建筑的最基本原理进行讨论。

1.选择合理的结构类型正确认识高层建筑的受力特点

高层建筑的本质是一种竖向悬臂式结构。竖向的荷载主要令结构出现轴向力,轴向力和建筑物的高度近似的看成线性关系;水平荷载令结构出现弯矩。从受力的特性来看,竖向荷载的方向不变,随着建筑物高度的增加仅仅会造成量的增加;水平荷载则是可以来自任意方向的结构上作用。结构产生各种效应的原因,统一称作结构上的作用。结构上的作用包括直接性作用和间接性作用。直接性作用通常指的是施加在结构上的集中力或者分布力,比如结构的自重、楼面活荷载以及设备自重等,造成的效应较为直观。间接作用通常指的是造成结构外加变形或者约束变形的作用,比如温度的变化、混凝土的收缩或者徐变、地基的变形以及地震等,这种作用造成的效应较为复杂,比如地震会导致建筑物出现裂缝、倾斜下沉甚至是倒塌,但这些破坏效应不仅仅受到地震震级、烈度影响,还与建筑物所在场地的地基条件、建筑物的基础类型以及上部的结构体系有关。考虑到设计人员的现状和习惯上的衔接,目前还没有将这两类作用进行严格的划分,而是将其简称为荷载。作用在结构上的直接性作用或者间接性作用,将导致结构或者结构构件出现内力和变形(例如挠度、转角、侧移、裂缝等),通常称这些内力和变形为作用效应,其中由直接性作用引起的作用效应称为荷载效应。结构或者结构构件的承受内力和变形能力,称作结构的抗力,如构件的承载能力、刚度的大小以及抗裂缝的能力等。结构抗力和结构构件的截面形式、截面尺寸以及材料强度的等级等因素有关。结构抵抗水平荷载造成的弯矩、剪力、拉应力以及压应力应当有较大的强度以外,同时还要求结构要具备足够的刚度,使随着高度的增加所导致的侧向变形限制在结构允许的范围内。所以,高层建筑使用何种结构形式,应当由其结构体系和材料特性来决定。

2.正确选择合理的结构体系

建筑设计和结构设计是整个建筑设计的过程中两个重要的环节,对于整个建筑物的外观效果、结构稳定都有着至关重要的作用。二者相互协调的同时又相互制约,究竟会以何种关系相处,就在于两者能否能够和谐的工作。建筑设计师经常将结构放在从属地位,要求结构必须要服从于建筑,一切都要以建筑作为先导。通过受力因素的分析,下一步就要考虑究竟要选用什么结构体系,通常有以下几种高层建筑的结构体系可以选择:

钢筋混凝土经常使用的结构形式:

框架结构:平面布置灵活,抗侧刚度小,但在建筑物较高的时候就要使用较大的柱,缩小了有效的使用空间,经济性指标并不理想。

剪力墙结构:刚度大、承载力强,但平面的布置不够灵活,限制了建筑空间。剪力墙结构体系:该体系是将建筑的墙体用作承接竖向荷载、对抗水平荷载的结构体系。墙体作为维护构件的同时又是房间的分隔构件。

框架-剪力墙结构:框架一剪力墙结构体系由框架和剪力墙共同组成。包括了框架结构以及剪力墙结构的优点。

筒体结构:抗侧刚度大,能够用于较高的建筑。它有框架核心筒结构以及筒中筒结构两种表现形式。筒中简结构体系以一个或者多个简体为主来抵抗水平力。

混合结构:钢框架或者型钢混凝土框架和钢筋混凝土筒体。框架的结构体系由梁、柱、基础等构成平面框架,它是主要的承重结构,各平面的框架再使用梁联系起来,形成空间结构体系。

3.选择合理的结构平面布置,协调好建筑与结构的关系

在高层建筑的设计中.结构布置通常要考虑以下几点:

3.1选择合适的结构平面布置,满足建筑功能的要求

结构平面的布置:独立结构单元应当形状简单规则,刚度以及承载力分布匀称,不应当采用严重的不规则平面布置,也就是要满足一下条件:

