在线客服

人工智能的投资逻辑实用13篇

引论:我们为您整理了13篇人工智能的投资逻辑范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

人工智能的投资逻辑

篇1

中国的人工智能时代,实际上就是互联网和大数据时代的产业衍生。这是因为互联网前期的高速发展,从平面互联网到一维、二维,再到后面快速智能互联网的发展,整个进程都是循序渐进的。而中国人工智能时代的基础设施和基础条件,其实也是逐渐在成熟的。云计算、智能终端、大数据、宽带、传感器等产业链逐渐成熟,也推动着人工智能的快速爆发。

滴滴出行创始人程维曾在一次演讲中表示,互联网上半场互连的机会已经过去了,下半场就是人工智能。而分享经济,是未来20年整个互联网时代最大的发展趋势。新美大CEO王兴也曾在一次工作会议中提出,未来大的互联网企业,其实重点在运营。过去是做用户、做流量,接下来的重点就是做运营。把这个点做到极致,真正使互联网企业效率提高、成本降低、用户体验提升。而这三个部分要做好,其实跟人工智能有着重大的关联。互联网上半场连接人人的风口已经基本结束,互联网下半场运营提升和人机连接的风口正在开始。

中国人工智能应用的产业发展也是逐渐在深化,人工智能的类型大致分为3种。第一是数据挖掘和优化以助于精准营销部分的应用;第二是软件、硬件控制,推动工业4.0发展;第三是人机互动,包括智能客服、服务机器人等方面的发展。相对而言,这些是目前正在快速发展的。而未来更多应用的机会将出现在在线医疗、在线教育、车联网、无人机、工业4.0等方面。

互联网的下半场属于人工智能,这已经是大家的共识。但是,资本对互联网下半场的投资逻辑又是怎样的呢?

以启赋资本为例。即使目前在机器人、无人机方面布局不多,但启赋资本在在线医疗、在线教育、互联网酒店、酒店智能化应用和工业4.0等方面都有了充分的布局。与此同时,为了获取巨大的用户基础,启赋资本还投资了大量的产业互联网平台型公司。而在人工智能方面,一些能够早期布局的机会,也是比较珍贵的。

篇2

2.人工智能的研究历史 

人工智能的发展也并不是一帆风顺的,人工智能的研究经历了以下几个阶段: 孕育阶段:古希腊的亚里士多德,给出了形式逻辑的基本规律。英国的哲学家、自然科学家培根,系统地给出了归纳法。“知识就是力量”德国数学家、哲学家布莱尼兹。提出了关于数理逻辑的思想,把形式逻辑符号化,从而能对人的思维进行运 算和推理。做出了能做四则运算的手摇计算机英国数学家、逻辑学家布尔实现了布莱尼茨的思维符号化和数学化的思想,提出了一种崭新的代数系统——布尔代数。 

第一阶段: 50 年代人工智能的兴起和冷落人工智能概念首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题求解程序LISP表处理语言等。但由于消解法推理能力的有限,以及机器翻译等的失败,使人工智能走入了低谷。这一阶段的特点是:重视问题求解的方法,忽视知识重要性。 

第二阶段: 60 年代末到70 年代,专家系统出现,使人工智能研究出现新DENDRAL 化学质谱分析系统、MYCIN 疾病诊断和治疗系统、PROSPECTIOR 探矿系统、Hearsay-II 语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969 年成立了国际人工智能联合会议。 

第三阶段: 80 年代,随着第五代计算机的研制,人工智能得到了很大发展日本1982 年开始了“第五代计算机研制计划”,即“知识信息处理计算机系统K I P S”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。 

第四阶段: 80 年代末,神经网络飞速发展1987 年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。 第五阶段: 90 年代,人工智能出现新的研究由于网络技术特别是国际互连网技术的发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能更面向实用。另外,由于Hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。人工智能已深入到社会生活的各个领域。 

3. 人工智能的发展方向 

3.1人工智能的研究新课题。人工智能的长远目标是要创造人类智能的机器,用机器模拟人类的智能。这是一个十分漫长的过程,人工智能研究者将通过多种途径、从不同的研究课题入手进行探索。 在近期,有几方面的研究课题可供选择:更完善更新的人工智能理论框架;自动或半自动的知识获取工具;能实现海量高速存储并具有学习功能的联想知识库;新型推理机制和推理机;分布式人工智能与协同式专家系统;智能控制与智能管理;智能机器人;人工智能机;新一代的电脑模型。因为人工智能的研究领域十分广阔,它总的来说是面向应用的,主要研究领域有专家系统,有人在工作,它就可以用在什么地方,因为人工智能的最根本目的还是要模拟人类的思维。其发展可以归纳为:人机融合、机器智能、智能机器。 

3.2人机融合。人工智能的近期研究目标在于建造智能计算机,用以代替人类从事脑力劳动,即使现有的计算机更聪明更有用。正是根据这一近期研究目标,我们才把人工智能理解为计算机科学的一个分支。人工智能还有它的远期研究目标,即探究人类智能和机器智能的基本原理,研究用自动机(automata)模拟人类的思维过程和智能行为。这个长期目标远远超出计算机科学的范畴,几乎涉及自然科学和社会科学的所有学科。在重新阐述我们的历史知识的过程中,哲学家、科学家和人工智能学家有机会努力解决知识的模糊性以及消除知识的不一致性。这种努力的结果,可能导致知识的某些改善,以便能够比较容易地推断出令人感兴趣的新的真理。 

篇3

人工智能(Artificial Intelligence,简称AI)是计算机科学的一个分支,它探究智能的实质,并以制造一种能以人类智能相类似的方式做出反应的智能机器为目的。人工智能的产生和发展首先是一场思维科学的革命,它的产生和发展一定程度上依赖于思维科学的革命,同时它也对人类的思维方式和方法产生了深刻的变革。人工智能是与哲学关系最为紧密的科学话题,它集合了来自认知心理学、语言学、神经科学、逻辑学、数学、计算机科学、机器人学、经济学、社会学等等学科的研究成果。过去的半个多世纪以来人工智能在人类认识自身及改造世界的道路上扮演了重要角色。一直以来,对人工智能研究存在两种态度:强人工智能和弱人工智能,前者认为AI可以达到具备思维理解的程度,可以具有真正的智能;后者认为研究AI只是通过它来探索人类认知,其智能只是模仿的不完全的智能。

2、人工智能的发展

对于人工智能的研究一共可以分为五个阶段。

第一个阶段是人工智能的兴起与冷落,这个时间是在20世纪的50年代。这个阶段是人工智能的起始阶段,人工智能的概念首次被提出,并相继涌现出一批科技成果,例如机器定理证明、跳棋程序、LISP语言等。由于人工智能处于起始阶段,很多地方都存在着缺陷,在加上对自然语言的翻译失败等诸多原因,人工智能的发展一度陷入低谷。同时在这一个阶段的人工智能研究有一个十分明显的特点:对问题求解的方法过度重视,而忽视了知识重要性。

第二个阶段从20世纪的60年代末到70年代。专家系统的出现将人工智能的研究再一次推向。其中比较著名的专家系统有DENDAL化学质谱分析系统、MTCIN疾病诊断和治疗系统、Hearsay-11语言理解系统等。这些专家系统的出现标志着人工智能已经进入了实际运用的阶段。

第三个阶段是20世纪80年代。这个阶段伴随着第五代计算机的研制,人工智能的研究也取得了极大的进展。日本为了能够使推理的速度达到数值运算的速度那么快,于1982年开始了“第五代计算机研制计划”。这个计划虽然最终结果是以失败结束,但是它却带来了人工智能研究的又一轮热潮。

第四个阶段是20世纪的80年代末。1987年是神经网络这一新兴科学诞生的年份。1987年,美国召开了第一次神经网络国际会议,并向世人宣告了这一新兴科学的诞生。此后,世界各国在神经网络上的投资也开始逐渐的增加。

第五个阶段是20世纪90年代后。网络技术的出现和发展,为人工智能的研究提供了新的方向。人工智能的研究已经从曾经的单个智能主体研究开始转向基于网络环境下的分布式人工智能研究。在这个阶段人工智能不仅仅对基于同一目标的分布式问题求解进行研究,同时还对多个智能主体的多目标问题求解进行研究,让人工智能有更多的实际用途。

3、人工智能可否超过人的智能

那么人工智能可否超过人的智能呢?关于这个问题可以从下面几个方面来分析:

首先,从哲学量变会引起质变的角度来说,人工智能的不断发展必定会产生质的飞跃。大家都知道,人工智能从最初的简单模拟功能,到现在能进行推理分析 (比如计算机战胜了国际象棋世界冠军),这本身就是巨大的量变。在一部科幻电影中,父亲把儿子生前的记忆输人芯片,装在机器人中,这个机器人就与他的儿子死去时具有相同的思维和记忆,虽然他不会长大。从技术的角度来说,科幻电影中的东西在不久的将来也可以成为现实。到那个时候,真的就很难辨别是人还是机器了。

第二,有的人会说,人工智能不会超过人的智能,因为人工智能是人制造出来的,所以不可能超过人的智能。对于这个观点,我们这样想一想,起重机也是人造出来的,它的力量不是超过人类很多吗?汽车也是人制造出来的,它的速度不也远超过人类的速度吗?从科学技术的角度来说,智能和力气、速度一样,也是人的某个方面的特性,为什么人工智能就不能超过人类的智能呢?

第三,还有的人认为,人工智能是人制造的,必有其致命的弱点,所以人的智能胜于人工智能。我认为这一点也不成立,因为人与机器人比较,也可以说有致命弱点,比如说人如果没有空气的话,就不能生存,就好比是机器人没有电一样。再比如,人体在超过一定的温度或压力的环境下,不能生存,在这一点上,机器人却可以远胜于人类。因此,在弱点比较方面,我认为人工智能的机器人并不比人差,在某些方面还远胜于人类。

第四,随着科学技术的发展,人工智能不单需要逻辑思维与模仿。科学家对人类大脑和精神系统研究得越多,他们越加肯定情感是智能的一部分,而不是与智能相分离的,因此人工智能领域的下一个突破可能不仅在于赋予它情感能力。

4、结束语

人工智能一直处于计算机技术的前沿,其研究的理论和发现在很大程度上将决定计算机技术、控制科学与技术的发展方向。今天,已经有很多人工智能研究的成果进入人们的日常生活。将来,人工智能技术的发展将会给人们的生活、工作和教育等带来更大的影响。

参考文献:

篇4

在这13个种类中,研究机器学习(应用)的人工智能公司数目最多,达260家,约占整个行业的30%。从区域分布情况来看,欧美等西方国家发展较为迅猛,其中美国以499家人工智能公司占据绝对主导地位,且初创公司数量众多;而以中国为首的发展中国家在人工智能领域显然仍处于起步阶段,真正布局该产业的公司较少,以传统互联网巨头进军人工智能领域为主。

目前较为成熟的感知智能技术(如语音、视觉识别的服务、硬件产品等)的应用开发所形成的新“人工智能+”将引领产业变革,成为推动社会飞跃发展的新动力。在传统产业,人工智能可以在制造业、农业教育、金融、交通、医疗、文体娱乐、公共管理等领域得到广泛应用,将不断引入新的业态和商业模式;在新兴产业,人工智能还可以带动工业机器人、无人驾驶汽车、VR、无人机等处于产业生命周期导入期的公司飞跃式发展。

