在线客服

水厂节能降耗实用13篇

引论:我们为您整理了13篇水厂节能降耗范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

水厂节能降耗

篇1

随着我国经济的不断发展,我国各地水厂的规模不断扩大,用水量也不断增加。我国各地的水厂基本都对供水系统进行了改造,以降低能源消耗。但是,还有一些水厂在生产的过程中,由于生产工艺、管理等等原因,使水厂的生产效率较低,对能源的损耗较大,使水厂的生产成本居高不下。不断降低生产成本是我国各地水厂快速发展的重要的内在动力,因此,应当不断采取多种有效措施,进一步实现水厂的节能降耗。从而有效降低水厂生产成本,提高水厂的经济效益。

一、当前水厂节能降耗存在的主要问题

1、水厂电能损耗较为严重

首先,是水厂的水泵机组的电能损耗较为严重。目前,在我国的各类水厂中,水泵机组的应用较为普遍。在水厂的生产过程中,水泵机组消耗了大量的电能。由于设备、管理、技术等各种原因,我国水厂的水泵机组效率较低、能耗偏大、成本较高致。使泵站工程水厂的效益难以提高。究其根源,主要是由于供水量增长速度较快,供水管网改造也较快,但是,很多水厂水厂的水泵机组却没有及时进行同步改造,使很多给水厂的水泵工作扬程不断下降,往往都是运行在低效区运行,使水泵的效率难以,造成大量电能的浪费。另外,还有一些水厂加压供水的选泵配置不尽合理,也导致大量的不必要的电能浪费。

其次,是给水处理过程中的电能损耗较为严重。水处理过程中的电能损耗较为严重的主要原因,是由于资金和技术等制约,使我国的很多水厂自动控制技术较为落后,加药及污泥处理工艺不完善,尚未建立起完善的仪表控制和计算机控制系统,难以满足水厂节能降耗的需要。

另外,是水厂的清水池的电能损耗较为严重。水厂的清水池在自来水的生产过程中发挥着重要的作用,具有调节水量、蓄存、进行氯化消毒接触的作用。但是,由于我国的一些自来水厂的设计的缺陷,使很多清水池有效容积不够,无法满足贮存的要求。另外,还有一些水厂在设计清水池时,往往都是从容量方面考虑,很少考虑通过抬高清水池内水位节约能耗,最终造成了清水池的电能损耗较为严重。

2、水厂药耗水平居高不下

首先,是我国水厂矾耗过高。目前我国水厂大多数使用平流沉淀池,导致工艺处理时间较长。同时,加矾量也不够合理。水厂的运行人员需要利用较长的时间,才能了解一定加矾量所对应的滤后水浊度,为了保证水质,水厂的运行人员会提高加矾量,这样就增加了加矾耗。

其次,目前我国大多数水厂采用是液氯消毒,但是,在消毒过程中主要还是水厂的运行人员依赖水厂的运行人员的人工操作,难以有效降低氯耗。同时,对于我国的水厂来说,净水构筑物体积一般都较大,与外界接触面积广,氯气非常容易挥发,也产生了大量不必要的氯气消耗,

二、促进水厂节能降耗的相关对策

1、采取多种措施,不断降低电能损耗

首先,要通过对泵站进行优化,不断降低水厂生产过程中的电能损耗。具体可以采用两种方式。第一,可以考虑进行进行水泵的优选,利用水泵的优选不断提高水厂泵站的运行效率,达到节约电能的目的。可以采用启发式方法、动态规划算法、图解法等水泵优选的方法。通过优选,可以在用水量和供水量发生变化时,使水厂的泵站运行始终保持较优的工作状态,以达到节约电能的目的。

其次,要不断优化水厂泵站的配电方案,不断降低水厂生产过程中的电能损耗。目前,我国大多数水厂的泵站的供电系统主要包括供电系统接线方案、供电容量、供电点、供电电压等。从总体上看,大多数水厂的泵站的供电系统比较落后,因此,有必要对水厂泵站的配电方案进行优化,具体可以从配电网无功补偿方案优化变压器选型、主电动机设计等方面来进行优化。

另外,要优化泵站变配电工程设计,不断降低水厂生产过程中的电能损耗。由于资金不足和技术落后等等方面的原因,目前,我国国内的一些水厂还在采用上个世纪90年代的泵站变配电工程设计,大量是用三角型接线度手动投切装置,在运行过程中的安全性和可靠性较差差。电容器组手动投切也难以起到有效的补偿作用,基本上达不到无功补偿以及节约电能的要求。因此,必须要不断优化泵站变配电工程设计,将手动授切改为自动授切,降低线路的损耗,减少电费的支出,以达到节约电能的目的。

最后,要不断降低电能损耗,必须有效清水池的电能损耗。一方面,我国各地的水厂要不断优化自来水厂清水池的设计,提高清水池有效容积。在设计清水池时,不但要从容量方面考虑,还要考虑通过抬高清水池内水位,达到节约能耗的目的。另一方面,要改进清水池的工作过程。要采用异水位的设计方法,抬高池内水位,使清水池具有水量调蓄和抬高水位双重作用。同时,目前我国很多水厂的清水池的工作过程比较落后,基本上都是采用活性碳吸附、反渗透、离子交换、微滤、电渗析等方法,消耗大量的电能。积极采用新的处理方法,减少能量损耗,降低水厂的生产运营成本。

2、优化生产流程和生产工艺,不断降低药耗

首先,要不断降低矾耗。矾耗是自来水生产过程中的重要消耗之一,目前,我国的很多水厂采用的是手动加矾,在一定的程度上增加了矾耗。因此,可以考虑采用游动电流检测仪进行辅助手动加矾控制,利用游动电流检测仪分析滤后水浊度变化情况,并确定最佳的加矾,不但可以确保为用户提供质量稳定一致的自来水。在相同的滤后水水质下,还可以可以大大降低加矾量。

另外,针对矾耗过高的情况,还可以要求水厂的技术人员与运行人员对原水异常波动以及水处理过程及时进行技术分析,通过分析总结经验教训,提高处理水平,为处理类似情况打下了良好的基础。同时,还要积极对进行培训,不断提高水厂的技术人员与运行人员水处理技能,促进矾耗的不断降低。

其次,要不断水厂生产过程中的氯耗。目前我国大多数水厂采用是液氯消毒,要有效降低氯耗,必须采用其自动加氯系统。由前加氯与后加氯组成自动加氯系统,采用科学的流量比例控制。降低生产过程中的氯耗。必须避免不必要的氯气消耗,可以采用降低首次氯的投加,确保二次氯的投加,不但可以降低氯耗,还可以确保自来水管网持续消毒效果和出厂消毒效果。

参考文献

篇2

1.2消毒工艺

要想保证水质安全,就应该严格控制消毒工作。一般来说,液氯消毒是各水厂的主要环节,应该从实际出发,参考具体的沉淀水、原水以及过滤水的水质情况,来确定相应的氯气投加量。对于存在有机物、原水氨氮等较多的污染物情况下,则应该消耗更多的氯量。另外,夏季中存在繁殖较快的微生物、细菌情况以及冬季中存在较多的氨氮污染物等情况,都是使得氯气消耗所增加的原因。另外,还受到相关的原水氯化物、pH值等方面的影响,根据经验来说,一般都是将出厂水余氯控制在0.5~1.0ppm范围。

1.3臭氧消毒工艺

针对臭氧冷却水系统来说,主要涉及到间接和直接冷却两大类。对于签核来说,主要要求使用纯度非常高、不容易出现辐射的水为内环的水要求,外部冷却水则是使用出厂水即可。要求出厂水的氯离子控制在50毫克/升内,就可以满足冷却设备直接应用于出厂水,否则,就应该使用间接冷却技术。这主要是从防止设备腐蚀角度考虑,水质存在问题的冷却水就能使得系统出现腐蚀情况。另外,在此工艺中,应该对于系统配件进行定期更换,保证臭氧发生器没有出现生锈情况。