1)平面要简单、规则、对称,减少偏心。

2)平面的长度不应过长,突出的部分不宜过大。

3)建筑的层高、层数、开间和进深等平面关系以及体型除了要满足使用的需求以外。还要尽肯能的减少类型,尽量统一柱网布置和层高,对标准层进行重复的使用。

3.2高层建筑的结构设计中,结构的布局占据着重要的地位。

现代的高层建筑在进行规划的过程中,每个功能区的设计,都需要以现代人的生活理念作为基础,进行相对合理的布局。高层结构设计在承受力方面,特别是垂直方向的受力,需要受到较大的压力。所以,在进行高层建筑的地基设计时,首要的工作就要保证地基受力结构设计的稳定性。因此,在地基的设计过程中,地基的承载力是最大的,随着楼层数的增加,结构的受力逐渐的变小。这样的设计理念,能够很好的平衡建筑结构的受力情况。

3.3在地震区为了减少地震作用对于建筑结构的整体以及局部的不利影响。

例如扭转和应力的集中效应,建筑平面的形状要规正,防止外伸或者内收过大,沿高度的层问刚度以及层间的屈服强度要尽可能均匀的分布,主要抗侧力的竖向构件,其截面的尺寸、砼强度等级以及配筋量的改变不要集中在相同的楼层内。进行抗震设计时,高层建筑宜调整平面形状和结构布置,避免结构不规则,不设抗震缝。当建筑平面复杂而又无法调整其平面形状和结构布置使之成为较规则的结构时,宜设置抗震缝将其划分为比较简单的几个结构单元。进行抗震设计时,结构的竖直方向的抗侧力构件应当上下连续贯通。高层建筑要设置地下室。各结构单元的平面形状应力力求简单规则,立面体型要尽可能地避免伸出和收进,防止结构的垂直向刚度出现突变等。

4.结语:

随着地上空间的日益狭窄,如何能够最大限度的利用土地资源已经成为每个国家的建筑领域急需解决的问题,高层建筑的发展已经成为一种主流趋势,更是向着进一步的超高层建筑领域迈进。我国的情况更是如此,这一情况的出现既是机遇同样也是一种挑战。繁多的复杂高层建筑的出现将给结构的设计带来新的的挑战。实际上,我国的高层和超高层建筑具有超高超大、功能繁琐、造型奇特等特点,许多建筑都已突破了我国现行的技术标准以及规范的要求,在未来的发展过程中,要着重于防震防风方面的结构考虑,加快材料和施工技术的进步。如今我国的高层建筑正处在发展阶段,正迈入国际先进水平,有很大的机会发展和进步。

参考文献:

篇10

随着社会的发展,我国城市的用地面积越来越少,城市的建筑也越来越趋于向高层建筑发展,现在大部分楼层都在十几层以上,三四十层高的楼也已经不少见。建筑的体型和功能越来越复杂,结构体系及结构材料也更为多样化,这样的高层建筑,其结构设计也就成为结构工程师的难点和重点。

1 高层建筑结构设计的概念及内容

高层建筑结构设计是指根据高层建筑特性的建筑结构设计,在满足适用、安全、经济、耐久和施工可行的前提下,按有关的设计标准规定,对建筑结构进行技术经济分析、总体布置、计算、构造及制图工作,并寻求优化的过程。简单来说,就是用结构语言表达出工程师们想表达的东西。在建筑结构设计中,就是把建筑物或者建筑结构体系中的墙、柱子、楼梯、梁等用图纸中的结构元素来表示出来,同时还要计算出它的抗力及承重等能力。在结构设计中主要包括结构方案、结构计算及施工图设计三个阶段,每个阶段对于结构设计来说都是很重要的。

2 高层建筑结构设计的特点

2.1 水平力成为结构设计的主要因素

当建筑物高度增加时,水平荷载(风荷载及地震作用)对结构起的作用将愈来愈大。除了结构内力将明显加大外,结构侧向位移增加更快。我们知道:建筑物楼面的使用荷载和自重在竖向构件产生的弯矩和轴力与其高度的一次方成正比,水平荷载产生的弯矩及轴力与建筑物高度的二次方成正比,水平荷载产生的结构侧向位移与建筑高度的四次方成正比。因此,在高层建筑中,结构要使用更多材料来抵抗水平力,另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化,所以结构的抗侧力设计成为高层建筑结构设计的主要因素。