从具体应用方向来看,如今十分火热的工业4.0、人脸识别、智能答题机器人、智能家居、智能安保、智能医疗、虚拟私人助理等人工智能概念是有望得到快速爆发的重点领域。目前人工智能在图像识别、语言识别和自然语言处理,以及人机交互、机器视觉、自动驾驶等方面都已经成功应用。

人工智能产业链中,基础层是构建生态的基础,价值最高,需要长期投入进行战略布局;通用技术层是构建技术护城河的基础,需要中长期进行布局;解决方案层直戳行业痛点,变现能力最强。

基础层公司 多为传统IT转型

人工智能基础层就是我们常说的大数据、云计算、CPU等。目前国内上市公司中在人工智能基础层方面相关的公司包括久其软件、东方国信、天玑科技、浪潮信息、恒生电子、拓尔思等。

恒生电子(600570.SH)2016年成立了恒生研究院,负责人工智能、区块链、大数据等前沿技术的研发。区块链课题,恒生电子作为发起单位加入了金融区块链合作联盟(金联盟),并加入了linux基金会hyperledGEr开源项目等。

久其软件从最初的软件提供商到移动互联和大数据运营的再次验证,未来定位基于高端客户资源大数据和移动互联网变现的不断执行公司。公司创立之初以报表管理软件切入,为政府提供结构化数据分析和整理,并进一步提供完整解决方案,现已发展成集大数据、集团管控、电子政务和移动互联领域软件于一身的大数据解决方案提供商,A股稀缺。

拓尔思(300299.SZ)大数据服务领域稀缺纯正标的。公司脱胎于北京信息科技大学中文信息处理研究中心,自1985年起便开始研究中文信息检索,目前公司已拥有大数据领域非结构化数据处理技术,在大数据分析领域具有较高的技术壁垒,从底层技术、平台产品到应用产品服务技术全产业链布局。随着非结构化数据的地位在整个大数据领域中的不断上升,拓尔思有望进入高速增长期。

科大讯飞(002230.SZ)是A股人工智能龙头,公司在以“从能听会说到能理解会思考”为目标的讯飞超脑项目上,持续加大投入,在感知智能、认知智能等领域均取得显著研究成果。

技术及应用层公司 靠智能制造落地

人工智能技术层主要涵盖了框架、算法、通用技术,目前人工智能算法大体上流行12种,这12种算法包括决策树、朴素贝叶斯分类器、最小二乘法、逻辑回归、支持向量机、集成学习、聚类算法、主成分析法、SVD矩阵分解、独立成分分析、关联规则、其他方法等。

人工智能算法通过AlphaGo与柯洁的人机大战,成为当前数据分析领域中的一个热点内容。目前通用的框架层:TensorFlow,Caffe,Theano,Torch,DMTK,DTPAR,ROS等框架或操作系统。作为投资者或者普通消费者更多的会关注通用技术如:语音识别、图像识别、人脸识别、NLP、SLAM、传感器融合、路径规划等技术或中间件,毕竟通用技术与我们日常生活习习相关,如你们平时所能看到的智能广告、智能诊断、自动写作、身份识别、智能投资顾问、智能助理、无人车、机器人等场景应用。

目前,A股市场有59家公司涉足机器人产业,部分公司通过收购进入这个领域。以昆仑万维为例,公司收购美国的机器人公司WooboInc.,致力于开发人工智能技术驱动的交互式机器人;在东方网力的18.30亿元增发方案中,1.57亿元拟投入智能服务机器人项目。

人工智能目前最看好生物识别,如远方光电和佳都科技。金融科技Fintech围绕IT与金融创新展开。虚拟的网络战争已经开始,IT安全有更大的弹性。无人驾驶里有四维图新和中海达。绕着人工智能产业链有很多投资机会,大数据是产业链发展起点,作为数据采集的关键通道,传感器至关重要,如汉王科技;云计算、大数据处理技术支撑上,国内FPGA(可编程性)稀缺标的紫光国芯;人工智能应用场景上防领域佳都科技、营销领域浙江富润等相关的上市公司。

篇5

此前,在2月底,因为担忧特斯拉Model 3车型今年生产时间可能推迟,以及预计该公司将出售股权募集17亿美元资金,高盛分析师David Tamberrino将特斯拉股票评级从“中性”下调至“卖出”。

那么,腾讯为什么会选择大手笔投资特斯拉呢?

财务投资 即使仅仅将其视作财务投资行为,腾讯这次买入特斯拉的股票也已经赚翻了。以美国证监会披露的交易数据计算,腾讯购入特斯拉股票的平均价格为217.69美元。截至4月3日收盘,特斯拉的股价涨到了298.52美元,也就是说这笔投资的市值已经上涨了37%。此前已有的多个交易案例也表明,腾讯绝对是个精明的投资者。

汽车业务 虽然目前仅限于持有被动股权,但特斯拉显然与腾讯在新能源汽车上的战略是一致的。此前腾讯一直积极投入新能源汽车,包括与富士康及和谐汽车共同成立了和谐富腾(2017年2月拆分为两个项目,豪华电动汽车Future Mobility Corp和新能源汽车企业爱驰亿维),以及以早期投资者的身份入股了蔚来汽车。腾讯拥有互联网汽车最重要的两部分软资产,地图和应用。对于特斯拉来说,中国市场的拓展也可以借助腾讯的这些相关资源。

人工智能 人工智能已经成了所有大公司难以回避的战略方向,此前落后于竞争对手的腾讯最近明显加大了这方面的投入和布局。就在宣布入股特斯拉之前的几天,腾讯宣布人工智能领域科学家张潼成为腾讯AI Lab(腾讯人工智能实验室)主任。自动驾驶可能是人工智能最接近现实的应用之一,而特斯拉在这方面有着最庞大的用户群和最深厚的技术积累。这些都有助于腾讯增强自身在人工智能领域的实际经验。

作为国内市值最高的互联网公司,目前腾讯的市值超过2700亿美元。同时其业绩还在不断增长,2016年的财报显示,公司全年营收1519.38亿元,同比增L48%,净利润414.47亿元,同比增长42%。

篇6

0 引 言

智能电网是当今世界电力系统发展的重大变革,也是21世纪电力系统的重大科技创新和发展趋势。2003年,美国“未来能源联盟”首次提出智能电网的概念。同年,美国能源部了“Grid 2030”设想[1],将美国的未来电力系统描述为一个完全自动化的电力传输网络,能够监视和控制每个用户和电网节点,保证从电厂到终端用户整个输配电过程中所有节点之间的信息和电能的双向流动。2005年,欧洲技术论坛(ETP)提出了“Smart Grid”概念[2],计划通过智能电网的建设,向所有用户提供高度可靠、经济有效的电能,充分开发利用大型集中发电机和小型分布式电源,提高电网公司运营效率,降低电能价格,加强与客户的互动,应对来自市场、安全和电能质量、环境等方面的压力。

国内也高度重视智能电网建设。2010年6月7日,总书记在两院院士大会上的讲话中提出,要“构建覆盖城乡的智能、高效、可靠的电网体系”。国家科技部于2009年11月24日的《关于加快我国智能电网技术发展的报告》中提出了明确的目标和任务。国家电网公司于2009年5月了“坚强智能电网”愿景及建设路线图。南方电网有限责任公司在2010年7月提出了“建设一个覆盖城乡的智能、高效、可靠的绿色电网”的目标。2011年2月,陕西省地方电力(集团)有限公司作为专业的配电网公司,联合清华大学提出了建设“多指标自趋优”智能配电网的目标。

智能电网涉及能源、环境、社会、经济和管理等多个学科,由于其具备系统工程和创新技术的特点,目前智能电网的研究趋向发散,对智能电网的认识多从企业自身出发,尚未收敛到智能电网本质的研究,影响和干扰了对智能电网发展方向的研判。本文在分析国内外智能电网相关研究的基础上,结合实践应用,溯源了智能电网的本质——智能,提出了智能电网分代标准,建立了智能电网分代模型,探讨了智能电网分代的社会经济意义。

1 国外智能电网分代研究状况

分代研究在计算机和战斗机等领域已经取得了共识。计算机按照所采用的电子元件,历经了电子管计算机、晶体管计算机、集成电路计算机、大规模集成电路计算机,现在正在研发信息获取、存储、处理、通信与人工智能相结合的第五代计算机。20世纪40年代中期,以喷气式发动机为动力的战斗机出现后,按时代和技术水平,战斗机历经三代,目前正在研制第四代战斗机。

由于智能电网尚未大规模应用,与计算机、作战飞机等其他领域分代研究更注重“回头看”的方法不同,智能电网分代更注重“向前看”,这个特点导致智能电网分层次、分步骤、分阶段的研究异彩纷呈,莫衷一是。国外智能电网分代的相关研究综述如下。

1.1 智能电网演进模型

2010年1月,加拿大学者Hassan Farhangi从功能和投资回报率(ROI)两个维度,提出了如图1所示的智能电网的演进模型[3]。他认为,由于化石燃料的成本猛增,电力公司无法扩大发电能力以满足用户对电能不断上升的需求,只有从配电网着手,加强需求侧管理,才能保障电力公司拥有较高的ROI水平。模型表示,智能电网最初的投资用来满足计量设备由机电式到单向自动抄表(AMR)的功能转变,AMR具有节约人力以及时间成本的优势,但是由于其只具有单向通信能力,无法支持电力公司依据从电表获取数据采取调控措施。高级计量架构(AMI)能够提供双向的通信系统,旨在为电力公司提供实时的能耗数据,允许客户以价格为基础,对能源使用做出选择。智能电网演进的最终目标是分布式控制与微网相结合的互联电网。

1.2 智能电网持续发展理论

2011年7月,美国GridNet公司执行副总裁兼首席战略官Andres Carvallo和能源与IT行业学者John Cooper合作出版了“The Advanced Smart Grid — Edge Power Driving Sustainability”一书,提出了智能电网持续发展理论[4]。书中认为第一代智能电网(Smart Grid 1.0)实现了发电厂到终端计量设备的电流与信息流的传输,典型的第一代智能电网是美国科罗拉多州博尔德市智能电网的建设。下一代智能电网(Smart Grid 2.0)将是一个集成的、先进的智能电网体系,从战略上进行顶层设计,在组织、运行、系统集成与建模等多个维度进行柔性规划,下一代智能电网的一些技术已经在美国奥斯汀市智能电网研究项目Pecan Street中浮现。书中对第三代智能电网(Smart Grid 3.0)进行了展望,并将其定义为一个基于互联网络的重新设计的能源系统。

1.3 智能电网层次理论

IBM高级电力专家Martin Hauske认为智能电网的基本概念有3个主要元素:首先是广泛连接资产与设备的传感器;其次是数据的搜集与整合体系;最后是依据数据进行相关分析,以优化运行和管理的能力。与之对应,智能电网也就有三个层面的含义[5]:首先是利用传感器对发电、输电、配电、供电等关键设备的运行状况进行实时监控;然后将获得的数据通过网络系统进行收集、整合;最后通过对数据的分析、挖掘,达到对整个电力系统运行的优化管理。因此,智能电网可以被认为是通过传感器把各种设备、资产连接到一起,形成一个客户服务总线,通过对信息进行整合分析,从而降低成本,提高效率和可靠性,促进管理和运行达到最优化。