1.4加强水质监测

应该实时监测相关的氨氮、余氯、pH值以及浊度等方面的指标参数,化验室应该进行相关准确的化学分析,除了进行国家饮用水的必要监测之外,还应该重点研究和分析相关的絮凝剂和消毒剂投加、原水水质等方面的检测工作,能够有效保证指导生产。另外,相关班组也应该对于水质检验进行定期和定项的检验。

2水厂节能降耗技术

2.1通过有效方法进一步降低电能损耗

第一,通过优化水厂的泵站,保证电能损耗在正常的生产过程中不断降低。在进行优化水泵的过程中,应该从实际出发,目的是有效提高泵站的运行效果,使得电能尽量得到节省。在具体的优化方法中,可以采用相应的图解法、动态规划法以及启发式智能方法等。在进行变化的供水量和用水量之间,保证泵站的运行具有最优的状态,满足省电要求。第二,泵站变配电工程设计过程应该进一步优化,保证电能损耗在生产过程中最低。考虑到水厂的技术以及资金方面的因素,有时候尽管采用了相应的电容器组手动投切措施,也不能进行有效补偿效果,不能满足有效的节电功能。所以,应该对于其泵站变配电工程设计进一步优化,能够把手动授切改为自动的方式,使得线路损耗有所降低,电费支出也有所减少,满足电能的节约要求。第三,对于水厂泵站的配电方案进一步优化,保证电能损耗的有效降低。当前从分析泵站的供电系统来看,在技术方面存在较为落后的缺点,所以应该通过配电方案的优化,保证能耗的有效降低。第四,清水池的电能损耗的优化也是减低能耗的有效手段。当前,针对水厂的清水池设计的优化研究比较多,主要就是通过清水池有效容积,来保证节约能耗的实现。同时,还应该对于清水池的工作进行改进。在进行内部的池内水位的抬高,可以通过异水位的设计方法提供,这样使得满足水位抬高以及有效进行水量调蓄工作的要求。

2.2优化生产流程和生产工艺,不断降低药耗

第一,应该保证矾耗程度进一步降低,对于生产自来水过程中的矾耗消耗来说,在大部分水厂中都是采用手动加矾的过程,这样就无形使得矾耗有所增加。因此,在加矾控制中利用游动电流检测仪加手动方式,能够达到较好的效果,对于滤后水浊度变化可以利用动电流检测仪进行测量得到,这样就能保证加矾的最佳量确定,能够有效保证为用户提供质量稳定的自来水,同时还能有效保证加矾量的降低。第二,如果在水厂出现了矾耗过高的问题,应该对于相关的原水异常波动进行分析,要求相关技术和运行人员进行相关的处理,保证水处理的有效性,并且积极进行总结和分析,有效提高处理水平。另外,还要积极有效地参与培训活动,使得水厂相关技术人员能具有较高的专业素养,保证有效降低矾耗。第三,可以通过相应的自动加氯系统,保证有效降低氯耗,针对水厂进行液氯消毒过程具有重要的意义。在相应的自动加氯系统中,主要包括前加氯与后加氯两部分,能有效通过流量比例进行一定的控制,使得生产中的氯耗能够进一步降低,有效避免产生多余的氯气消耗。通过合理应用,能够保证首次氯的投加的有效降低,保证二次氯投的有效性,能够保证自来水管网具有良好的消毒能力,保证出厂水质的要求。

篇3

1 概述

自来水厂是城市企业的用电耗能大户。在自来水厂的能源消耗成本中,电力消耗占了很大一部分,几乎占了整个能源消耗的95%以上。而在整个电力消耗中,机泵设备用电量又占到了95%~98%。其他辅助设备,如风机、电动阀、排泥机等等,耗能才占用2%~5%。所以,自来水厂降低成本,减少能源消耗的重点在于机泵设备的节能降耗。节能降耗可以有效地减少资源浪费,提高资源的利用率,对于建设绿色生态的节约型社会发挥着重要的作用。同时,节能降耗还有利于降低企业的成本,提高经营效益。因此,如何降低机泵的能源消耗从而做好自来水厂的节能降耗工作具有现实的意义。

2 机泵设备效率下降、能耗增多的原因

机泵设备广泛地运用到社会生活的各个领域,其将机械能变为液体能量从而达到抽送液体的目的。一般来说,机泵可用于城市供水、污水系统、化工系统、石油工业系统等。但在长时期的使用过程中,由于腐蚀、锈蚀、空蚀的作用,使泵轮与泵壳表面变得凹凸不平,摩擦系数增加,机泵电耗增加,效率降低。具体来说,首先,在长期的水流冲刷下,流道内壁和叶轮过水面变得粗糙,内流道的阻力增大,使得效率降低。其次,叶片背水面运行时产生负压,从而产生气穴和蜂窝表面,在电化学腐蚀的作用下,叶轮表面产生汽蚀,从而使能耗增加。再次,由于投加的药物或水质原因使得泵壳内积垢,严重的可使泵壳壁厚度增加,从而降低水力效率。最后,机泵加工工艺粗糙、容积损失和机械损失都会使水泵性能变差,降低机泵运行效率,增加能耗。

3 机泵设备节能降耗措施

3.1 了解机泵设备节能原理,选择高效、范围宽的设备

目前,大部分自来水厂都使用的离心泵。离心泵的工作原理主要是在水泵开动前,将泵和进水管灌满水,待运行后,在叶轮高速旋转产生的离心力作用下,叶轮流道里的水被甩向四周,压入蜗壳,叶轮入口处形成真空,水池里的水在大气压下沿吸水管吸入,填补这个空间。而吸入的水又通过蜗壳被叶轮甩出。所以,关键作用在于离心泵叶轮的高速旋转,通过连续吸水、压水,使得水向上推压。如果叶轮片和泵壳的构造好,水流状态也会更好,机泵的效率就会更高。因此,可采用具有良好叶轮片和泵壳构造的机泵设备,更换效率低的水泵,选择高效、范围宽的设备,使机泵始终运行于高效区间,提高机泵效率,降低能源消耗。

3.2 提高机泵节能降耗的控制水平

对于机泵节能降耗技术,早期的控制方法就是关闭阀门,降低输出减少功耗。后来,运用变频调速节能控制技术,使得机泵技能走向了科学化和智能化。变频调速是调速技术中最好的一种,能有效地解决机泵能耗问题。变频调速主要是针对装置的运行负荷偏低,设备负荷过大的情况,但变频调速器价格较高,维修技术要求也很高,所以,自来水厂需要针对实际情况选用变频调速器。

3.3 合理调度,优化机组运行

根据自来水厂所使用的机泵设备的运行情况,对机泵进行单独的性能测试,分出性能和功效不同的机泵,并根据各自机泵的性能进行科学地调度使用。比如,可将效率低的机泵仅用作水量和压力的调节,不作主力机使用。而将高效区间开阔,适用于偏低扬程大流量的机泵当作主力机使用。另外,有些机泵高效区虽然较窄,但在偏高扬程的条件下,工作性能较好,可在白天高峰供水时使用。因此,根据不同机泵的性能和功效合理地调度使用,优化整个机组的运行,可有效地降低能源消耗,同时降低机泵的损耗,最大限度地提高机泵的效率,延长使用期限。

3.4 叶轮切割改造

目前,大多数自来水厂的机泵配置不合理,主要原因在于机泵扬程偏高、机泵特性曲线不吻合,从而使得机泵效率过低。这种情况下,对叶轮进行切割是最简单的方法。叶轮的切割是针对少数运行不合适的机泵进行的改造措施。其需要根据具体的参数,计算切割量,从而改变叶轮外径,叶轮切割后,电流降低,可有效地节约电力,而且由于叶轮外径改变使得机泵特性曲线变化,从而机泵运行达到实际所需的高效区间,并达到节能的目的。因此,对叶轮的切割改造在自来水厂的节能降耗工作中广泛地运用。