2.2 高层建筑中的侧移控制

与低层建筑相比,高层建筑结构设计中的另一个关键因素就是侧移,当建筑越高时,结构的侧移变形就会越大。过大的结构侧移会造成显著的重力二阶效应,造成结构内力增大并影响结构稳定,过大的侧移也会造成建筑构件或设备的破坏以及使用者的不适。对于一定的水平作用,结构的抗侧刚度大,那么结构侧移就小。但过刚的结构也会造成结构地震作用不必要的增大,所以结构设计中要控制结构的合理刚度,把侧移控制在合理范围。

2.3 更高的抗震设计要求

抗震设防区的高层建筑必须具有良好的抗震性能,做到小震不坏,中震可修,大震不倒。相对与多层结构,高层结构在地震作用下,具有更大的水平作用及侧移,因此,高层建筑平立面也更讲究规则性,结构要求具有更高的抗震等级。对于一些较高的高层建筑或具有薄弱层的高层建筑,也要求进行弹塑性分析进行补充设计。

2.4 高层建筑竖向压缩变形不容忽视

高层建筑中,竖向构件的轴力往往较大,其产生的压缩变形量往往相当可观,因此结构设计中要考虑到竖向构件的压缩变形。

3 高层建筑结构设计需选择合适的结构体系

在结构设计当中,结构体系的选择是很重要的一步,合理的结构体系不但可满足结构的受力要求,更具有良好的经济性及更高的结构安全富余。常用的结构体系有框架结构体系,剪力墙结构体系,框架―剪力墙结构体系以及筒体结构体系。

3.1 框架结构体系

框架结构主要由梁柱等杆件单元形成空间的框架结构体系,可以承受竖向荷载及一定的水平力的作用。框架结构的优点是计算理论成熟,杆件受力明确,结构的布置灵活,一定高度内造价较低。缺点是抗侧刚度较弱,在水平力作用下会产生较大的侧移,且大部分侧移发生在内力较大的结构底部部位,破坏后易产生严重后果。因此框架结构常应用于层数较少,高度较低的建筑中。

3.2 剪力墙结构体系

剪力墙结构是空间盒子式结构,其水平作用和竖向荷载完全由剪力墙体承受,其刚度及空间整体性都比较好。剪力墙结构体系的优点是抗水平作用能力强、整体性好、用钢量较小,可以适用较高的建筑。缺点是因剪力墙布置的要求,不易布置成较大的房间。因此剪力墙结构常应用于住宅及宾馆类建筑中。

3.3 框架―剪力墙结构体系

在框架结构中布置一定数量的剪力墙,可以组成框架―剪力墙结构,这种结构既有框架结构布置灵活、使用方便的特点,又有较大的刚度和较强的抗水平作用的能力,因而广泛地应用于高层建筑中的办公楼和旅馆。

3.4 筒体结构体系

这种体系是在框架结构、剪力墙结构的体系上发展起来,当高层建筑不断地增加层数、高度越来越高时,原来的框架、剪力墙结构就变得不合理和不经济了,简体结构就相应地诞生了,它是将剪力墙围成箱型,构成了一个空间薄壁筒体,可以提供更大的侧向刚度,所以筒体结构可以适用与更高的建筑。

4 高层建筑结构中需要注意的几个问题

4.1 抗震设计中的注意事项

高层建筑结构设计中的抗震设计是非常重要的一部分,它应符合抗震概念设计的要求,选择规则的设计方案,规则结构其刚度、承载能力及变形能力更强,不规则结构一般会破坏整个结构承受风荷载、重力荷载及抗震能力,因此尽量选择设计对称、规则的结构方案。另外,在抗震设计中,还要注意到结构构件本身的刚度、延性、稳定性及承载力等方面性能,且要遵守强剪弱弯、强柱弱梁、强底层柱及弱构件强节点的原则。对于结构的薄弱环节,要采取措施加强其抗震的能力同时要重视整体结构中其他部位的刚度及承载能力,以免薄弱层发生转移。