1.4 智能电网成熟度模型

智能电网成熟度模型是IBM、美国生产力和质量中心(APQC)及全球智能电网联盟(GIUNC)合作研究的成果[6]。智能电网的成熟度分为5个阶段:第1阶段,只有对智能电网的设想,主要工作是对技术的试验和评价,以及建立业务模型;第2阶段,企业在至少一个智能电网的重要业务领域进行投资和实施;第3阶段,企业对智能电网的组成部分进行重新配置,实现业务领域整合或产业链升级;第4阶段,实现企业范围的跨业务综合观测及综合控制,力争形成新的经济或商业模式;第5阶段,企业有能力在新的业务、运行、环境等机会出现时,充分利用并发展壮大。

综观国外的相关研究,智能电网演进模型以计量系统为主线,没有加入交易环节,同时忽视了人工智能在电网中的应用。智能电网持续发展理论有对智能电网分代以及各代相应功能的描述,但是缺乏对智能电网本质的分析,特别是对三代智能电网核心的描述。智能电网层次理论以传感器为基础,触及到智能电网的基本,但是数据收集与整合体系等没有体现人这一重要因素的参与,理论阐述不够全面。智能电网成熟度模型实质上是智能电网的推进步骤。因此,上述研究都没有涉及智能电网的本质。

2 智能电网的本质——智能

对国外智能电网的研究和实践进行分析,能够为国内的相关研究带来启示和借鉴。从人类认识事物的基本方法来看,对智能电网进行分代研究,必然要从智能电网的本质着手。智能电网可以认为是人工智能在传统电网中的应用,而人工智能又起源于人类智能,因此,必须从人类智能出发,探求智能电网的本质——智能。

2.1 人类智能的发展阶段

人类智能经历了从初级到高级、从简单到复杂的演化过程。这种过程只在个体的前十几年表现得尤为突出,正是这一过程决定了每个人一生智能水平的高低,也决定了人类群体智能水平的多样性。

1983年,美国学者Howard Gardner提出多元智能理论,将智能分为语言智能、数学逻辑智能、空间智能、身体运动智能、音乐智能、人际智能、自我认知智能、自然认知智能等8个方面。瑞士心理学家Jean Piaget从时间维度对人类智能演化规律做出经典总结,提出了人类智能发展理论[7],将个体从出生到青年时期的智能发展水平分为感知运动阶段、前运算阶段、具体运算阶段和形式运算阶段。

虽然多元智能理论并不着眼于各个智能在个体层面的发展顺序,但是结合Jean Piaget的认知发展理论,同时根据Howard Gardner对每种智能概念的描述,可以对智能的8个组成部分以发展为时序,在多元维度上进行归类。在感知运动阶段,空间智能和音乐智能是人类智能重点发展的部分;到了前运算阶段,语言智能和身体运动智能在儿童身上表现较为明显;数学逻辑能力和自我认知能力在具体运算阶段得到了迅速发展;最后,从青少年阶段开始,终其一生,对自然的认知,人际交往能力随着阅历的丰富、经验的积累而日趋成熟。

2.2 人工智能是对人类智能的模拟、延伸和扩展

人类智能的演进规律遵循着Jean Piaget的人类智能发展理论,这些研究成果也深刻地影响着另一个与之紧密相关的学科,即以计算机为基础的人工智能的研究。人工智能最初被定义为“让机器的行为看起来就像人所表现出的智能行为一样”,到后期逐渐演变为让机器拥有自己的思维。对比人类智能发展的历程,人工智能的演进呈现出与之相似的路径。

(1) 人工智能发展的初级阶段是对人类智能的模拟。通过传感器远程传送信号,需要操作者通过计算机终端控制机器执行动作,这类似于人类智能的感知运动阶段,具体的应用如排爆机器人、勘探机器人等。

(2) 人工智能发展的中级阶段是对人类智能的延伸。着眼于通过程序算法实现机器的逻辑运算和自我认知能力,类似于人类智能的前运算和具体运算阶段。智能机器人通过处理器分析传感器收集的信息,在无人操控的状态下执行动作。有些智能机器人还能通过对人类语言的识别和模拟实现与人类的语言交流,如日本的ASIMO智能机器人,可以通过“脑—机”系统达到人类思维直接控制机器人的效果。

(3) 人工智能的更高阶段,智能将成为一种系统层面的应用。人工智能体现出自我思维和机器情感等人类特有的能力,通过自我思维产生对外部环境的认识,通过机器感情与外部环境产生更为复杂的交互,这些能力使得人工智能发生了从模拟、延伸到扩展人类智能的突破。

2.3 智能电网是人工智能在传统电网中的应用

智能电网建立在电力电子技术、传感与测量技术、控制仿真决策技术、信息与通信技术、人工智能技术等基础技术之上,以实现发电、储能、输电、配电、用电等环节的智能化为目的。其中,人工智能技术在推动智能电网发展中起着重要作用。

(1) 人工智能的应用能够推动整个电力系统的发展。传统电网存在大量非线性的、模糊的、不确定、不精确、不完全真值的问题,人工智能技术应用的目的就是解决上述问题。基于人工智能的电网故障检测与诊断、具有灵活自愈功能的配电自动化等技术的应用表明,在期望能取得低代价的解决方法和鲁棒性方面,人工智能的应用显著改善了传统电网对不确定、高度非线性环境的适应能力。

(2) 人工智能技术的应用体现了智能电网的本质。智能电网的本质是智能,现代人工智能技术是对人类智能的模拟,因而人工智能的应用是电网“智能化”的根本体现,人工智能技术应用使智能电网回归到了它的本质——智能。从这种意义上说,人工智能技术是否应用是评价一个电网是不是智能电网的基本依据。

(3) 人工智能技术在电网中的应用程度体现了智能电网区别于传统电网的特征。传统电网未能完整地体现人工智能“感知、思维、行为”三要素,导致人的参与程度较低,传统电网始终徘徊在由工业化主导的阶段,在信息化与工业化融合时,遇到了重重困难。智能电网中,人工智能技术的广泛应用将使得电网逐步具有模拟人类智能的能力,从而减少人的参与程度。

(4) 未来智能电网的发展中,人工智能是推动智能电网跃进发展的革命性力量。未来智能电网将是一个具有自预测、自诊断、自愈、自组织和自管理特性的电网。智能电网的跃进发展将主要依靠电网的自学习能力,人的干预将退居其次。人工智能的应用,使得电网的自学习成为可能。在可以预见的将来,除了人工智能技术,其他技术均无法有效增强电网的自学习能力。

3 智能电网分代原则、标准与模型

以上分析了智能电网的本质,以下在智能电网的本质基础上提出智能电网分代的原则、标准以及智能电网分代模型。

3.1 智能电网分代原则

智能电网分代必须遵循以下原则:

(1) 惟一性原则:下一代和上一代的智能电网必须按照智能电网的本质进行划分。

(2) 革命性原则:下一代智能电网必须在整体,而不是局部取得标志性进展和突破。

(3) 连续性原则:下一代智能电网发展的关键要素必须蕴含在上一代智能电网的发展过程中。

3.2 智能电网分代标准

智能电网的本质是智能。人工智能是人类智能应用于传统电网的纽带,人工智能将人类智能的8个方面归纳为“感知、行为、思维”3个要素,上述3个要素也是智能电网分代的标准。

感知是客观事物通过感觉器官在大脑中的直接反映。在多元智能的8个方面中,感知体现语言智能、空间智能、音乐智能。感知在人工智能技术中的体现有语音识别、机器视觉等。

行为是器官对外界刺激所产生的反应。行为体现身体运动智能,行为在人工智能技术中的体现有机器人学、智能控制等。

思维是主体处理信息及意识的活动。思维体现数学逻辑智能、人际智能、自我认知智能、自然认知智能,思维在人工智能技术中的体现有知识系统、专家系统、神经网络、进化计算等。

3.3 智能电网分代模型

智能电网发展的各阶段均须具备人工智能3个要素的全部或部分,不具备3个要素的电网属于传统电网。依据3个要素在传统电网中渗透与融合的深度和广度,建立智能电网分代模型如图2所示。

图2中将智能电网划分为具有以下特征的三代智能电网:

(1) 第一代智能电网:自感知智能电网(Self-sensing Smart Grid)。第一代智能电网在传统电网的基础上具备自主感知能力,是人工智能在电网中应用的初级阶段。智能电网关键设备能够自主感知电属性(负荷等)和电相关属性(温度等)的变化,需要人参与进行决策并采取行动,第一代智能电网只具备简单的自主决策和初级的自主行为能力。典型的自感知智能电网设备及系统如电子式及光学式互感器、智能环网柜、智能在线监测系统、智能终端等。

(2) 第二代智能电网:自适应智能电网(Adaptive Smart Grid)。第二代智能电网在第一代智能电网自主感知能力的基础上,具备一定的自主决策能力和自主行为能力,是人工智能在电网中应用的中级阶段,较少需要人参与就能根据感知结果进行决策并采取行动。这种感知、决策和行为是独立的,即只在单一设备或系统局部的感知域内进行决策并根据决策结果驱动单一设备或系统局部采取行动,以达到局部最优。典型的自适应智能电网应用系统如智能调度系统、智能自愈系统等。

(3) 第三代智能电网:自趋优智能电网(Self-approximate-optimization Smart Grid)。第三代智能电网在第二代智能电网自主决策和自主行为能力的基础上,是人工智能在电网中应用的高级阶段,更少需要或不需要人参与就能根据感知结果进行决策并采取行动。这种感知、决策和行为是系统的、全局的,即在整个系统感知域(或子集)内进行决策并根据决策结果驱动相关(部分或全部)设备采取行动,使得电网自身状态趋向最优。目前,已经提出来的自趋优智能电网如智能广域机器人(Smart Wide Area Robot,Smart-WAR)[8]。

4 智能电网分代的社会经济意义

技术创新与人类解放之间的历史发展进程表明,人的劳动方式在逐渐变化,技术创新使人在生产劳动中逐渐从事必躬亲的执行者演变成监督者、命令者,这种角色的演变,反映出技术创新在人的实践过程中所具备的强大能动作用。智能电网作为当前电网行业最重要的技术创新形式,同样发挥着着解放人类劳动的作用,亦即电网运行中人的参与程度不断减弱。

第一代智能电网通过技术创新实现自我感知,不但极大地拓展了认知的深度和广度,而且还使人的身体在一定程度上获得了解放。

第二代智能电网通过技术创新实现自我行为,将会极大地减轻人的劳动强度,甚至取代了劳动者在电网运行过程中仅有的操作、监督和控制工作,使人得以在很大程度上从体力劳动中解放出来。

第三代智能电网通过技术创新实现自我思维,“电脑”开始代替“人脑”控制电网运行,机器人劳动取代人的劳动,使人的活动逐渐从电网运行中淡出,这将使人的思维劳动强度得以极大的减轻。

以智能电网建设为标志的技术创新为电力产业提升运行管理水平,开发新产品和服务,以及延伸整个产业链奠定了坚实的技术基础。随着技术手段的革新与经营管理模式的转变,电力产业尤其是电网企业的供给可能性边界将极大扩展,不仅能够满足目前存在的潜在需求,而且还能在未来引领和创造新的需求,在供需双方良性互动的作用下,电力产业将不断优化升级,产业整体影响力和竞争力都会获得显著的提升。

5 结 语

智能电网分代是一个全新的课题,但是分代研究在计算机等其他领域并不鲜见,对这些领域进行分代的目的是通过研究“上一代是什么”来推测“下一代是什么”,因此有必要通过分代研究来预测和引导智能电网的发展方向。与其他领域分代研究更注重“回头看”的方法不同,智能电网尚未大规模应用,分代更注重“向前看”,正是人类智能与人工智能的发展规律,奠定了我们“向前看”的基础。未来,伴随智能电网的深入推进,实践应用总结出的成果和经验,将有助于深化对智能电网本质的认识,理论的可行性与实践的迫切要求,也必将对智能电网分代研究起到促进作用。

参 考 文 献

[1] US Department of Energy. Grid 2030: A national vision for electricity's second 100 years[R].USA: US Department of Energy Initiative, 2003.