3.5 采用高分子喷涂材料和新的密封技术

机泵在工作中由于腐蚀、锈蚀、空蚀的作用,还有机械磨损、容积损失、水力损失等原因,使得叶轮表面和机泵摩擦阻力增大,降低了机泵的工作效率。因此,可使用喷涂材料和密封技术有效地解决这个问题。一方面,既然机泵、叶轮表面摩擦阻力增大会使能耗增大,可通过在叶轮表面喷涂高分析材料,使其表面形成光滑表层,降低水泵在工作过程中用于抵抗摩擦阻力的能量消耗。这种通过喷涂材料达到的光滑表层,可以减少泵内流体的分层,降低泵内的容积损失,降低电力消耗。而且,一般来说,高分子材料都具有抗腐蚀的性质,可提高机泵的使用效率。另一方面,可采用新的密封技术减少由于克服摩擦阻力而增加的能耗。具体来说,可将注入式的密封填料用专用的油压诸如水泵填料函内,在机泵工作过程中,部分填料就会附着在轴套上,从而形成“旋转层”,而另外的填料则与机泵填料函接触,形成“不动层”,这样就避免了轴套的磨损,减少机泵的能量损耗。

4 结语

自来水厂作为城市生活赖以生存和不可或缺的企业,由于其用电量和能源消耗大,开展节能降耗工作十分重要。机泵作为自来水厂能耗最大的设备,实施有效的节能降耗措施能够达到自来水厂节能降耗的目的。所以,可针对机泵设备的能源消耗原理采取了一系列节能技术和方法,根据自来水厂的实际情况进行科学的改造,最终达到节能降耗的目的。

参考文献

[1] 滕方莉.浅谈自来水企业的节能与降耗[J].科技资讯,2006,(30).

[2] 廖栩辉,陈章.浅谈水泵节能降耗的工作做法

[A].水行业节能减排经验交流技术研讨会[C].2008,(6).

[3] 苏勇文.浅谈自来水厂水泵、变压器节能降耗技术

篇4

1、自来水制水工艺。制水工艺过程分别几个步骤,取水-制备与投加药剂-混凝-平流沉淀-过滤沉淀-送水。制水工艺采用最新的深度处理工艺,从而达到最新的国家标准要求。自控仪表设备选取分布式集散控制系统,与先进的计算机控制技术、网络技术相结合,实现整体生产工艺的自动化管理控制,为自来水厂创造更高的生产效率及出水质量。

2、自来水自控系统组成。从整体自动控制系统的多个控制站考虑,可以选择任一个一级控制站作为代表,分析PLC在控制站中硬件和软件的设置。其中,PLC的硬件配置包括扩展型基架和CPU、电源、数字量输入输出、模拟量、通讯五大模块共同构成,其中,CPU和电源模块在左端插槽,其它模块可随意安装。按照实际情况设置基架拨号,通常情况下采取16进制,不过0号主基架拨码例外,必须把统一设置成“off”状态。

二、自来水厂节能降耗中自动化控制系统的应用

1、取水泵站自动化控制系统的设计。取水泵站一共有4台取水泵(其中2台变频泵及2台定速泵,3用1备),主要为整个水厂进行原水的供应,是电量的主要消耗站之一,也是水厂控制电量的关键部位。为保证最大限度降低电耗,需把水泵分为两个组:运行的变频泵设定为变频泵组,另一台变频泵及定速泵设定为定速组。每次运行均至少开启一台变频器,当运行变频泵设定时间到时,且另一变频泵不运行时,将自动切换至另一变频泵。自控系统将根据清水池水位增减相应的水泵。

1.1取水变频泵的频率调整。原水变频泵的运行频率要介于最小和最大频率之间,频率限定值在SCADA系统中设定。PLC记录变频泵停止前的频率,以便于变频泵再次启动后保持之前的频率。

1.2定速泵的启动数量。定速泵的启动数量由变频泵的运行频率决定,为了更好地控制定速泵的数量,需要定义两个限定值:限定值1:启动一台定速泵时变频泵频率,限定值2:停止一台定速泵时变频泵频率。

2、加药加氯系统自动化控制设计

2.1加药系统。加药系统主要节能控制点在于控制药耗。水厂加药系统主要用于控制聚合氯化铝的投加,为保证系统的节能降耗,主要控制在于精确计算氯化铝的投加量。乐从水厂设计3台加药计量泵,计量泵的速度需通过PLC计算并直接通过通信进行速度控制给定。

2.2加氯消毒站程序设计。整个水厂的加氯系统由气源系统,真空加氯系统,压力水供应系统,电气、控制检测仪表系统,氯气泄漏检测及安全防护系统组成。为了掌握加氯是否处在手动或自动加氯状态,在加氯机中引出了加氯机的手动/自动选择信号。

(1)前加氯控制设计。前加氯机的控制方式:前加氯的作用主要是防止藻类和破坏胶体,所以前加氯一般根据原水流量按比例投加:加氯机开度控制=源水流量(m3/h)*投加量(kg/km3)/1000,共设置两台前加氯机,一用一备。当使用加氯机故障时,在SCADA上发出警报,并自动切换至另一台备用前加氯机,

(2)后加氯控制设计。后加氯主要作用是保证出厂水中余氯含量,起到清水池及出厂水管道消毒作用。控制方式如下:加氯机开度控制=流量主控制量+余氯控制量流量主控制量=滤后水流量或源水流量(m3/h)*投加量(kg/km3)/1000

(3)余氯控制量根据滤后水余氯高低进行控制,控制范围规定在流量主控制量的±5%。当余氯高于SCADA中设定的余氯值时,每分钟余氯控制量-0.2kg(可以SCADA中设置)当余氯低于SCADA中设定的余氯值时,每分钟余氯控制量+0.2kg(可以SCADA中设置)本工程共设置2台前加氯机,一用一备。当使用加氯机故障时,在SCADA上发出警报,并自动切换至另一台备用前加氯机。

3、沉淀池排泥系统自动化控制设计。沉淀池排泥系统主要由排泥阀、排泥车组成。该环节的节能控制关键点在于排泥过程中合理排水,在污泥排放时尽量减少不必要的排水。

3.1沉淀池排泥阀控制。沉淀池排泥阀周期性排泥:排泥周期可设定;各排泥阀开阀时间可设定。排泥周期可设定:用户可根据原水水质进行排泥周期的设定,合理减少排泥时间。各排泥阀开阀时间可设定:用户可根据平流沉淀池的具体特性,设置各阀门的相应开启时间。

3.2排泥车控制。沉淀池排泥车的过程控制:由于沉淀池长度约100m,长度较长,而按照沉淀池的沉泥规律,从沉淀池的进水到出水,池底所沉积的泥厚度按从多到小逐步递减的规律进行,因此,为了达到排泥车的排泥效果而又减小不必要的排水浪费,排泥车的行走电机可采用变速电机,在沉淀池的进水端采取慢速行走,而在沉淀池的出水端采取快速行走,或排泥车的行走电机为定速电机,排泥车从沉淀池的进水端前行全程1/3,后退至沉淀池进水端,再从进水端排泥至出水端,空车返回。

4、送水泵站自动化控制设计。送水泵房一共有4台清水泵,分别为2台变频泵及2台定速泵组成。正常使用时为3用1备。每次运行均至少开启一台变频器,当运行变频泵设定时间到时,且另一变频泵不运行时,将自动切换至另一变频泵。系统分为两个组:运行的变频泵设定为变频泵组P401A/C,定速泵P401B/D设定为定速组。运行的变频泵的频率根据出厂水压力设定值调整。定速泵启动的个数根据变频泵的频率决定启动台数。

4.1加压变频泵的频率调整。加压变频泵的频率根据SCADA设置的压力值进行PID恒压控制,PLC不断调整变频泵的频率。变频泵的频率及频率阀值以Hz表示。

4.2增加变频泵频率。变频泵频率由用户设定压力值及实际管道压力计决定。PLC通过PID运算调整变频泵频率,当管道压力小于用户设定压力时,变频泵频率将增加。

4.3减少变频泵频率PLC。通过PID运算调整变频泵频率,当管道压力大于用户设定压力时,变频泵频率将减少。

4.4定速泵的启动数量。定速泵的启动数量由变频泵的运行频率决定。为了更好的控制定速泵的数量,需要定义两个限定值:限定值1:增加一台定速泵时变频泵频率;限定值2:停止一台定速泵时变频泵频率