4.2 高层建筑结构设计中的受力性能

在高层建筑结构的最初设计方案中,注重点不应该在它的具体结构上而是更多地关注它空间组成的特点,这是因为建筑物的空间形式包括水平方向和竖向的稳定性都是依靠建筑物的地面作为支撑的,建筑地面即地基对于建筑物来说是非常重要的,建筑物基本都是由大构件组成的,它们的重量及结构的荷载基本都是向下作用在地面上的,这就要求在建筑结构设计时,首先要搞清楚所选择的结构体系与地面间承载力的关系,然后对承重墙和承重柱的分布及数量作出总体的设想,这是建筑结构设计方案中很重要的一部分,影响着建筑结构设计的整体质量。

4.3 关于建筑结构设计中扭转问题的注意

在高层建筑结构中,建筑结构有个很重要的建筑三心即刚度中心、几何形心和结构重心,在建筑结构设计时要尽量做到三心合一,而建筑结构的扭转问题就是指在高层建筑结构设计时没有做到三心合一,并且在水平荷载的作用下发生结构扭转振动。因此,在建筑结构设计时应尽量选择合理的结构平面布局及形式,使建筑尽量的三心合一,以免因水平荷载的作用使建筑发生扭转破坏。在实际的高层建筑中我们也经常会看到一些不规则的平面形式如T形、L形及十字形等比较复杂的平面,这种结构设计,应该尽量让突出部分的宽度和厚度的比值在规定的范围之内,让它的结构尽量处于对称状态。

4.4 对结构计算阶段的单位面积重度、剪重比及位移限值要注意

在结构计算阶段,单位面积重度是衡量楼层何在数据是否正确及构建截面取值合不合理的重要指标之一,其公式为V=G/A(kN/m2)。在同种性质的建筑中,单位面积重度为层数较多的建筑要大于层数少的建筑,剪力墙多的大于剪力墙少的建筑。其剪重比的大小则反映了建筑在地震作用下抗震能力的大小,位移限值是衡量结构侧移的重要标准,其数值的大小从侧面反映了结构整体的刚度,刚度的过大或过小会给设计者对结构体系、竖向及平面布置的合理性进行再思考,对于结构计算当中的这些参考数值要给予重视,以便能制定出合理的结构设计。

总结:

建筑结构设计在高层建筑中起着非常重要的作用,同时它又是一项艰巨复杂的工作,需要结构工程师不仅拥有丰富的专业知识及其工作经验还要有很好的耐性,依据高层建筑的设计原理及设计原则,选择合适的结构体系,从而建设出具有世界水平的高层建筑。

参考文献

[1]顾明星.浅谈高层建筑的结构设计[J].大科技・科技天地,2011(4)

篇11

1.1 概念设计的意义

高层建筑能做到结构功能与外部条件一致,充分展现先进的设计,发挥结构的功能并取得与经济性的协调,更好地解决构造处理,用概念设计来判断计算设计的合理性。

1.2 概念设计的依据

高层建筑结构总体系与各分体系的工作原理和力学性质,设计和构造处理原则,计算程序的力学模型和功能,吸取或不断积累的实践经验。

2.高层建筑结构设计的特点

高层建筑结构设计与低层、多层建筑结构相比较,结构专业在各专业中占有更重要的位置,不同结构体系的选择,直接关系到建筑平面的布置、立面体形、楼层高度、机电管道的设置、施工技术的要求、施工工期长短和投资造价的高低等。其主要特点有;

2.1水平力是设计主要因素

在低层和多层房屋结构中,往往是以重力为代表的竖向荷载控制着结构设计。而在高层建筑中,尽管竖向荷载仍对结构设计产生重要影响,但水平荷载却起着决定性作用。因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比。另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。

2.2侧移成为控制指标

与较低楼房不同,结构侧移已成为高楼结构设计中的关键因素。随着楼房高度的增加,水平荷载下结构的侧移变形迅速增大,因而结构在水平荷载作用下的侧移应被控制在某一限度之内。