[2] European Commission. European technology platform smartgrids: vision and strategy for Europe's electricity networks of the future[EB/OL]. [2012-09-20]. http://ec.europa.eu/research/energy/pdf/smartgrids_en.pdf.

[3] FARHANGI Hassan. The path of the smart grid [J]. IEEE Power and Energy Magazine, 2010, 8(1): 18-28.

[4] CARVALLO Andres, COOPER John. The advanced smart grid: edge power driving sustainability [M]. Boston: Artech House Publishers, 2011.

[5] IBM论坛2009. 点亮智慧的地球[EB/OL]. [2012-09-25]. http:///cn/forum2009/wisdom.shtml.

篇7

对于人工智能的研究一共可以分为五个阶段。第一个阶段是人工智能的兴起与冷落,这个时间是在20世纪的50年代。这个阶段是人工智能的起始阶段,人工智能的概念首次被提出,并相继涌现出一批科技成果,例如机器定理证明、跳棋程序、LISP表处理语言等。由于人工智能处于起始阶段,很多地方都存在着缺陷,在加上对自然语言的翻译失败等诸多原因,人工智能的发展一度陷入了低谷。同时在这一个阶段的人工智能研究有一个十分明显的特点:问题求解的方法过度重视,却忽视知识重要性。第二个阶段从20世纪的60年代末到70年代。专家系统的出现将人工智能的研究再一次推向。其中比较著名的专家系统有DENDAL化学质谱分析系统、MTCIN疾病诊断和治疗系统、Hearsay-11语言理解系统等。这些专家系统的出现标志着人工智能已经进入了实际运用的阶段。同时国际人工智能联合会于1969年成立。第三个阶段是20世纪80年代。这个阶段伴随着第五代计算机的研制,人工智能的研究也取得了极大的进展。日本为了能够使推理的速度达到数值运算的速度那么快,于1982年开始了“第五代计算机研制计划”。这个计划虽然最终结果是以失败结束,但是它却带来了人工智能研究的又一轮热潮。第四个阶段是20世纪的80年代末。1987年是神经网络这一新兴科学但是的年份。1987年,美国召开了第一次神经网络国际会议,并向世人宣告了这一新兴科学的诞生。此后,世界各国在神经网络上的投资也开始逐渐的增加。第五个阶段是20世纪90年代后。网络技术的出现于发展,为人工智能的研究提供了新的方向。人工智能的研究已经从曾经的单个智能主体研究开始转向到基于网络环境下的分布式人工智能研究。在这个阶段人工智能不仅仅只对基于同一目标的分布式问题求解进行研究,同时还对多个智能主体的多目标问题求解进行研究,让人工智能有更多的实际用途。

3对人工智能的思考

3.1人工智能与人的智能

从哲学上的量变引起质变的角度来讲,人工智能在不断的发展过程中一定会产生质的飞跃。在最初,人工智能只具有简单的模拟功能,但是发展到现在已经具备了思考的能力(逻辑推理分析),这已经表明人工智能在不断量变的过程中已经发生了质变。有人认为有人会说人工智能不会超过人类的智能,理由是人工智能是人类创造出来的。但是现实中很多人类创造出来的东西已经在某一些方面超过了人类本身的能力,例如起重机的力气超过人类很多;汽车速度也远超过人类的速度。人类之所以会制造出各种各样的工具,其目的就是希望自身的能力能通过这些工具进行延伸和突破。人类研究人工智能就是希望人工智能帮助人类实现人类某些无法实现的东西。还有人认为人工智能是人类创造出来的,所以它一定存在着致命的弱点,也因此人的智能优于人工智能。但是殊不知人类与机器相比也有着十分明显的弱点,例如人类所需要的生存条件比机器更加的严格,人类思维会受到人的情绪所影响,而机器只是受到程序的影响,它们没有情绪的起伏。就目前的人工智能而言,它们在某一些领域比人类更强。但是目前我们必须正视人工智能的一些还没有办法改变的缺陷,那就是人工智能的学习能力与创新能力。人工智能的知识获取大部门都是人为的进行灌输,而无法像人类自身那样进行主动的学习。同时人工智能只能够利用已有的知识去解决一些问题,但是却还不能够创造性的提出一些新的东西。

3.2对机器人三大定律的困惑

美国最著名的科普作家艾萨克.阿西莫夫提出过比较著名的机器人三大定律:第一定律,机器人不得伤害人,或任人受到伤害而无所作为;第二定律,机器人应服从人的一切命令,但命令与第一定律相抵触时例外;第三定律,机器人必须保护自身的安全,但不得与第一、第二定律相抵触。虽然这只是科幻作家所提出的一家之言,但是也代表了人类对与人工智能发展的一种期望与担心。人们害怕自己所创造出来的人工智能会伤害人类自己。但是阿西莫夫所提出三大定律都是以人类为中心的,而忽视了人工智能本身。或许这是人类的一种天性,世间所有的事物都应该围绕人类自身来定义、发展。就好像人类自以为掌控了能够改变大自然的力量,最终却被大自然反噬一样。同时,随着科学技术的发展,人工智能已经不单单需要逻辑思维与模仿,同时还应该将情感赋予人工智能。因为随着科学家对人类大脑和精神系统的研究的深入,已经愈来愈肯定情感是智能的一部分。如果人工智能具有了情感之后,人类的自我中心又是否会伤害到人类自己创造出来的人工智能。

3.3对人工智能未来的思考

篇8

互联网金融经历了过去几年的高速发展后,带给了人们新的感受。随着2016年4月12日,国务院印发《互联网金融风险专项整治工作实施方案》以来,整个行业正在进行一次“价值回归”,P2P等平台类模式正在减少,靠着拼渠道、流量和高收益的红利时代已经过去,精细化、差异化、技术化的运营和创新将是互联网金融这个阶段的主题,人工智能将在互联网金融领域发挥越来越重要的作用。

一直以来,金融领域个性化的服务都是依赖于“人”的服务。但从2016年开始,机器正在尝试取代人在财富管理服务中的位置,随之而来的是智能投顾服务。举个例子,在美国,券商、资管纷纷开始设立互联网金融平台,以互联网财富管理类的服务为主,目的是捕获更多中小投资者,在现有的证券业务体系之外培育新的增长点。贝莱德收购Future Advisor、Fiidelity与Betterment展开战略合作、Vanguard推出自己的智能投顾服务、嘉维证券与宜信合作进入中国市场开展智能投顾服务。这样的例子还有很多,这背后是传统金融机构对技术所能产生的势能的认可。国内的智能投顾玩家也很多。其中,宜信和品钛这样的在新兴市场上已经相对成熟的公司已经推出了自己的智能投顾服务。此外,还有大量早期创业公司直接以此为方向,比如弥财、钱景财富、蓝海财富等。

二、人工智能在互联网金融领域的应用情况

(一)人工智能在互联网金融领域应用的必然性

2016年以来央行、其他部委以及最高法院都了关于互联网金融的指导意见,分别是《关于促进互联网金融健康发展的指导意见》、《非银行支付机构网络支付业务管理办法》以及《最高人民法院关于审理民间借贷案件适用法律若干问题的规定》。这些政策性文件的出台,预示着这个行业在政策红利和边界较为模糊的情况下实现的业务的快速发展模式已经走到了尽头。随着后期监管文件的逐步下发,门槛的设立,要求的标准化,很多后来者已经丧失了最好的入局机会,而现有的稳健平台,则迎来了最好的发展机遇。对于互联网金融企业而言,要适应政府的监管,获得客户的支持,要取得自身的发展,只能依托于人工智能。长时间以来,人工智能在互联网金融领域的应用及重要性被频繁提及。近日,《中国互联网金融发展报告(2016)》新书在京,该《报告》执行主编、中科金财董事长朱烨东表示,未来互联网金融行业发展将逐渐走向正规、规范,移动支付的不可逆转,大数据、云计算在互联网金融的核心地位进一步加强,金融科技将成为未来互联网金融发展的主要趋势。

(二)人工智能极大提高了互联网金融的效率

作为百业之母的金融行业,与整个社会存在巨大的交织网络,沉淀了大量有用或者无用数据,包括各类金融交易、客户信息、市场分析、风险控制、投资顾问等,数据级别都是海量单位。同时大量数据又是非结构化的形式存在,如客户的身份证扫描件信息,既占据宝贵的储存资源、存在重复存储浪费,又无法转成可分析数据以供分析。金融大数据的处理工作面临极大挑战。通过运用人工智能的深度学习系统,能够有足够多的数据供其进行学习,并不断完善甚至能够超过人类的知识回答能力,尤其在风险管理与交易这种对复杂数据的处理方面,人工智能的应用将大幅降低人力成本并提升金融风控及业务处理能力。

说到人工智能,不得不提的一定是AlphaGO,但是在互联网金融领域,有一个比AlphaGO更加强势的公司,这家公司的名字叫Kensho。这是以前高盛出来的分析师团队,把整个高盛的经验模拟,通过机器取代现在大量的人工,进行相应的投资、分析、决策。而且在信息,在互联网传播非常快的时候,他们去除掉了大量的噪声,回归到这个事情的本质。很快高盛发现了这家公司的发展速度和未来价值,直接把它私有化,直接变成第一大股东,因为发现这中间带来的差别是这个企业的核心竞争力。

Kensho公司的核心技术就是能在两分钟之内做出一份一份简明的概览,随后是13份基于以往类似就业报告对投资情况的预测。而你根本就不需要去检查这些数据分析,因为这些分析是基于来自十个数据库的成千上万条数据。如果没有这些人工智能,分析师们可能要花上几天的功夫收集梳理这些数据,而等他们分析完成后,市场的行情早瞬息万变。

可见,人工智能的引入对于互联网金融领域的效率提高是呈几何式的,你很难想象也不敢相信这么一个事实:未来的投资大师们可能是一堆机器。

(三)人工智能将互联网金融带入智能金融时代

互联网金融发展至今一共经历了两个阶段:第一个阶段是网络金融,把现有的金融产品搬到互联网上,互联网上面现在卖基金、卖理财、卖信托、卖保险。第二个阶段是大数据金融阶段,通过数据重新去定义相应的金融产品和相应的金融服务。第三个阶段正在萌芽,就是人工智能+互联网金融的阶段,网络上有人称之为智能金融时代。