4.5启动一台送水定速泵。当变频泵的频率高于等于限定值1(例如48.5Hz)并且至少有一台定速泵可用时启动一台定速泵。

4.6停止一台送水定速泵。当变频泵的频率低于限定值2(例如35Hz)并且至少有一台定速泵运行时停止一台定速泵。

结束语

自来水生产具有独有的特性,其连续性、不可替代性及不间断性要求自动化控制系统具有较高的可靠性、高速性以及稳定性,必须要选择增强型的处理器。自动化系统在自来水厂中的应用有广泛的发展,可以有效的保证水质,提高自来水厂的处理能力。

参考文献

篇5

城市污水处理是高能耗行业,其能耗主要包括电能、药耗和燃料等多个方面,其中电耗约占总能耗的60%~90%,电耗也成为了污水处理厂运行成本的主要组成部分。2011 年,我国城镇污水处理厂用电量约为100 ×108kW・h, 约占全国社会总用电量的0.2%。污水处理厂电能主要消耗在污水污泥的提升、生物处理的供氧、推动混合、污泥的处理处置、附属建筑用电和厂区照明等方面。其中曝气能耗最大,约占到整个污水处理厂能耗的一半左右,此外,污泥处理环节能耗也不容忽视,我国污水处理厂在该环节的能耗约为3%~5%左右,与日本、美国等发达国家20%~30%相比有很大差距,这也反映出我国的污泥处理工艺和设备还有待进一步完善。城市污水处理厂处理单元能耗分布情况见表1。

表1 污水处理厂处理单元能耗分布

2 城市污水处理厂节能降耗途径分析

从以上分析可以看出,我国城市污水处理厂的能耗分布主要在污水提升、处理以及污泥处理等单元,包括设备的电能消耗、污水处理和药剂消耗等,因此,我国城市污水处理厂节能的途径选择应该是在曝气和泵领域、污泥处理以及日常运行的节能设计优化等等。

2.1 污水提升泵站节能途径

污水提升泵在整个污水处理中是主要的耗能设备之一,因此,具有优化提升泵站设计能够产生较大的节能效果。目前国内城市污水处理厂泵的能量高消耗主要由于电机效率不高、设计的运行能力超过了实际水量所需的能量、水量波动以及运行控制不良等原因所致。提升泵的优化节能主要途径有改工频泵为部分变频泵作为调速泵;所有提升泵都是变频泵,如绍兴污水处理厂通过提升水泵变频技术改造,节能达到12%;多级动态液位控制策略技术。在实际运行过程中通过转速加台数控制法,实现定速泵平均流量运行;当水流出现较大波动时应该适时增减运转台数,调速泵变速运转来适应水流量的变化;定期对水泵进行维护,以减少摩擦降低电耗。水泵的节能降耗最关键的是要提升泵的运行效率,在采用上述方法之外在泵设备上下功夫外,还需要加强日常的管理和高程布置等,结合污水处理厂的实际运行情况不断的总结最佳运行条件,以实现效率的最大化。

2.2 曝气设施节能途径

曝气机是污水处理厂耗能最多的设备之一,降低污水处理厂的能耗关键是要做好曝气机的节能。在污水处理曝气环节的操作主要有风机、空气扩散、控制以及动力等方面,现实中造成曝气过高能耗的原因主要有设备容量过大、操作效率低等等,因此,可以通过优化曝气系统和智能控制来实现曝气机的节能降耗:考虑曝气机动力效率、氧利用率、堵塞故障以及工程造价等因素来合理选择曝气装置;选择渐减式曝气布置,如第1~3 段分别按照35%、30%、25%进行布置;选择溶解氧自动控制系统来实现对溶解氧浓度的控制;选择变频器来改变交流电机的转速方式对风机流量进行控制,实现风机的节能。

2.3 污水处理节能途径

污水处理环节的能耗主要产生于污水预处理和生化处理,其中预处理阶段主要包括格栅、沉砂池,生化处理阶段的主要能耗单元是曝气系统(之前已作论述)。这里重点探讨污水预处理环节的能耗。首先是做好格栅的安装,虽然整个格栅本身在污水处理过程中的节能空间不大,但对后续其他设备的降耗起着重要作用,需要做好格栅的安装,一般会选择将格栅安装在污水处理厂的前段或者污水渠道、泵房集水井的进口处,以此来实现对较大漂浮物的截留,减少堵塞,保证污水设施的正常运转。曝气沉沙池由于曝气设备的使用而产生较高能耗,因此沉砂池的设计一般应选择平流式和旋流式。

2.4 污泥处理节能途径

污泥处理单元是产生能耗较大的部分,既要做好该部分的节能降耗,也需要探寻污泥资源的二次利用,因此污泥处理系统的节能主要着眼于污泥的处理和资源的回收阶段。首先是污泥处理方面,目前主要包括污泥的浓缩、稳定和脱水三个环节。其中,污泥浓缩应优先使用生物气浮技术来代替简单的重力气浮,以提升浓缩效率、降低能耗的效果;污泥的稳定主要有厌氧、好氧和堆肥处理,当然也有许多未经稳定处理就直接进入了脱水环节。一般厌氧消化后可以产生沼气来弥补稳定环节的能量。污泥脱水有机械脱水和自然脱水两种方式,目前大多选择的机械脱水,机械脱水的主要能耗是电耗,一般使用离心脱水的电耗较低,但对污泥的预处理效果要求高,还容易磨损,还需要在实践中探寻新的脱水工艺,提升节能降耗效果。此外,要做好污泥的回收再利用,污泥中大部分成分是挥发性有机物,在日本,60%污泥可以经由厌氧消化削减,每吨挥发性有机质可产生约680m3 的沼气,利用磷酸型燃料电池壳获得污水厂约50%的能源。污泥的回收途径一般有两种:利用污泥焚烧产生的热能、厌氧消化气的利用。

2.5 药剂消耗节能途径

药剂消耗虽然在整个污水处理厂中所产生的能耗比例不大,但在污泥消毒、调理和除磷等环节也存在一定的节能空间。首先是除磷方式的选择,一般会使用无需投加药剂、污泥产量又少的生物除磷技术,但这项技术工艺较为复杂,需要在实践中不断的加以完善。如果选择化学除磷,可以尝试使用高分子混凝剂除磷,能够有效降低药耗;污泥调理是为了进一步提升污泥的脱水性能,通常有选择化学调理和物理调理两种工艺;污泥的消毒可以推荐使用辐射技术,无需高温高压,是污泥消毒的新技术,有利于污水处理厂的节能降耗。生物消毒由于不需要投加药剂,也是目前国内大多数污水处理厂选择的污泥消毒方式,这一工艺需要进一步提升污泥的脱水性能,以减少后续污泥脱水环节的能耗和药耗。

3 加强日常生产经营管理

污水厂的节能降耗渗透于日常的生产运营管理的方方面面,加强日常生产经营管理也是污水处理厂的节能降耗的重要举措。首先是加强教育培训,提升人员的节能意识,树立节能生产理念;其次是做好日常的生产经营成本分析,通过对城市污水处理厂各个处理环节的能耗分析,准确掌握不同单元的具体能耗,从而有针对性的提出控制能耗的重点环节;再次是建立节能降耗目标,把节能降耗目标设置于各个环节,对于完成预期目标的给予一定的奖励,从而激发大家开展节能降耗的积极性。

参考文献

篇6

1.污水处理厂能耗情况

我国污水厂使用的处理工艺并不相同,而且实际能耗数据也有较大差别。根据资料统计,在不进行污泥处理的情况下,污水处理耗电量为0.16-0.29kW・h/m3,而通过我国学者的研究,使用卡鲁塞尔氧化处理工艺的耗电量为0.21kW・h/m3。通过赵传义进行优化改良的A2/O污水处理工艺,处理每吨水耗电量只有0.15kW・h,可以看出该方法节能效果非常优秀。根据城市污水处理平均电耗统计,我国现阶段平均电耗已经达到0.31kW・h/m3,能耗要远超发达国家污水处理能耗。以0.31kW・h/m3为基础进行计算,在2014年我国污水处理量就将达到1.36亿m3/d,而耗电量就将接近4216万kW・h/d。以上海某污水处理厂在2014年的生产成本进行计算,该厂满足二级排放标准,生产成本0.489元/m3,经营成本0.285元m3,以此标准计算,在2014年度,该厂需要承担的生产成本为5986万元/d,经营成本为3436万元/d,年生产成本为229亿元,年经营成本为136亿元,与2010年总运行费用相比,约有24.5%的增长。