2.3抗震设计要求更高

有抗震设防的高层建筑结构设计,除要考虑正常使用时的竖向荷载、风荷载外,还必须使结构具有良好的抗震性能,做到小震不坏、大震不倒。

2.4轴向变形不容忽视

高层建筑中,竖向荷载数值很大,能够在柱中引起较大的轴向变形,从而会对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩值减小,跨中正弯矩之和端支座负弯矩值增大;还会对预制构件的下料长度产生影响,要求根据轴向变形计算值,对下料长度进行调整;另外对构件剪力和侧移产生影响,与考虑构件竖向变形比较,会得出偏于不安垒的结果。

2.5结构延性是重要设计指标

相对于较低楼房而言,高楼结构更柔一些,在地震作用下的变形更大一些。为了使结构在进入塑性变形阶段后仍具有较强的变形能力,避免倒塌,特别需要在构造上采取恰当的措施,来保证结构具有足够的延性。

3.高层建筑结构设计问题分析及对策

3.1提倡节约

我国是发展中国家,还是要尽量提倡节约,目前我国规范中的构造要求,并非都比国外低,有的已经超过。国外大企业在北京买了按我国规范设计的大楼,说明我国规范不是进不了国际市场。现在对安全度进行讨论,应注意不要引起误导,千万不要误解提高建筑结构安全度建筑物就安全了,造成不必要的浪费。实践已经证明,现行规范安全度是可以接受的。这是重要的经验,不能轻易放弃。但考虑到客观形势变化,国家经济实力增强和住宅制度改革现状,可以将现行设计可靠度水平适当提高一点。这样投入不大,却对国家总体和长远利益有利。

3.2高层建筑结构存在着超高的问题

基于高层建筑抗震的要求,我国的建筑规范对高层建筑的结构的高度有严格的规定,针对高层建筑的超高问题,在新规范中不但把原来限制的高度规定为 A级高度,并且增加了 B 级高度,使得高层建筑结构处理设计方法和措施都有了改进。实际工程设计中,对于建筑结构类型的改变对高层超高问题的忽略,在施工审图时将不予通过,应该重新进行设计或者进行专家会议的论证等。在这种情况下,整个建筑工程的造价和工期都会受到极大的影响。

3.3考虑受力性能

对于一个建筑物最初的方案设计,建筑师考虑更多的是它的空间组成特点,而不是详细地确定它的具体结构。建筑物底面对建筑物空间形式的竖向稳定和水平方向的稳定都是非常重要的。由于建筑物是由一些大而重的构件所组成的,因此结构必须能将它本身的重量传至地面,结构的荷载总是向下作用于地面的,而建筑设计的一个基本要求就是要搞清楚所选择的体系中向下的作用力与地基土的承载力之间的关系,所以,在建筑设计的方案阶段,就必须对主要的承重柱和承重墙的数量与分布作出总体设想。

3.4提倡使用概念设计

所谓的概念设计一般指不经数值计算,尤其在一些难以作出精确理性分析或在规范中难以规定的问题中,依据整体结构体系与分体系之间的力学关系、结构破坏机理、震害、试验现象和工程经验所获得的基本设计原则和设计思想。从整体的角度来确定建筑结构的总体布置和抗震细部措施的宏观控制。运用概念性近似估算方法,可以在建筑设计的方案阶段迅速、有效地对结构体系进行构思、比较与选择,易于手算。所得方案往往概念清晰、定性正确,避免后期设计阶段一些不必要的繁琐运算,具有较好的经济可靠性能。同时,也是判断计算机内力分析输出数据可靠与否的主要依据。近十余年来我国的高层建筑建设可谓突飞猛进,其建设速度和建造数量在世界建筑史上都是少有的。但是,从设计质量方面来看却不容乐观,多数设计追赶流行时尚,因此在实际中应考虑长远因素。

3.5 高层建筑结构设计短肢剪力墙设置

我国建筑新规范中,短肢剪力墙是指墙肢的截面的高度和厚度比在 5~8 的墙,按照实际经验以及数据,高层建筑结构设计中增加了对短肢剪力墙的使用限制。所以,在高层建筑的结构设计中,必须尽可能的减少或者避免使用短肢剪力墙。