从目前宁波当地的互联网金融企业发展来看,目前还停留在“互联网+金融”的模式:在传统金融服务上进行叠加,将互联网式思维、互联网式管理、互联网式数据融合进传统金融服务,而这正是现在大部分互联网金融服务提供商正在做的事情。“互联网+金融”的模式也正在让金融进入“普惠金融”的阶段,通过互联网金融对传统金融机构进行补充,让更多的人平等的享受到金融服务。但是,“互联网+金融”的模式下,信息安全、投资风控、资产调节等方面问题仍然存在,一定程度上说,互联网增加了信息风险,也正是如此,摸索期的互联网金融行业才会出现P2P跑路的现象,仅2015年,宁波当地的P2P公司跑路就多达9家之多。

人工智能是大趋势,从阿尔法狗的表现以及人工智能在互联网金融领域的运用来看,互联网金融在人工智能的改造下将不再局限于“互联网+金融”,而是逐渐向“互联网+金融+大数据+人工智能”转变。人工智能起到串联起互联网、金融、大数据,实现更加智能的精确计算的作用,实现大脑一般的思考,解决“互+金”模式下的诸多痛点。

从理财顾问、征信助手、智能风控系统、防范性金融系统这四个层面来看,整个互联网金融领域正在朝着越来越“技术范儿”的方向上前进,金融智能化成为大势所趋。智能金融的机器学习功能,让产品背后的逻辑系统可以快速适应场景数据,建立合适的评分规则、决策体系,真正给现在的互联网金融带来颠覆性的变化。无论是消费金融领域还是风控层面上,互联网金融在人工智能的配合下正在呈现出无与伦比的崭新打法。这也正是阿尔法狗打败李世石之后,给金融智能化带来的全新想象。

(四)人工智能将颠覆互联网金融时代的风控体系

汇总整个互联网金融本质,其实存在两个层次风险,一是道德风险,二是经营性风险。面对2016年不断有“跑路”等负面消息萦绕的互联网金融,去伪存真或成为首要任务。一些企业资金并没有进入到实体业务,而是进入庞氏骗局,而去年出台的监管意见征求稿,监管层管理方向还是较为清晰的,希望通过资金的有效监控,将企业资金与个人用户之间的资金进行分离,规避风险。然而人力毕竟有限,不可能时刻紧盯住所有互联网金融机构,这时引入人工智能监管就十分必要。

人工智能已经在无人驾驶、图像处理、语音识别方面取得了突破性的应用,那互联网金融领域呢?李开复老师曾谈及人工智能应用的三个要素:数据、处理数据的能力和商业变现的场景。人工智能解决金融界问题的过程,很好的对应了这三个要素。也许,金融领域是人工智能最合适不过的颠覆场景。

在金融业务的前端,已经有不少传统银行将人工智能用于为客户定制服务,开发理财产品的应用。例如巴克莱银行和花旗银行等。国内银行中走在科技前列的招商银行,也开始试用全新的人工智能业务模式。未来人工智能和机器学习技术在金融业前端会有更多的便捷精准服务提供给客户。

那么金融应用领域的后端呢?信息安全、投资风控、资产管理等方面的问题成了新问题,对于躲在触屏手机背后的客户,缺失了央行数据的客户,银行没有办法通过一双双眼睛去看到用户是谦谦君子还是骗子流氓。这个时候,金融后端,传统金融风控手段覆盖不到和难以触及的,那么“互联网+金融”业务就要结合更广泛的互联网数据和人工智能手段,来处理更广泛的金融客户问题。

(五)人工智能技术在金融领域应用案例

Google、IBM等国际巨头公司已经将人工智能技术渗透在各种产品的方方面面,总体上看,国内金融行业也逐步开始应用人工智能技术,随着国内双创政策的推动和对人工智能产业的投资拉动,预计广泛应用节点即将到来。

1.阿里巴巴旗下的蚂蚁金服下设一个特殊的科学家团队,专门从事机器学习与深度学习等人工智能领域的前沿研究,并在蚂蚁金服的业务场景下进行一系列的创新和应用,包括互联网小贷、保险、征信、智能投顾、客户服务等多个领域。根据蚂蚁金服公布数据,网商银行的花呗与微贷业务上,使用机器学习把虚假交易率降低了近10倍,为支付宝的证件审核系统开发的基于深度学习的OCR系统,使证件校核时间从1天缩小到1秒,同时提升了30%的通过率。以智能客服为例,2016年“双11”期间,蚂蚁金服95%的远程客户服务已经由大数据智能机器人完成,同时实现了100%的自动语音识别。当用户通过支付宝客户端进入“我的客服”后,人工智能开始发挥作用,“我的客服”会自动“猜”出用户可能会有疑问的几个点供选择,这里一部分是所有用户常见的问题,更精准的是基于用户使用的服务、时长、行为等变量抽取出的个性化疑问点;在交流中,则通过深度学习和语义分析等方式给出自动回答。问题识别模型的点击准确率在过去的时间里大幅提升,在花呗等业务上,机器人问答准确率从67%提升到超过80%。

2.2015年,交通银行推出智能网点机器人,并引发了金融银行界的广泛关注。它为实体机器人,采用语音识别和人脸识别技术,可以人机进行语音交流,还可以识别熟悉客户,在网点进行客户指引、介绍银行的各类业务等。在语言交流过程中,它能回答客户的各种问题,缓解等待办理业务的银行客户潜在情绪,分担大堂经理的工作,分流客户,节省客户办理时间。

3.百度教育信贷实现“秒批”。“人工智能对于金融也会产生变革性影响,可以真正做到让征信升级”。6月8日,在2016百度联盟峰会上,百度董事长兼首席执行官李彦宏特别提到人工智能正在重构包括金融在内的传统产业。他特别强调,“现在百度的教育贷款,基本上是以‘秒’的时间可以决定是不是给一个人贷款。”李彦宏讲到的百度教育信贷的“秒批”,其具体的操作程序非常简单,用户想要获取百度消费信贷服务,只需在百度钱包APP“教育贷款”板块上传身份证,系统就能自动比对、确认用户身份信息,并根据信用记录判定用户所需的服务类型或额度,不仅能实现远程审批,审批时间更可缩短至“秒批”级别。秒批依靠的是百度以大数据和人工智能为基础的严谨风控体系。借助“大数据+人工智能”技术,百度风控部门为有信贷需求的群体绘制用户画像,建立信用体系,加上图像识别等人工智能技术的实际应用,构成了秒批的技术基础。

篇9

余来文,江西财经大学应用经济学博士后、博士生导师、创业导师、野文投资董事长、文字传媒董事长,《商业智慧评论》和《创业管理评论》出品人,并任江西财经大学、江西师范大学、江西理工大学、香港公开大学、澳门城市大学、亚洲城市大学等外聘MBA课程教授或创业导师。曾在海王集团、远望谷股份、飞尚集团等公司工作,历任副总经理、总经理等职务,为大洁王集团、南华西集团、铜川矿务局、陕西煤业集团等公司提供管理咨询。先后在《管理科学》《北大商业评论》《销售与管理》《中国经营报》《CHINA DAILY》以及人大报刊复印资料转载等杂志报纸200余篇。出版《智能革命:人工智能、万物互联与数据应用》《分享经济:网红、社群与共享》《共享经济:下一个风口》《互联网:商业模式颠覆与重塑》《商业模式创新》《互联网思维2.0:物联网、云计算与大数据》《企业商业模式:互联网思维的颠覆与重塑》等30多本图书。林晓伟,江西财经大学管理学博士,现为闽南师范大学商学院副教授,福建省“新世纪”人才。先后在《系统管理学报》《经济管理》《国际贸易》《当代财经》《中国社会科学报》《中央财经大学学报》《现代管理科学》等国内核心刊物20余篇,出版专著1部,参与编写《智能时代:人工智能、超级计算与网络安全》《电子商务:分享、跨界与电商的融合》《互联网思维2.0:物联网、云计算与大数据》《企业商业模式运营与管理》《物流学》《财务管理》和《会计学》等图书。主持福建省级课题4项,先后参与国家自然科学基金项目等省部级以上课题9项,参与诏安县农业和扶贫“十三五”规划编制工作。主要研究方向为物流与供应链管理、产业互联网、企业商业模式。

1 第1章 智能时代

2 开章案例

6 1.1开启智能时代

7 1.1.1 Mr Smart——我的智能生活

13 1.1.2智能时代之认知颠覆

18 1.1.3人工智能——工作“终结者”

19 1.1.4新产业的催生——“智”家帮的兴起

25 1.2迎接崭新的智能社会

25 1.2.1“数字化”——智能社会的“快引擎”

26 1.2.2“信息化”——智能社会的“大动脉”

27 1.2.3“网络化”——智能社会的“高速路”

28 1.2.4“集成化”——智能社会的“点金石”

29 1.2.5“公共化”——智能社会的“新时代”

32 1.3智能生态——智能时代的终极奥义

32 1.3.1传统工业逻辑的颠覆式创新

36 1.3.2人人创造,智能时代新分子

37 1.3.3用户“双力”:参与力创造力

38 1.3.4“智”之大器之智能整合

39 1.3.5未来人工智能生态圈

42 1.4智能时代的内核

42 1.4.1人工智能之先发“智”人

45 1.4.2超级计算之千手“算”音

46 1.4.3云端服务之无上“云”法

47 1.4.4网络安全之“安全”卫士

51 章末案例

56 第2章 人工智能

57 开章案例

62 2.1人工智能:让机器更聪明

62 2.1.1人机大战:阿尔法狗与柯洁

64 2.1.2人工智能与智能机器人

67 2.1.3机械思维向左,智能思维向右

68 2.1.4人机融合:超人类智能时代

72 2.2人工智能新认知

75 2.2.1解密人工智能

76 2.2.2重要的是数据,而非程序

77 2.2.3淘汰的不仅是工作,更是技能

80 2.2.4超人工智能时代

82 2.3大数据与人工智能

82 2.3.1数据驱动智能革命

85 2.3.2数据挖掘:从大数据中找规律

86 2.3.3大数据的本质:数据化

89 2.3.4大数据——人工智能的永恒动力

90 2.4人机融合:连接未来

93 2.4.1人工智能之“星际迷航”

95 2.4.2机器学习与人工神经网络

96 2.4.3超越未来:人工智能之深度学习

101 2.4.4 人工智能之前世今生

102 2.4.5 人机融合:未来ING

104 章末案例

109 第3章 超级计算

110 开章案例

114 3.1大话超级计算机

114 3.1.1 超级计算知多少

115 3.1.2 从数据到超级计算的飞跃

117 3.1.3 大千世界,“数”在掌握

119 3.1.4 数据流——“超算流体”

122 3.2时代新宠——超级计算机

123 3.2.1 超级计算,未来国之重器

124 3.2.2 超算之不得不懂

126 3.2.3 大国超算之超常发展

132 3.3超级管理

132 3.3.1 数据收集——“超管”之“核基础”

132 3.3.2 数据存储——“超管”之“核聚变”

133 3.3.3 数据处理——“超管”之“核爆炸”