2.污水处理厂节能技术与发展途径

2.1能量利用审核

通过能量利用审核,可以为污水处理厂正常生产经营提供准确的数据,并且为污水处理技术改造方案选择提供参考。通过生命周期进行污水处理的成本分析,并对处理系统与单元组件进行优化,实现降低污水处理能耗与成本的目标。通过能力利用评价审核能量利用效果,并且辅助污水处理厂进行设备维护,使设备可以及时进行改进或更换。能量审核评价包括两步,其一是可行性研究,需要对技术方案进行整体性评估,并且完成初步的设计,明确项目范围,成本、财政评价等资料;其二是对设计工程进行详细标注,根据在线监测系统对改造后实际效果进行判断。根据工程前期情况进行研究,审核污水处理厂的全部工作流程,保证其单元具有良好的节能降耗效果。

2.2反应器在线数

未来城市规模将不断增长,污水处理量也会随之增长,为了承载工业废水与大雨的冲击,在运行阶段需要所有反应器容积维持在线状态,这种情况会导致活性污泥系统维持在低负荷状态。如负荷率处于正常水平,则污水处理的能量使用效果也会有所上升。例如旱季进行污水处理时,如果生物反应器维持2个以上运行状态,则需要对污水处理进行合理分析,评价停止一部分生物反应器后,是否会影响污水处理厂的正常负荷,经研究表明,在旱季停止部分反应器后,仍然可以保证污水处理厂的正常运作。

3.节能降耗设备改造

3.1曝气组件

根据美国80年代北美地区资料统计,当年北美地区曝气设备能耗为1.4×106kW,在这其中,曝气系统消耗的能源约占污水处理厂总能源消耗的45%-75%,所以,曝气组件的节能改造是污水处理厂节能降耗的重要内容之一。扩散曝气系统是最为常见的充氧方式,设备实际充氧能力受多种因素影响,其中包括池体形状、曝气类型、安装深度、气压、温度、污水特征等。OTE是判断曝气系统效率的核心指标,通过改善OTE,可以提高系统能量使用效率,而影响OTE的因素包括水深、水质、气泡、风速、密度、堵塞情况等。OTE受生物反应扩散器数量影响,数量越多,OTE也会有所提高,部分污水处理厂根据反应池大小设计曝气器位置,也有部分污水处理厂将曝气器的微孔更换为粗孔,通过这些方法,均可有效提高污水处理用电效率。部分曝气头在更换完成后,每年可节约用电费用120000美元,经计算,投资仅需3年即可回收。在进行混合液悬浮处理时,可以通过高效率的混合设备取代曝气设备,通过这种方法,不仅可以提高处理效率,还可以使能量需求降至合理范围。

3.2水泵

水泵设备在活性污泥处理中经常使用,其中包括提升泵、回流泵、内回流泵、污泥泵。根据北美地区实际运行效果,水头提升降低0.4m,即可节约成本0.0415美元/(m3・d)。为了保证水泵运行效果,可以采取以下措施进行改造。水泵在运行阶段,需要维持在高效区间,两台泵设置85%额定流量,代替3台泵55%额定流量;合理调节水位,使水泵启闭次数降低,稳定出水水流;使用大型水泵优化运行功率。

4.结束语

为了实现可持续发展战略目标,我国一直坚持加强污水处理技术水平。污水处理厂高能耗的问题,已经影响了污水处理技术优化的效果与速度,为了降低能耗,需要了解污水处理节能降耗技术的发展方向,并且积极吸收国际优秀节能污水处理技术,通过高水平的技术应用,实现污水处理厂的节能降耗目标。 [科]

【参考文献】

[1]王洪臣.中国污泥处理处置技术路线的初步分析[J].中国建设信息(水工业市场),2010,12(7):12-14.

篇7

城市污水处理厂是解决城市水污染问题最有效和最重要的措施,由于许多城市污水处理厂在建设过程中重点考虑了处理工艺的稳定性及工程投资等问题,而忽视了运行成本,造成处理厂建成后运营成本过高而不能正常运行。因此,对污水处理厂设计和运行管理进行优化,对降低费用、节约处理成本十分必要。

1、污水处理厂的能耗分析

目前,城市污水处理厂大多采用以生物处理工艺为主的二级或三级处理,通常包括预处理、生化处理和污泥的处理处置3部分。污水处理厂的能源消耗包括电、燃料及药剂等方面的消耗。国内外众多污水厂能耗分析表明,污水提升泵、曝气系统和污泥加热设备是主要的能耗设备。对于一般的二级处理工艺而言,提升泵的耗电量占全厂用电的10%~20%,曝气系统占50%~70%,污泥处置(消化、脱水)占10%~25%,三者的能耗综合占直接能耗的70%以上。因此污水处理厂的节能重点在于提高提升泵、曝气系统和污泥处理的用电效率,减少能耗。

2、节能降耗措施

2.1 工艺节能

(1)合理选择设计参数

将现状已投产运行的污水处理厂进水水质与现场排水水质资料对比分析,提出合理的污水进水设计参数,避免取值过高,使构筑物及设备过大,造成能源浪费。

(2)采用合理的处理工艺

采用合理的处理工艺是污水处理厂节能的重要环节。项目所选工艺流程经应过多方案比选,选用污水处理效果好,节约能源的工艺、技术。目前,城市污水处理厂常用的生物处理工艺有传统活性污泥法(ASP)、AB法、A/O、A2/O、经典SBR及其改进工艺(如CASS和ICEAS)、氧化沟、BAF等,其工艺比较见表1。

表1 主要生化处理工艺比较表

污水处理厂在设计时除考虑不同工艺各自特点的同时,还要结合项目所在地的气温、地形、电价、征地费用及项目自身的情况、原水水质情况、出水达标要求、污泥处置情况等进行综合考虑,选取技术上合理、经济上合算、易于管理、运行可靠,且有利于近、远期结合的工艺方案,使能耗最低。

(3)污泥处理系统的节能

污泥处理系统包括污泥的脱水和污泥的稳定。目前污泥脱水设备有真空过滤机、板框压滤机、带式压滤机和离心机。前两者需要投加无机絮凝剂,通常为铁盐、石灰或铝盐;后两者主要用有机高分子絮凝剂。真空过滤机运行稳定可靠、脱水泥饼性状好、管理方便,但耗电量大;板框压滤机间歇工作,操作简单,泥饼量最少,但生产率低;离心机适用于难脱水的污泥,不散发臭气,但由于转速高,设备磨损大;带式压滤机生产率高,运行稳定,可连续运转,耗电最低。因此脱水设备应综合考虑污泥处置方法、污泥性质、处理厂规模等,从而实现节能。

(4)节约药耗

污水厂常用的药剂主要是PAC、PAM等絮凝剂。在加药系统中采用高精度的计量仪表和投加设备。加药系统均采用复合环控制方式。絮凝剂投加量先根据流量进行比例投加,再通过FCD、出水浊度检测的反馈信号对其进行调节,以达到最佳投加量。采用复合环控制系统能使水厂的加药量始终处于最佳值。