3.6 高层建筑结构设计嵌固端的设置

一般情况下,高层建筑配有两层或者两层以上的地下室或者人防。高层建筑的嵌固端一般设置在地下室的顶板或者人防的顶板等位置。因此,结构工程设计人员应该考虑嵌固端设置会可能带来的问题。考虑嵌固端的楼板的设计;综合分析嵌固端上层和下层的刚度比,并且要求嵌固端上层和下层的抗震的等级是一致的;高层建筑的整体计算时充分考虑嵌固端的设置,综合分析嵌固端位置和高层建筑结构抗震缝隙设置的协调。

3.7 高层建筑结构的规则性

篇12

高层建筑由于层高的原因,对风具有阻断和干扰的作用,使得气流转从高层建筑的周边行进,被改变后的气流会产生使高层建筑振动的强大力量,使高层建筑遭受破坏甚至开裂。针对这一问题,首先必须把高层建筑的基础设计好,俗话说“万丈高楼平地起”,可见基础打好了,才能更好的提高建筑整体承受力。基地采用级配等级较高的砂石,保证回填料的整体密实度,防止不均衡的水平作用力威胁整个地基结构,造成倾覆的威胁,同时在建筑物基础受力层的底部设置抗拔锚杆,通过对杆体安装、注浆和锚杆钻孔等动作,提高建筑基础的抗拔强度。

1.2抗震结构设计

地球地壳板块活动异常,抗震结构的考虑始终是高层建筑的薄弱点,高层建筑工程庞大结构复杂,地震发生时可能的后果无法准确估算,外加设计人员在设计过程中未能综合考虑相关地震的破坏原理,使得建筑结构设计在抗震方面缺乏灵活性。地震发生时地基出现不同的沉降现象,这是导致系列建筑物被损毁的直接原因,所以合理设置抗侧力构件的位置,横向和纵向通过提高抗侧力构件的强度,使高层建筑物结构处于平面布置规则对称的状态,侧向刚度沿竖向宜均匀变化,从而达到一定的抗震效果;设计过程中,使用混凝土剪力墙的结构设计,可以有效提高抗侧力结构构件的承重能力,使得建筑物整体的重量更好的分散和延续开来,有效提高抗震效果。

1.3消防结构设计

高层建筑是一个复杂的系统工程,为了满足各种功能需求,施工过程中需要使用各种功能不同的建筑材料,并且很多材料是可燃的,无疑增加了火灾发生的概率。外加高层建筑空气对流性强,高空段风力比较强大,如果不幸发生火灾,无疑为火势的迅速蔓延提供了条件。所以高层建筑的消防结构设计要有科学性、人性化,切实保障住房使用者的生命财产安全。设计过程中必须全面考虑防火间距的设计、安全疏散功能结构的设计以及阻碍火势蔓延的分隔结构的设计,坚持以防为主,消防应急处理为辅的设计理念。

1.4工程造价

高层建筑地基设计的质量直接影响着基础的类型选择和工程的造价。如何在确保地基质量符合建筑规范要求的同时,又设计出经济效益最大的高层建筑基础呢?这就需要建筑设计者综合考虑工程的相关影响因素,设计前依据地质勘探报告对工程地质的情况充分了解,结合“整片筏基”与“板式筏基+独立柱基”两组方式的基础设计方案,实现最经济合理的地基量;除此之外,对于高层建筑整体使用的工程材料,都要做好全面的市场调查,找到质量、性能都相对较高的替代材料,同时价格又非常的经济;工程建设过程中,杜绝材料采购过程中出现的严重价格差现象,确保每一分工程款都用在实处。

2高层建筑结构的相关设计原则

2.1高层建筑过程中基础的设计原则

地基设计是高层建筑结构设计的前提工作,随着城市人口不断增加,为提高土地使用率,高层建筑不断涌现,车库、人防设施、地下室等不要不断的增加,通过确定基础底板的埋置深度以及建筑工程的岩土特征,来选定工程的基础设计。并且尽量选取天然的筏板基础。因为基础的设计工作包含基础的类型设计以及对地基的处理工作,地基类型的选择要考虑到建筑物上部结构的荷载、地基的承载力以及整体的工程造价等相关因素。如果在基础设计过程中天然筏板基础的沉降量计算过大,那么天然地基筏板就无法得到很好的应用,无疑增加成本,造成不必要的浪费。所以在高层建筑地基的设计过程中,需要详细研究地质勘探报告,要充分考虑筏板的设计基础、承载力和变形组成情况等,结合地区的相关地质条件对基础进行合理设计。