136 3.3.4 超级计算安全

137 3.4表演时间:超算之应用舞台

137 3.4.1 互联网应用:“互联”的二次方

140 3.4.2 电子政务应用:政务“超算”跨时代

141 3.4.3 精准医疗应用:超算医疗,快,准,狠

145 3.4.4 智能交通应用:数据出行,悠哉,享哉

146 3.4.5 金融投资应用:“超算”致富经

149 3.4.6 新零售应用:“超”未来,“算”零售

153 章末案例

159 第4章 云端服务

160 开章案例

164 4.1云服务——“云”上境界

164 4.1.1 走进“云”化时代

168 4.1.2 享受云生活

172 4.1.3 幕后英雄——云计算推动“团队”

173 4.2直击云计算

174 4.2.1 云计算为何物

178 4.2.2 云计算从哪里来

179 4.2.3 虚拟化,一切皆有可能

181 4.2.4 云计算未来规模

183 4.3双重界:云计算与虚拟网络

183 4.3.1 云计算与虚拟网络关系

184 4.3.2 云服务之“虚化”技术

189 4.3.3 虚拟服务器——“虚化”技术承载终端

193 4.3.4 多云大融通——云存储设备

195 4.3.5 有备无患——云资源备份

198 4.4“三云”家族:公有云私有云混合云

199 4.4.1 公有云——“云”家必争之地

201 4.4.2 私有云——私享“云端”之上

203 4.4.3 混合云:公私合并——“云端”最强音

207 4.5云应用——“云端”的机智强大

207 4.5.1 云应用:极致“云”风暴

210 4.5.2 云应用、云服务与云计算

211 4.5.3 AI云运用=“云端”最强音

212 章末案例

218 第5章 网络安全

219 开章案例

223 5.1直击网络安全

223 5.1.1 计算机安全——21世纪的重点“安全区”

224 5.1.2 网络安全:居安思危,严阵以待

227 5.1.3 安全攻击之“四面”埋伏

228 5.2不得不知的网络安全

229 5.2.1 网络安全之认知“大充电”

232 5.2.2 网络安全风险之危机四伏

236 5.2.3 网络安全的“威胁危邪”

241 5.2.4 安全管理“六板斧”

242 5.3网络“歪脑筋”:犯罪与黑客

243 5.3.1 网络犯罪——犯罪“新境界”

246 5.3.2 黑客攻击:高智商罪犯的攻击

247 5.3.3 黑客攻击“六”手段:智、快、狠

250 5.4无处不在的安全管家——网络安全管理

250 5.4.1 网络安全“密匙”:加密安全

254 5.4.2 保密系统:守口如瓶,从一而终

256 5.4.3 智能防火墙——安全防护之智能乾坤

260 5.4.4 网络安全未来式:量子通信

264 章末案例

篇10

那么,到底什么是人工智能?我们又该如何解读这两方观点?为此记者专访了硅谷著名早期基金TEEC Angel Fund的几位投资合伙人Jinlin Wang、Wenxiang Ma以及Xuhui Shao。

“超人工智能”引发最多争议

在讨论未来工程师会不会被机器取代这一问题之前,首先需要明确的是人工智能的定义以及分类。事实上,自人工智能诞生以来,其理论和技术日益成熟,应用领域也不断扩大。TEEC Angel Fund的几位受访合伙人向记者介绍,根据人工智能的实力不同,目前业界一般将人工智能技术分为三大类:

首先,弱人工智能Artificial Narrow Intelligence (ANI):弱人工智能是擅长于单一方面的人工智能。比如有能战胜象棋世界冠军的人工智能,但是它只会下象棋,你要问它怎样更好地在硬盘上储存数据,它就不知道怎么回答你了。

其次,强人工智能Artificial General Intelligence (AGI):人类级别的人工智能。强人工智能是指在各方面都能和人类比肩的人工智能,人类能干的脑力活它都能干。创造强人工智能比创造弱人工智能难得多,我们现在还做不到。Linda Gottfredson教授把智能定义为“一种宽泛的心理能力,能够进行思考、计划、解决问题、抽象思维、理解复杂理念、快速学习和从经验中学习等操作。”强人工智能在进行这些操作时应该和人类一样得心应手。

再次,超人工智能Artificial Superintelligence (ASI):牛津哲学家、知名人工智能思想家Nick Bostrom把超级智能定义为“在几乎所有领域都比最聪明的人类大脑都聪明很多,包括科学创新、通识和社交技能。”超人工智能可以是各方面都比人类强一点,也可以是各方面都比人类强万亿倍。

“事实上,超人工智能正是为什么‘人工智能’这一话题总能引起业界热议的最重要的原因,同样它也是引发‘人工智能的未来是工程师的消失的还是人人都是工程师’这一争论的本质源泉。”TEEC Angel Fund投资合伙人Jinlin Wang向记者表示。

正方观点:工程师将会消失?

对于未来工程师会不会被机器取代这一问题,Jinlin Wang认为,或许存在这样的可能性。

目前,即使计算机软件不断发展,但是对于工程师而言,一个非常出色的工程师和一个一般的工程师之间的差距也是非常巨大的,这正是硅谷各大公司之间人才战的原因——找到一个好的工程师是很不容易的。但未来,当人工智能发展到一定阶段,机器足够强大到可以独立自发地完成软件开发从架构到前后端等的整体过程,那么,或者到那时人类将不再需要软件工程师。

“目前,硅谷各大公司都十分关心未来软件发展战略的问题,未来5至10年,或许人工智能可以发展到一个阶段,目前仍旧依靠人工出产的软件可以由机器自动完成,”Jinlin Wang表示,“虽然目前,机器能不能强大到设计出更强大的机器我们尚未可知,但是一旦在未来做到了这一点,那么工程师或许就将集体消失在历史舞台了。”

对此,Jinlin Wang还强调,机器自动完成软件设计虽然目前看起来有些不切实际,但是并不意味着没有这样的可能性。“目前,随着计算机计算能力等性能的不断提升,以往很多看似不可能的事情正在变为现实,比如,以往纯手动完成的日程安排等工作,在未来有望借助机器自动完成——硅谷某家做Scheduling Software的创业公司正在致力于用机器解决这样的事情,未来或许借助于人工智能软件,公司可以自动化地安排和调整日程计划,假设公司的一个员工突然生病了,两秒之后软件可以重新把公司人员日程重新进行调整和安排。”

的确,如果未来,智能机器自己可以设计出更加智能的机器,那么也许我们将不再需要任何工程师了。对此,连比尔·盖茨也认为如果按照现在人工智能的发展程度,那么未来可能所有的人类都会集体失业。

反方观点:人人都是工程师?

同时,对于“未来工程师会不会被机器取代”这一问题,Wenxiang Ma告诉记者,在硅谷,目前有另一派学者却认为答案是否定的,他们认为机器有其自身局限性,无法完全替代人类,于此同时,随着各种软件架构(Framework)以及工具的出现,未来编程门槛将进一步降低,届时人人都将成为软件工程师。

“对于机器取代工程师,反对派们认为,现在提及‘文盲’这个词,大家会理解为这个人没有读过书、不识字,但是可能未来的文盲或者就是指这个人不懂编程,”Wenxiang Ma表示,“事实上,未来不论人工智能怎样先进,都仍要依靠人为来定义软件的逻辑——短时间看,机器无法完全脱离人类的指导而自行完成软件设计和开发过程。这是因为,机器本身就是人的产物,是人编写出来的,因此它们自身具有局限性,也必须依靠人来帮助机器进化。”

与此同时,另一个趋势是,过去几年的发展使得软件开发的门槛越来越低,很多公司研发了很多架构(Framework)以及工具,例如Google的AngularJS、Facebook的React等,使得编程变得越来越容易。目前很多公司正在使用这些架构,仅需1到3个月就可以完成他们的软件开发。“这是以前不可能发生的事情。事实上,目前的架构仍不足够先进,等到这些架构先进到一定程度的时候,编程的门槛将前所未有地降低,届时所有人都将变为工程师,未来有一天,编程也将变得像小孩搭积木一样简单。”

问题关键:机器是否具备自我学习能力

那么,对于上述正反两方的观点,问题的关键或者症结在哪里呢?对此,TEEC Angel Fund的投资合伙人Xuhui Shao认为,转折点或者在于机器是否在未来的某一天具备自我学习和进化的能力。

篇11

2016年3月,DeepMind研制的人工智能围棋系统AlphaGo以4:1的战绩击败了韩国的围棋高手李世石,把世界对人工智能的关注推向了前所未有的。各种各样的议论喷涌而出。悲观者大呼:“人工智能对于人类的潜在威胁太严重,应当通过立法限制甚至禁止人工智能的研究”;乐观者高喊:“人工智能是人类的真正福音,只要把自己的思想意愿转嫁给人工智能机器,人类就可以通过机器来实现长生不老的千年梦想”。在科技界,人们则在激动着、讨论着:我们应当在什么样的热点技术上发力?是深度学习?是认知技术?还是类脑计算?

回想这些年来,互联网、云计算、大数据、物联网、移动互联、智能制造、智慧城市、人工智能、机器人一波又一波的高新技术登台亮相,中国科技界、教育界和产业界都在一个个地紧紧追赶。虽然在跟踪追赶的过程中取得了不菲的进展,但是人们不禁都在思考:对于人工智能来说,当前社会的需求是什么?什么才是有效的创新战略?怎样才可以摆脱跟踪追赶的被动局面,争取到引领创新的话语权?

发展人工智能不应当是一种孤立性、局部性的行动,而应当是能够带动和引领整个科学技术的创新和发展。

1 人工智能是当代重要交叉科学群的创新前沿

为了阐明“人工智能是当代重要交叉科学群的创新前沿”这个论断,需要逐个澄清相关的基本概念,包括:什么是人工智能?什么是当代的重要交叉科学群?以及什么是当代重要交叉科学群的创新前沿?