(5)其余节能措施

污水厂平面布置应严格控制处理工艺流程的总水头损失,以降低进水的提高度,达到节能目的。

对处理构筑物进行合理的分组,在非满负荷的条件下,可用两组或三组并联运行,减少了各段之间的水头损失,达到节能的目的。

2.2 设备节能

(1)提升泵的节能

提升泵的电耗一般占全厂电耗的10%~20%,是污水厂的节能重点。提升泵的节能首先应从设计入手,进行节能设计;污水厂投产后,通过加强管理或更换部分设备进行节能。

1)精确计算水头损失,合理确定泵扬程

从泵的有效功率NU=γQH,可以看出当γ、Q 一定时,NU与H 呈正比,因此降低泵扬程节能效果显著。

工程设计时为降低水泵扬程可采取以下措施:总体布置紧凑,连接管路短而直,尽量减小水头损失。

2)流量调节方式

污水厂进水量往往随时间、季节波动,由轴功率N=NU/η1 (η1为泵运行效率)可以看出,一定流量扬程下NU 是一定的,而泵的轴功率直接由η1 决定,所以应选择合适调控方式,合理确定泵流量,以保证泵始终高效运转。另外可通过设置多台水泵和变频调速措施使水泵长期运行在高效段范围内。

(2) 曝气系统的节能

鼓风曝气系统电耗一般占全厂电耗的50%~70%,是全厂节能的关键。最根本的节能措施就是减小风量,而减小风量必须提高扩散装置效率,降低污水对氧的需求。

1)改进布置方式

传统的曝气池,曝气管是单边布置形成旋流,过去认为这种方式有利于保持真正推流,另外可以减小风量,但经过多年实践与研究发现,这种方式不如全面曝气效果好。全面曝气可使整个池内均匀产生小旋涡,形成局部混合,同时可将小气泡吸至1/3 到2/3 深处,提高充氧效率。

2)采用微孔曝气器

微孔曝气器可以减小气泡尺寸,增大表面积,因而转移速度高,节约风量。天津东郊污水厂和纪庄子污水厂均采用微孔全面曝气,比穿孔管节电20%以上。

3)风量控制节能

选择风机时,都要在计算需气量基础上加上一个足够大的安全系数,以满足最大负荷时的需要。所以在日常负荷下一般都要适当减小风量,负荷低时更应如此,这不仅是节能的需要,也是防止过曝气、保证处理效果的要求。而进行风量控制是曝气系统效果最显著的节能方法。根据已有工程运行经验,采用DO 控制风量可节电10%~30%。

(3)其他措施

1)按照国家有关技术政策要求,采用高效节能设备,特别是部分关键工序采用数控设备及专用设备,以提高工效,节约能源并保证产品质量。

2)应用变频技术使电机运行状态由轻载转变为接近新条件下的额定负荷量,使效率和功率因数提高,从而达到节能的目的,变频技术节电率可达21%。

3)加强设备、电气维修保养,使设备在最佳状态先运行。

4)加强维修、操作人员的培训,力求全面掌握设备的使用、操作性能,通过提高设备的使用效率,达到节能的效果。

3 节能发展趋势

污水厂的节能减排是一项综合性工作,设计到工艺、设备及其它诸多环节。因此,污水厂的节能技术应从工艺设计、设备选型、运行管理等各个环节入手,处处树立节能意识,不断开发研究节能新工艺;设计人员应加强学习,提高自身水平;污水厂要建立能耗绩效的管理评价体系,在实践中总结节能经验,同时借鉴国外先进管理经验,提高污水处理厂的运行管理水平,使污水处理技术由高能耗向低能、高效的方向发展。

参考文献:

[1]高旭,龙腾锐,郭劲松.城市污水处理能耗能效研究进展[J].重庆大学学报:自然科学版,2002,25(6):143-148.

篇8

城镇污水处理厂的能量是推动各生物反应池及污水处理厂正常运转的必要条件,其能量消耗大体可以分为两类,即直接能耗和间接能耗。直接能耗包括污水提升泵、曝气系统、机械搅拌、污泥回流泵,污泥脱水等的电耗以及污泥消化投加的热能等; 间接能耗包括絮凝剂、外加碳源、氯气、活性炭等外加耗材生产过程所需的能量。

2、污水厂各处理单元节能降耗优化运行方法探讨

2.1 提升泵房单元节能优化技术探讨

污水提升泵的节能应首先从设计过程着手,考虑进行节能设计,根据管道系统的特性曲线正确科学地选择水泵,让水泵保证在其高效段工作,合理利用地形,减少污水的提升高度来降低水泵轴功率。

其次水泵配套电机的选择也非常重要,选择与水泵负荷相匹配的电机可使电机保持高效运转,虽然高效率电机价格比标准电机价格高15%~25%,但其运行维护费用低,投入运行后该部分投资可以很快回收。因此,在污水处理厂设计或升级改造工程中,可优先选用高效电机。

2.2 生化处理单元节能优化技术探讨

目前我国生化处理单元采用的技术仍然是以A/A/O 脱氮除磷工艺、氧化沟及SBR( 序批式活性污泥法) 三大工艺为主。处理单元节能降耗主要涉及3个方面: 曝气系统(主要) 、回流系统及药剂投加系统。

A/A/O 脱氮除磷工艺,SBR 工艺基本上都是采用微孔曝气,氧化沟工艺多采用转刷曝气器、倒伞式曝气器等进行机械曝气。

微孔曝气系统所需空气量由风机提供,罗茨鼓风机和TURPO 风机是当前污水处理厂中常用的鼓风机。罗茨风机通过变频器来实现节能,一般为中小型污水处理厂所采用,并且运行时必须采取相应的隔音措施。而TURPO 风机则利用其配套的MCP 控制开关柜,通过在线监测实时数据,结合进水流量情况进行风机导叶开度及开启台数的控制,对曝气量进行控制,避免风量浪费导致能耗过高。另外微孔曝气的曝气装置也是其重要组成部分,该装置材料的选择可提高氧气利用率,例如近年来被我国污水处理厂广泛采用的橡胶膜片式微孔曝气器扩散出的微小气泡直径为1.5~3.0 mm,具有较高的氧利用率和动力效率,逐步淘汰了陶粒、刚玉和粗瓷等材料制成的曝气装置。

机械曝气可分为转刷(碟) 和倒伞式曝气器两种。对于倒伞式曝气器来说,由于安装的设备数量较少,因此一般给其中1~2 台设备安装变频器来实现变负荷的节能运行。对于深沟式氧化沟采用转刷(碟) 曝气时,会相应配套推进器作为混合推流主要设备,推流设备一般耗能较低,因此水下推流设备不进行控制,保持常开; 而转刷( 碟) 则采用时序控制方式进行控制,通过控制开启台数及调整空间布置位置,以适应污水进水负荷的变化,从而实现节能优化运行。

对于A/A/O、氧化沟及SBR 工艺,曝气量的控制决定着整个系统的污水处理效果和污水处理厂的能耗水平。曝气量小会直接影响出水水质,曝气量大则会造成大量能耗,同时大量气体会打碎污泥絮体影响出水水质。目前大部分污水处理厂运行时只有当出水水质超标时才会改变曝气量,只要出水水质达到排放标准就维持曝气量恒定。当污水厂进水负荷变化时,出水指标就会产生较大波动。因为当进水负荷偏低时,会造成气量浪费,所以按需曝气将逐渐成为主要发展方向。

2.3 污泥脱水单元节能优化运行技术探讨

污泥脱水单元节能优化主要涉及脱水机类型选择、药剂的投加量等。污泥脱水机类型大致分为板框式污泥脱水机、带式污泥脱水机、离心式污泥脱水机和叠氏污泥脱水机。带式污泥脱水机受污泥负荷波动的影响小,具有出泥含水率较低且工作稳定启动能耗少等优点,但由于其存在运行环境条件较差、维护工作量大等方面的问题增加了基建费用,因而较少采用。板框式污泥脱水机与其他类型脱水机相比,污泥饼含固率最高,可高达35%,但其占地面积较大,间断式运行,效率低下,运行环境较差,存在二次污染。因此不少大型污水处理厂在污泥处理设备选型上还是更偏向于选择离心脱水机。

一些采用氧化沟工艺的污水处理厂会考虑适当延长污泥龄,减少排泥量并提高污泥中的灰分含量,这在一定程度上提高了进入污泥井的含固率,并通过合理调配二沉池、高效沉淀池排泥时间和排泥量,合理控制污泥浓缩池浓缩时间和进泥浓度等方式,提高离心机运行效率、减少脱水机组运行台数和运行时间,有效地降低能耗。