2.2剪力墙设置原则

前文提到过剪力墙在抗震结构设计中的重要作用,高层建筑中剪力墙的位置设置及其数量要求也是高层建筑结构设计原则中的重要考虑因素。现有的相关建筑规划中,主要描述的都是短肢剪力墙,而短肢剪力墙在实际使用过程中受到很多因素的影响,所以具体设计过程中设计人员都会尽量避免使用这种墙体结构,从而避免了后续相关问题的产生。在具体设计过程中,设计人员不能死板照搬规划,认为剪力墙只能设置在建筑物两端,要依据实际情况灵活变通,在建筑的纵向中轴线上也应该增加剪力墙结构设计,同时调整该结构墙的中心位置,合理控制好厚度和截面,以便建筑物的侧向位移能保持在可允许的范围之内。

3筏板设计的综合设计原则

高层建筑结构筏板基础的设计过程需要考虑很多的影响因素,还要结合具体施工造价情况对设计方案进行合理有效的调整。具体设计过程中可以通过比较“整片筏基”与“板式筏基+独立柱基”两组方式的工程造价,得出经济效益更加显著的方案。如果地质勘探的结果显示地层分布不均匀,上部结构荷载在筏板上分布不均匀,是筏板基础各部分的沉降差异较明显的话,那么就可以进行以下调整:调整建筑地表以上结构荷载或者调整网住间距,以达到减少基层压力差的效果;调整筏板的形状和面积,均衡压力差;对底板的强度与刚度予以加强,并且在跨度较大的间柱体之间设置加强板或者暗梁,提高基础筏板的整体抗压性能。

篇13

中图分类号: TU97 文献标识码: A 文章编号:

在新《高规》即《高层建筑混凝土结构技术规程》(JGJ3-2010)里规定: 10层及10层以上或者房屋高度大于28m的住宅建筑和房屋高度大于24m的其他高层民用建筑称为高层建筑。目前我国高度在100米以上的建筑已经远远超过了100幢,可见高层建筑日益普及,同时侧移和内力也随着结构高度增加而急剧增加,当高层建筑达到一定高度时,侧向位移力很大,这就大幅度提高了对设计的要求,高层建筑结构设计的质量直接关系到建筑的质量。 1 高层建筑结构特点 1.1 轴向变形的重要性 在高层建筑中,竖向荷载数值很大,能够在柱中引起较大的轴向变形,从而会对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩值减小,跨中正弯矩之和端支座负弯矩值增大;还会对预制构件的下料长度产生影响,要求根据轴向变形计算值,对下料长度进行调整;另外对构件剪力和侧移产生影响,与考虑构件竖向变形比较,会得出偏于不安全的结果。 1.2 侧移是设计的控制参数 在高层建筑中,结构侧移已成为高楼结构设计中的关键因素。随着楼房高度的增加,水平荷载下结构的侧移变形迅速增大,因而结构在水平荷载作用下的侧移应被控制在规范规定的某一限度之内。 1.3 结构延性是不容忽视的设计指标 相对于较低楼房而言,高楼结构更柔一些,在地震作用下的变形更大一些。为了使结构在进入塑性变形阶段后仍具有较强的变形能力,避免倒塌,特别需要在构造上采取恰当的措施,来保证结构具有足够的延性。 1.4 水平荷载的决定性作用 一方面,因为楼房自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与楼房高度的一次方成正比;而水平荷载对结构产生的倾覆力矩,以及由此在竖向构件中引起的轴力,是与楼房高度的两次方成正比;另一方面,对某一定高度楼房来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随结构动力特性的不同而有较大幅度的变化。 1.5 抗震设计要求 有抗震设防的高层建筑结构设计,除要考虑正常使用时的竖向荷载、风荷载外,还必须使结构具有良好的抗震性能,做到小震不坏、中震可修、大震不倒。 2高层建筑结构常见体系 2.1 筒体结构