1.1 什么是人工智能

人工智能是一门“探索人类智能机理,创制人工智能机器,增强人类智力能力”的科学技术。从这个意义上可以理解,只要人类的智力能力得到了增强和扩展,人们从事各种科学技术以至各种经济社会活动的智力能力就会得到有效提升,从而能够有效促进各行各业的创新与发展。

那么,什么是人类智能?人类智能主要表现在人类主体为了不断改善生存发展的水平而发现问题、定义问题、解决问题的能力。其中,发现问题和定义问题的能力依赖于主体的目的、知识、直觉、理解力、想象力、灵感、顿悟、审美等内在能力,因此被称为“隐性智能”;解决问题的能力则主要依赖于获得信息,生成知识,创生策略等外显能力,因此被称为“显性智能”。

显然,隐性智能十分抽象,几近神秘,不仅研究起来甚为困难,就连理解起来也颇感玄奇,而显性智能则相对可理解,可研究。因此,人工智能研究遵循的原则是:基于人类主体给定的问题、知识、目标(这就是人类发现问题和定义问题的能力)这些前提,研究如何利用信息、生成知识、创生策略来解决问题,达到目标。也就是说,人工智能的研究遵循人类智能与人工智能相结合的原则:人类智能负责发现和定义问题,人工智能则负责在人类所给定的问题框架下解决问题。这样,人工智能机器就可以成为人类认识世界和改造世界的聪明助手。

由此可见,没有生命,没有目的,没有灵感,也没有审美能力的人工智能机器系统,原则上不具有隐性智能的能力,因而不可能独立地发现问题和定义问题,只能在人类所发现和所定义的问题框架下去解决问题。因此,人工智能超越人类的恐惧缺乏科学根据。

1.2 什么是当代重要的交叉科学群

当今的时代是信息时代,认识信息资源和利用信息资源为人类服务的信息科学是当今时代的标志性科学。具体来说,信息科学是“研究信息的性质及其运动规律的科学”,也就是以信息为研究对象,以信息的性质及其运动规律为研究内容,以信息科学方法论为研究指南,以增强和扩展人类信息功能(全部信息功能的有机整体就是人类的智力功能)为研究目标的科学。换言之,信息科学的研究目标就是扩展人类的智力功能,而研究信息的性质及其运动规律和信息科学方法论都是为了实现扩展人类智力功能这个目标服务的。

由此就可以清楚地理解:人工智能的研究是信息科W的最高目标,也是信息时代科学技术发展的基本目的;而为了使人工智能系统能够在人类发现和定义的问题框架下成功地解决问题,人工智能的研究必须从人类求解问题的能力中得到启发。这表明,人工智能的研究需要向认知科学学习,因为认知科学就是研究人类自己是如何面对问题解决问题的。另一方面,认知科学所研究的人类解决问题的机理又建立在脑科学的基础之上,因此,人工智能的研究必须理解脑科学的工作机理。再者,人类发现问题、定义问题、解决问题的能力并不是永远固定不变的,而是不断进化和发展的。因此人工智能的研究还必须学习信息生物学,后者深刻地研究和揭示了人类能力不断进化的机制。可见,脑科学、认知科学、信息科学、信息生物学、人工智能是当代最具重要意义的交叉科学群。这个科学群还包含更多的学科,恕不一一阐述。

1.3 什么是当代重要科学群的创新前沿

虽然脑科学、认知科学、信息科学、信息生物学、人工智能各有各的研究内容,但是所有这些学科共同的目标都是智能,如人类的智能(脑科学)、生物的智能(信息生物学)、人类智能的物质基础(脑科学)、人类智能和生物智能的工作机理(认知科学)、人类智能和生物智能的进化机制(认知科学与信息生物学)、人类智能的信息基础和研究方法论(信息科学)、人类智能的机器模拟和实现(人工智能)等。

所以,人类智能和人工智能是当代这一重要交叉科学群共同的创新前沿。人们对于脑科学、认知科学、信息科学、信息生物学的理解深化了,就会促进人工智能研究的发展;反之,一旦人工智能的研究取得了突破和创新,也必然能够带动脑科学、认知科学、信息科学、信息生物学的突破与创新。

2 中国人工智能发展的现状:差距与优势

中国人工智能的发展现状,大家平日都亲身感受得到,应当比较熟悉,似乎无需赘言;但是国情是我们思考问题的基础,因此不可不察。而且,我们对于中国在人工智能发展方面所存在的差距和优势的认识,确实还有必要进一步深化。

2.1 差距:显差距,隐差距

大家都意识到,中国在人工智能的发展方面确实存在不少的差距。普遍J为,由于中国缺失了工业革命这个历史阶段的洗礼,因此在工业基础和工艺水平方面天然存在明显的不足。特别是中国微电子工业领域的高性能芯片制造能力有待进一步加强,人工智能硬件系统的水平也有待进一步提高等,这些都是众所周知的显差距。

然而,更值得深思的问题是:在人工智能的科学研究方面,长期以来,中国同行普遍习惯于跟踪学习,缺乏突破创新的民族自信心,更缺乏引领国际的强烈意识。无论是互联网、物联网、语义网、云计算、大数据、移动互联这些大概念,还是深度学习、无人驾驶、类脑计算这些技术思想,都是外国学者率先提出,然后才是中国学者蜂拥而上。加上这些年滋长蔓延起来的急功近利和学术诚信缺失,往往在蜂拥而上之后的一夜之间就会冒出许多“新成果”!这是中国人工智能发展存在的隐差距。

需要指出的是,显差距正因为“显”,已经得到各有关方的高度重视,并且正在不断地被缩小;但是,隐差距则因为“隐”,不容易被察觉,至今还没有引起各方面必要的重视,因此仍然是实现突破创新和引领战略的隐患。

2.2 优势:现优势,潜优势

那么中国在人工智能研究中是否也存在什么优势呢?表面看来,似乎中国在人工智能研究领域一直处于跟踪学习状态,谈不上存在什么优势;但是仔细考察发现其实不然,中国在人工智能研究中的确存在不可忽视的优势。

中国目前虽然在整体上还处于相对落后状态,但在某些技术研究上却处于国际领先地位。例如:语音识别技术,中国已经在近期多次国际评测大赛中夺得世界冠军;在汽车自动驾驶方面,中国的研发水平也与国际上旗鼓相当;特别是在理论研究方面,中国在人工智能通用理论研究方面的机制主义人工智能理论、人工智能逻辑理论研究方面的泛逻辑学、人工智能数学方面的因素空间理论都是国际领先的成果。这些都是已经涌现出来的现优势。

更加重要的是,像人工智能这样既十分复杂又极其深刻的科学研究,势必自觉或不自觉地受到科学方法论的影响。几十年来,国际人工智能的研究形成三大学派,就是受了以分而治之为特征的机械还原方法论的影响,把复杂的人工智能研究分为结构模拟的人工神经网络学派、功能模拟的物理符号系统学派、行为模拟的感知动作系统学派,而且长久以来互不认可,不能形成人工智能研究的合力。科学论证充分表明,适于人工智能研究的科学方法论不是“机械还原论”的方法论,而应当是“信息生态论”的方法论。后者与中国历来的“整体论”和“辨证论”思维传统息息相通。因此,在人工智能的研究领域,中国握有方法论的潜在优势(潜优势),只要自觉地加以运用,这种潜在优势完全可以转化为强大的现实优势(现优势)。

3 人工智能的社会需求和发展中国人工智能的战略建议

3.1 人工智能的社会需求

中国的信息化建设全面启动于20世纪90年代,得益于现代信息技术的支持,取得了举世瞩目的辉煌成就,进入了迎接复杂问题的新时期,面临着巨大挑战。从整个经济社会发展和全面改革的大局判断,在多次讲话中也明确指出,中国的改革开放进入了攻坚克难的深水区。众所周知,人工智能技术是信息技术的高端前沿;因此,为了迎接复杂问题的挑战,为了成功走出深水区到达胜利的彼岸,中国亟需人工智能科学技术的全面支持。

另一方面,纵观当今的国际环境不难发现,一些发达国家在中国黄海、台海、东海、南海不断制造紧张局势,企图以武力遏制中国的和平崛起。他们声称要长期投资人工智能,要用人工智能武器战胜中国,对此不能不高度警惕,并采取果断措施。

3.2 加快发展中国人工智能的建议

为加快发展中国人工智能,从战略性、系统性、可操作的角度出发提出5项建议。

(1)顶层规划。

火车跑得快,全靠车头带。建议设立国家级智能科学技术发展规划与协调专家委员会,负责研究和提出中国智能科学技术发展的中长期规划,制订智能科学技术产学研发展的实施政策,协调和促进中国智能科学技术的快速有序健康发展。

(2)人才培养。

万事都紧要,人才是根本。建议国务院学位委员会把中国现有的“智能科学与技术”二级学科提升为一级学科,以形成系统完整的智能科学技术人才培养体系;同时建议教育部在中小学开设智能科学与技术基础知识课程,开展课外兴趣培育活动。

(3)创新研究。

跟踪不可废,创新更关键。在国家自然科学基金设置“智能科学技术基础理论”专门领域,大力推进智能科学基础理论的突破创新;同时在国家“十三五”规划设立智能制造、智能农业、智能服务业、智能交通、智能网络空间安全、智能教育等应用专项。

(4)产业标准。

创新是尖兵,产业是后盾。大力促进中国智能化产业的发展,并在国家标准委员会建立智能产品标准工作委员会,鼓励有条件的单位和学术团体开展各类智能技术产品的测试、评价和检验标准的研究,引导智能化产业和产品市场有序健康发展。

篇12

谈创业:选择的是一种生命状态

在乌镇,张泉灵的身边多了一群“创客”,这个词语亦成为本届世界互联网大会的关键词之一。创客(Mak-er)本指勇于创新,努力将自己的创意变为现实的人。在国内,“创客”与“大众创业,万众创新”联系在了一起,特指具有创新理念、自主创业的人。

谈到创业,张泉灵感同身受。因为转行之后的她也是从一张白纸开始,对她而言,何尝不是以创业者的姿态去做新的开拓?“创业选择的不仅仅是一份工作,更是一种生命状态。一旦开始创业,就相当于把一个人永远放在了悬崖边上。”

张泉灵表示,创业维艰这四个字真的不是简单的词语,创业有太多的未知性,需要承受异于常人的压力。“有大量的情况,你努力了,好像一切都对了,但就是没有成功,而且这个几率非常高。所有的创业者都有一个共性,那就是心态上特别像神经病,今天早上醒来感觉天都要塌了,坚持不下去了,这一切一定会失败,第二天早上醒来又觉得阳光明媚,未来前途无量。其实,本质上今天和明天并没有哪里不一样,利或不利一直就在那里,只是某个细节因素会在你内心被无限放大。”

互联网下半场的竞争让张泉灵意识到,太多认知上的空白需要大量“充电”。而谈及自己的变化,她又马上调皮地笑了,“一句话形容,我经常觉得自己上个礼拜有个特好的想法。我可不能保证我现在跟你说的都是对的,因为下周我也许又会觉得自己上一周特傻。”

谈投资:切入生活才能获得青睐

上次参加世界互联网大会,张泉灵还是以央视主持人的身份来探讨网络大V的社会责任;时隔两年再到乌镇,转型为投资人的她已经开始关注互联网与人的生活之间的关联。

人工智能,是当下投资人相当看好的领域。据了解,紫牛基金人工智能方向的项目2015年秋天才成立,迄今为止,他们只投了7个和人工智能相关的项目。现在的张泉灵依然保持着记者惯有的好奇心,在互联网的下半场,人工智能到底能多快地改变人们的生活?怎样的人工智能值得青睐?她给出的答案是,人工智能的赛场刚刚开始,想要受到投资人的追捧就要从本质上切入生活。

在张泉灵看来,如果说移动互联网时代是让大量的人在信息面前变得平等,那么进入人工智能时代,则是让更多人享受到互联网发展的便利。“比如我们不能指望全国最好的大夫帮助几千公里之外的乡村大夫做医学判断,却可以让人工智能进行学习,从而让机器人大夫超过人类最好的大夫,然后进行低成本复制让全世界实现医疗上的进步。”

目前紫牛基金已经投了25个项目,对于这些项目,张泉灵拒绝进行偏好排序,“这是投资人对他们最基本的尊重。其实财务数据已经做出排序了,但投资人很少将他们并列在一起选出最佳来,因为我们了解每个项目背后的努力。既然我们选择了他们,就要相信他们正走在一个对的赛道上。有快有慢,不能期待每一颗种子种下去都能同时开花结果。”