3、城市污水处理厂节能运行实例

某污水处理厂进行了节能降耗技术改造,达到了一定效果。该污水处理厂总占地面积为14.53 hm2,水厂总设计规模为35×104 m3 /d。设计分两期: 一期采用AB 工艺(其中B 段为MUCT 工艺) ,设计规模为10×104 m3 /d,于1998年投入运行; 二期采用厌氧池/三沟式氧化沟工艺,设计处理规模为25×104 m3 /d,于2001 年投入运行。

该污水处理厂最初考虑了精确曝气控制,但是最终产生的效果较差,因而于2009 年进行了节能改造,改造主要针对能耗较大的生化处理单元。改造内容包括将一期的MUCT 池在线溶解氧信号直接接入主控制柜,通过计算转换为所需风压值,让主控制柜根据实际风压与所需风压差值调整各风机导叶开度,从而实现改良型的压力与溶解氧的双重反馈控制系统,使其供氧电耗由0.066 7 降至0.048 kW・h /m3。二期厌氧池/三沟式氧化沟通过提升水泵的开启台数变化及在线溶解氧仪数值变化间接判断从而调整转刷曝气器开启台数和时间,实现转刷的时序控制。三沟式氧化沟单耗由0.173 9 降至0.158 7 kW・h /m3,达到了较为理想的节能效果。该污水厂实行相应的节能改造措施后电耗有一定下降。

结语

城市污水处理的能耗直接关系到污水处理业与环境、经济的可持续发展,因而污水处理能耗与效率的研究具有工程实用性和前瞻性,是一个综合性、可挖掘性的研究课题,然而当前关于这方面的研究还较少。

通过研究城镇污水处理厂的能耗组成、分布比例、耗能特点等可知,城镇污水处理厂节能降耗措施主要从污水提升系统、曝气系统、污泥处理系统等三方面入手,具体涉及泵、曝气设备、推动混合设备和污泥处理设备等主要耗能设备的节能选型和节能改造,优化运行管理措施。

结合我国城市污水处理现状,开展针对全国各种工艺的城市污水处理厂全流程运行能耗评估,并有针对性地开展节能降耗优化改造,将成为今后一个重要的研究方向。

参考文献

篇9

海口市白沙门污水处理厂(二期)设计处理水量20万立方/d,变化系数K=1.3,采用AAO工艺,处理后的尾水达到 《城镇污水处理厂污染物排放标准》(GB18918-2002)一级B标准,实现深海排放。

在污水厂的运营过程中,电耗一般占到直接运营成本的50%,如何实现节能降耗,节约用电,降低生产运行成本,保证达标排放,是日常运营管理工作的重要内容,本文从以下几方面措施,实现降耗。

2 变配电系统节能降耗措施

2.1 最大需量节能降耗

污水厂配电采用双电源10KV单母线分段结线方式,根据集中、就近的原则,全厂设0.4/0.23kV低压配电中心三个,如表一所示。

电房名称 变压器台数、容量 供电工艺段

1# 2*630KVA 进水泵房、预处理段、办公楼等

2# 2*1250KVA

10KV高压柜 鼓风机及生化处理段

3# 2*1000KVA 配水井、排海泵房、紫外消毒、污泥脱水处理段

总装变压器容量 5760KVA

表一 变压器安装容量情况

由于白沙门污水处理厂(二期)跟一期(其他水务公司运营)共用一条市政污水管网,生产上存在竞争关系,一般二期的产能未达到设计负荷,还有由于来水污染物浓度未达到设计指标,因此设计的用电变压器存在很大的富余量,按照2013年的生产情况,只需总装变压器容量的一半左右即2880KVA即可满足生产要求。如果按照5760KVA投入变压器,单台变压器的负荷率很低,且每月将产生可观的基本容量费和变压器空载及负载损耗电费。因此采取变更基本容量费收取方式降低电费,具体如下:

根据生产用电负荷情况,向供电局提出变更供用电合同,签订补充协议,将基本电费按照报装容量收取变更为按最大需量收取,根据南方电网的供用电合同,最大需量最低可以是报装容量的45%,每月实际最大需量在协议确定的容量±10%内均按38元/(KVA・月)收取,实际最大需量超过确定容量的±10%,额外收取容量费。污水厂将基本电费变更为最大需量按总装容量的45%收取后的费用情况比较如表二所示。

可见,变更为最大需量后,每年节省基本电费241368元。

变更发生的费用:由于变更基本容量计费方式,无需改变计量装置,且现装的多功能计量表均有最大需量功能,无需更换,只是协调供电局,变更供用电合同,因此发生的费用是0元。

按照最大需量收取基本电费的优点:

(1)系统可靠性高,如果是减容,不投用的变压器将被供电局封存,如正在运行的变压器突发故障,备用变压器投入要向供电局重新申请,严重影响到生产,而按最大需量,不投入的变压器处于热备状态,随时都可以投入,不会因为其他变压器故障影响生产,备用和使用变压器定时切换,无需办理手续,均衡使用,可靠性大大提高。(2)最大需量有±10%的浮动空间(即在2592-3168KVA之间),能够适应生产负荷变化,而无需增加额外的费用,如生产负荷再增大,最大需量协议约定的最大需量可以变更,非常灵活。(3)如将变压器减容,将增加新购变压器的投资,且不能适应生产负荷的需要。

2.2 合理投退变压器,减少空载损耗,提高功率因数。

白沙门厂三个电房各投一台变压器,变压器的负荷率在82%左右,另三台变压器处理备用状态,每月节省空载损耗电度:4.5KW*24*30=3240度(4.5kw是三台变压器空载损耗之和),每年节省电费:3240*12*0.6362=24735元。

污水厂的3个电房均设有低压补偿电容柜,电容的投退根据自动补偿控制器自控控制,合理设置投退值,定期对补偿回路的电容电容接触器、补偿控制器检查,提高整个配电系统的平均功率因数,每月的平均功率因数均高于0.9,每月均得到供电局力调电费奖励3000多元,全年可节省约3.6万元。

3 进水泵叶轮改造

白沙门厂进水泵房设计安装有4台大泵(1#、2#、5#、6#,160KW),小泵2台(3#、4#,75KW),扬程均为14米。在近3年多的运行过程中,出现水泵振动,造成轴承机封损坏,电机转子扫膛等故障,维修成本极高,且严重影响到生产的正常进行。经对水泵损坏的情况进行了深入的分析,对实际泵坑水位和水头损失进行计算,认为水泵选用的扬程过高,实际运行严重偏离曲线的高效点,造成能耗增大,水泵振动,维修成本增大。经对水泵运行工况曲线分析和厂家的技术支持,得出更改叶轮或变频改造将水泵的扬程降低是改变水泵运行工况的良好措施。经更换小扬程叶轮(高效点在11米左右),改造前后运行数据如表三所示。

表三 更换叶轮前后运行参数

(注:以上数据是泵坑液位5米时开机实测得出。)

可见,更换叶轮后,流量基本保持不变,而电机运行电流降低明显:

大泵:245-215=30A,小泵:127-115=12A

根据政府的监管要求,5米水位时需开启2台大泵,一台小泵,电流减少量30*2+12=72A,每小时节约电耗40度,费用25元(单位电价0.6362元/度),每年节省电费:25*24*300=18万元(一年按300天运行计算),通过改造,水泵运行在曲线高效区内,减少振动,同时减少可观的维修费用,将加快回收周期。

4 5#、6#泵变频改造

篇10

节能降耗的首要任务是分析在污水处理厂中的哪些设备、哪些工序是高能耗的?是否可以通过科学的手段减少能耗。因此在节能降耗的同时要明确不同的处理单元对能耗(主要是电能)的需求,同时也要建立一个完整的节能降耗评估体系,这样才能更深入的分析高能耗的原因及探索节能降耗的新途径。