张泉灵表示,接下来紫牛的投资规划将帮助创业者更好地前行,在人工智能和机器人领域去做更深入的布局;而在内容领域,紫牛也会有更大的扩展。

谈乌镇:峰会本身就是一个好的IP

不管是小时候外婆的祖屋,还是做央视主播时参加乌镇戏剧节,抑或是如今以投资人的身份参加世界互联网大会,乌镇,似乎与张泉灵有着化不开的缘分,她对乌镇也有着道不明的情感。

在本届世界互联网大会上,对乌镇熟门熟路的张泉灵甚至主动给其他嘉宾当起了“导游”。她笑言,“这是因为我内心有非常强烈的想给乌镇代言的主人翁精神。”

几年前还是江南的乌镇,很难想象今天会成为世界的乌镇。谈到乌镇的变化,张泉灵也习惯于从投资人的角度来审视。“今天当我们走在乌镇的街道上可能感觉没什么大的变化,还是我们印象中的古镇。但真的没有变化吗?当然有巨大的变化。每家小店、光缆、无线网络,外面的互联网医院,今天的世界互联网大会,一个月前的乌镇戏剧节……乌镇已经成为全国最盈利的景区,年收入甚至超过了黄山。这是核心的变化。”

篇13

后来的故事我们都知道了,从2014年到现在,我们没有看到任何一个产品因为众筹而获得了普世意义上的成功。即便是第一个激活众筹市场的Pebble,在2015年获得超过2000万美金融资(与此同时他们把第三代产品放在Kickstarter上“销售”了2000多万美金),在2016年3月份却宣布因资金紧张而裁员25%。

两年过去了,当回过头观察众筹这个行业的时候。我发现自己的判断太片面了——并不仅仅是众筹已死,有可能是整个智能硬件行业集体踏空,而众筹已死只是其中一个支线情节而已。

智能硬件产业伤痕累累

智能硬件的时代结束了:一个行业集体踏空的教训

这张图片出自今天上午百度在大理的百度联盟峰会,李彦宏的《下一幕·人工智能》主题演讲。李彦宏的发言把移动互联网说得“伤痕累累”,然后互联网发展分为三幕:PC互联网、移动互联网、智能互联网。

其实这种表达我从2014年开始在很多场合的演讲中都提到过。区别在于,我曾经说互联网从PC时代到移动时代,下一个时代是智能硬件与物联网的时代。

其实这个表达我想并不是完全不对。但实际情况是我所说的“智能硬件”和最终全行业踏空的“智能硬件”,并不是同一种东西。

正如上面这张图所示,移动互联网在这两年遇到了一些问题。事实上智能硬件行业遇到的问题更大:

1、生产成本在有限几个环节下降幅度明显,但原因并不是技术的提升或者市场的扩大,而主要原因是竞争激烈削减利润。

2、销售成本居高不下。感谢小米和乐视让大家知道了BOM定价这个概念,但实际情况是必须留出BOM价三到五倍的利润空间给渠道。当然大家都在努力学习小米和乐视那种渠道自己造血反过来补贴生产的模式——这对技术团队来说比开发产品难度更高。

3、核心技术组件的采购和生产成本走高。华为消费者BG近两年的成功,不少人认为重要因素在于大华为自有核心技术组件,不仅不受市场变化的影响,而且还从中获利。而部分智能硬件产品,处于技术拼接的初级水平,也不受这一变化的影响,但深陷上述第二点的泥潭。

4、市场资源走向集中。这也是“众筹已死”的核心逻辑,当众筹走向集中资源而不是分散资源的模式时,众筹本身的意义已经失去了。所有智能硬件产品都在争夺被集中在大平台的市场资源时,智能硬件的市场竞争就变成大平台的竞争。而在大平台竞争中,智能硬件不是关键变量。衣食住行才是。社会化媒体的发展给了智能硬件一个美丽的错觉,可以找个应届生运营微博微信就获得足够的市场资源——显然事实证明并不是如此。

这些问题相信每个投身智能硬件行业的创业者们都感同身受。而大家的问题——也是我过去半年一直在思考的问题是:怎么解决呢?

我想现在我已经想清楚了:无解。我们在两年前说的创客与智能硬件,可能真的是踏空了。

为什么智能硬件是一场美丽的误会?

智能硬件时代结束的逻辑,其实和上一节描述的市场问题是一样的。

基于拼接已有技术组织新产品的智能硬件,是一个充分竞争甚至是过度竞争的市场。所以到最后拼杀的并不是产品水平,而是大家的商业资源能力。谁的资源多,谁的资源便宜谁胜出。

但对于本身就着眼于资源的团队来说,同样的资源放在其他消费品上获得的利润更高,智能硬件行业整体在这方面并没有竞争力。

所以,如果是一个产品团队,智能硬件创业窗口已经结束了:如果是一个资源团队,在我发这篇文章之前肯定已经调整方向操办其他行业了;如果是一个上游供应商,是时候放弃成为独立平台和独立品牌,退守大客户订单了。

而大客户们,有谁在这三年的创客与智能硬件潮流中全身而退了呢?小米、乐视、京东。

还有当年就审时度势退而结网的阿里与腾讯。以及押注更遥远未来的百度。

科技公司中市场资源最多的BAT,压根没有参战。所以连“资源战”、“两败俱伤”之类的说法都提不上。只能说是“集体踏空”。

为什么这么多聪明的创业者和投资人会集体踏空?

而最有意思的问题在于,这样一次“集体踏空”为什么会发生。毕竟国家在提出“双创”之前,所有人,包括我自己,都毫不怀疑新的硬件和终端将改变一切。

这里有很多微妙的巧合。梳理线索需要太多篇幅,我直接说结论:

风暴眼是小米。

2014年移动互联网的玩法基本清晰,App和手机设备本身已经没有产生资本黑马的窗口,早在2013年站稳百亿美金的小米仍在估值狂飙。

彼时华为消费者BG的翻身之作mate7刚刚,离市场发酵还有半年。而离乐视提出“生态化反”还有一年。

而小米呢?小米手机仍在势能高位,而小米耳机和小米手环在2013年和2014年刷新了整个消费电子业的认知。“小米生态链”几乎是整个科技圈的年度话题。

对于刚从阿里上市套现出来的大笔热钱来说,2014年没有比小米或者小米的跟随者更好的投资标的了——即便现在回看,也是如此。

于是羊群效应出现了。投资人心态是:能投小米最好,投不了小米就投小米生态链,投不了小米生态链就投可能并入生态链的智能硬件公司,再不济也要投个跟随小米模式的创业公司。

这些投资标的公司并不是现成的。在没有公司生造公司也要上的资本预期下,2013年刚刚小成气候的“创客群体”被推到了创业的风口浪尖。用不严谨的说法来总结,2014年资本的预期是这些创客们说不定就能干出下一个小米来。

而到此时此刻,2016年的夏天,当小米遇到全行业性的增长减速,再加上美金加息、GP和LP一起退守。

当作为头羊的小米慢下来时,跟在后面的羊群里有些抬头发现盲从跟随到了一个并不适合自己的地方;而有些还在低头赶路觅食,不管前面是不是悬崖。

“智能硬件”的时代结束了,智能的时代才刚刚开始

综上所述,这次“集体踏空”是许许多多微妙的巧合一同发生而产生的特有的现象。不仅仅发生在中国,也发生在大洋彼岸的美国。毕竟,双方同时拥有了一批规模可观的“创客”,双方拥有的是同一笔金额巨大的游荡热钱,而且双方都在移动互联网的的冲击下寻找下一个世界级的黑马创业者——哦,他们现在的流行词是“独角兽”。

但事实是,到2016年,全球商业创新和技术创新的领导者,还是那一批在十年前就找对了方向的大公司。

这意味着什么呢?意味着虽然过去两年的“智能硬件”并不是什么“巨大的颠覆”,但这个颠覆一定会来。

而走向智能这件事,现在全行业已经比过去两年靠谱多了。最起码,我们在关注过AlphaGo之后,不会以为给小电器加个App就是智能了。

2016年我们看到的是:

技术拼接开发新产品的浪潮已经偃旗息鼓,大家也回归到了“智能”的正途上,关注底层的感知、识别、算法等等核心技术;

而这些核心技术研发也不再是几个互联网公司的业务前端能搞定的,越来越多的科研机构、高校实验室等开始在智能领域崭露头角;

在这些专业的学者指导下,电子世界的人工智能与原子世界的自动化技术走向了一个非常好的结合趋势。

于是,智能硬件一波浪潮结束了,创业窗口也关闭了。而紧接的是,人工智能与机器人的新浪潮。

上一波浪潮的结果,是全行业“集体踏空”,那么人工智能与机器人,会不会是又一次被高估的玄幻故事呢?

为什么人工智能与机器人是“智能”的正道?

与上一波“智能硬件”不一样,人工智能与机器人的门槛很高。当然,也不排除和智能硬件玩法一样的创业公司早就盯上了“机器人”,把一些外观特别的平板电脑称之为机器人。

但正如前述智能硬件不会成功的原因一样,这些类平板电脑的机器人,最终会陷入市场资源竞争的泥潭中一蹶不振。

而真正的机器人公司不会受到市场资源波动的影响。因为客观的技术门槛与人才门槛,会使得这些公司始终处于定价权的尖端。而为了维护这种定价权,有价值的人工智能与机器人公司都不难找到自己的初期客户,只要愿意,这些公司可以轻松维持舒服的利润规模。

技术门槛与人才门槛难以企及,使得富集资源的平台必须与这些公司形成共生的生态。而不是智能硬件时代的“食物链模式”。至少在客观状态上,这样的产业模式指向的是数个资深玩家的各具特色,而不是某个产业派系一家独大。

引用上文的羊群比喻,在人工智能与机器人产业启蒙的2016年,并没有“头羊”的出现,而是若干有潜力的地块分布着不同种类的羊,吃着不同的草。

更重要的是,这不是一个热钱想投就投得进的领域。因为技术成本和人才成本太高,要投机地把股份商品化,或者技术产品金融化,都是得不偿失的。何况现在对资本机构来说是个颇不舒服的下行波段。

种种迹象表明,人工智能与机器人将是一个相对健康的长期浪潮。在智能硬件的先烈面前,技术突破的发展势头并没有减缓,而商业运营和流量运营因为热钱的退缩而相对平稳。这个领域可能很难在一两年杀出一统天下的黑马公司,但智能化的未来,我所说的“第三代网络”,李彦宏今天所说的“互联网第三幕”,终于看到有可能黎明的希望了。

回想二十年前,中国互联网产业能够发展起来,并不是靠idea和小聪明,是权贵、商人(资本)、科学家和(改革开放后)第一代海归共同推动而成功的。而且中间还经历了两次大规模的质疑和泡沫破灭。这是一个大时代的大运动。

所以,一个靠idea推起来的“智能硬件”时代,最终落得一个“集体踏空”的评价,也不奇怪。

已经站稳的“智能硬件”们会继续下去,但不会有超出常识的增长,也不会有新的创业机会了。我相信小米手环销量一定会继续增长,也相信京东的叮咚音箱会持续热销……

但如果有个创业者跳出来说,要做一个手环干掉华米,或者说做个音箱一统智能家居,大家也不会相信的。

可喜的是,人工智能与机器人,开始有了一点点“大时代的大运动”的感觉。劳动密集产业、资本密集产业、知识密集产业在同时向人工智能与机器人的未知领域前进。