2 泵系统途径节能降耗

在中小型污水处理厂中,经常会出现这样的现象,污水处理厂的水泵会因为工作使用的时间不同,有时候会导致水泵的工作效率大大降低,这种事故发生的原因是因为使用的时间变化的巨大,使水泵的内部设计偏离原始的设计。所以,中小型污水处理厂对于水泵节能的研究是具有极大的经济效应。中小型污水处理厂使用的水泵通常有潜污泵和轴流泵,对于这两种水泵而言,通常就可以采用改变水泵内部的电机运转的速度改变来使水泵的运转效率。然而,市场上除了上面提到的几种水泵之外,还有一些中小型污水厂的设备没有得到及时的更新,仍然采用的是比较落后的水泵,针对这种现象,为了得到节能降耗的目的,可以采用市场上流行的水泵,使用新型的节能水泵,或者根据情况使用合理的泵的数目,新的变频变速技术也值得推广。

2.1 变频变速技术

由于不同时段的污水流量不同,有的时段大,有的时段流量少,如果统一设置水泵运行参数,容易导致发生在流量低的时候也是高能耗运转的情况,而随着现代社会的发展,变频技术也越来越应用在不同的领域,相关资料显示,变频变速技术应用在污水处理厂中也收获了很大的效果,使用变频调速设备的污水处理厂,虽然在前期投资新的设备,固定资产投资有所增加,但在后期运营过程中回报较大。这种新的技术不仅使整个污水处理厂的设备在使用上得到更好的匹配,同时又提高了水泵的运行效率,另一方面,由于变频调速技术的特点,因此具有很好的保护作用,避免了很多突发事故的发生。如云南某污水处理厂规模2万吨/天,提升泵房水泵在未安装变频器之前,每吨污水提升需要的电耗为0.15度,变频器调试运行后每吨污水提升的电耗仅为0.11度,节能效率达到26.7%。

2.2 新泵替老泵

很多中小型污水处理厂之所以运营成本高,很大的一部分原因是因为使用的是旧式的老水泵,这种老式水泵能耗大,效率低,用新式节能水泵代替老式水泵,对于成本的降低,效果是明显的。现在的新型水泵不仅在效率上胜过以前的老式水泵,同时更省电,而且新式节能水泵在后期的维护管理费用上也很少,采用新式节能水泵,对于中小型污水处理厂而言是长期的选择。

2.3 水泵其他的节能方法

很多污水处理厂误认为多台水泵会减少成本,这是错误的观念,在污水处理上,有很多不明确的客观因素存在,要根据不同的情况来应对。对已一定量的污水,可以采用一台水泵,也可以采用多台水泵共同工作来处理,这两种情况下,两台共同工作可能成本高一点,但节约时间,几台小型功率的水泵有时候更适合中小型污水处理厂。在污水处理厂运行的过程中,另外当水泵的扬程比较小的时候,这时候开启水泵也能有效的节能。在设计上为了达到节能的效果,通常会采用大泵与小泵相结合的方式。

3 曝气系统节能

对于一座污水处理厂来说,曝气系统尤为的重要,如果能够让曝气系统得到更好的改善的话,这是最好的节能方式,因此对于中小型污水处理厂而言,改善曝气系统是节能降耗的重要方面,下面是几种改善曝气系统的方法。

3.1 使用微孔曝气器

如果想提高氧的使用,通常有几种方法,把气泡的比表面积增大;让气泡在池内出现的时间更长。一般情况下,采用的增大小泡比表面积的方法。据相关资料显示,采用微孔曝气器会比普通的曝气器重更具有效率。

3.2 合理的布置曝气器

目前,在一些技术落后的污水处理厂,仍然采用的是把曝气器安装在水底,但根据最新的研究发现,传统的曝气器布置方法不够科学,传统的安装方法并不能使池中的氧气分散均匀,传统的布置方法有可能导致氧在不同时段的浓度不同,这种情况往往就会使资源极大的浪费,这是不可能达到节能降耗的目的的,因此合理的安装曝气器的位置是节能降耗的重要手段之一。研究发现,最合理的位置在池子进水口得地方多布置,出口的地方呈减少分布。在需要大量氧气的地方增加氧气的浓度,让池内的细菌快速的繁殖从而达到污水的快速净化,需要氧气少地方尽量的减少氧气的输入,这样的安排会更加的合理,相比传统的方法,效率会大大的提高,同时又达到了节能降耗的目的。

3.3 溶解氧量的控制

污水的水质情况并不是一成不变,因此不同情况下,需要的溶氧量会不同。当溶氧量很低的时候,不利于细菌的生长繁殖,细菌的净化能力下降,不能很好的处理掉出水中的有机物,因此这种既浪费了资源又没有达到净化的目的是要坚决避免的,为了解决这种情况,通常是充入的氧气略微的高于所需要的溶氧量,但是并不是充入的越多越好,一方面是因为造成了资源的浪费,另一方面是因为溶氧量的过高会使一些固体的沉降性能受到影响。所以溶氧量的合理控制是非常重要的,通常采用的是一种测定池内溶氧量的仪器来根据情况来适时控制溶氧量。

3.4 对鼓风机采用变频技术

对鼓风机采用变频技术的原理及方法参见文章2.1。

4 结束语

对已中小型污水处理厂而言,能够利用科学的手段来降低处理污水的运营成本是很关键的。现代的技术发展日新月异,这篇文章从多个角度来分析了如何达到节能降耗的目的,从节能降耗的源头上提高了一些可行性的建议,相信在未来会有越来越多的新的节能降耗的方法技术。

参考文献

篇11

Key word: sewage treatment saving energy and reducing consumption environment protection

中图分类号:[TU992.3]文献标识码: A 文章编号:

1.引言

近几年,我国各地的环境保护及污水处理事业发展很快,成绩显著,尤其是城市污水处理设施的建设成果令人瞩目。但与世界各国相比,目前我国城市污水处理能力、效率、水平与环境要求差距仍然很大。如何优化污水处理工艺,节能降耗,提高效率,成为当今社会共同的话题。

2.污水处理厂耗能现状分析

长期以来,城市生活污水多采用活性污泥法,它是世界各国应用最广的一种生物处理流程,具有处理能力高,出水水质好的优点。

由于国家对污水处理厂出水水质要求的不断提高,污水处理的点好相应提高到0.15~0.28(kW.h)/m³污水,平均处理成本已达到0.8元/m³,随之而来的搞运行成本便摆在眼前。污水处理厂能耗成本占污水处理厂运营维护成本的60%~90%,主要集中在污水提升、曝气回流、污泥处理与运输等部分。在不同污水处理厂的运行中,实际能耗还与污水厂规模、污水的水质特征、处理程度、处理工艺、运行模式等因素有关。

随着出水水质要求的不断提高,CO2和污泥的排放量也相应增加,这将与我国当前提倡的减排相斥。曝气供氧是CO2的主要来源部位,曝气供氧与混凝沉淀又是污泥的主要产生部位。

因此污水处理厂的节能减排工作应从上述部位出发,提出实现途径,以满足国家和行业要求。

3. 污水处理厂节能降耗实践途径分析

如何使城市污水处理工艺朝着低能耗、高效率、少剩余污泥量等可持续的方向发展,要求污水处理不应仅仅满足单一的水质改善,同时也需要一并考虑污水及所含污染物的资源化和能源化问题,且所采用的技术必须以低能耗和少资源损耗为前提。

3.1 强化预处理降低除碳工艺能耗

预处理投资少,能耗低,管理简单,可去除一定的有机物,可通过强化沉降、分离、絮凝等工序,采用中和法,提高格栅和沉淀池效率,亦可采用水解或AB工艺等方法来强化预处理,从而降低二级处理负荷和能耗成本,达到系统节能的目的。

3.2 除氮工艺的优化

(1) 同时硝化反硝化

同时硝化反硝化是指硝化过程与反硝化过程在同一个反应器中、相同操作条件下同时进行。近年来,在很多实际工艺中发现了同时硝化反硝化过程。

同时硝化反硝化的影响因素主要有:有机碳源、溶解氧、微生物絮体结构等。由于需要实现硝化与反硝化的一体化,所以有机碳源必不可少。进水碳源越充足,同时硝化反硝化就越明显。此外还需要选择适当的污泥负荷,负荷过高,会抑制硝化反应;负荷过低,会大量消耗有机物,使得反硝化的碳源不足。溶解氧也是影响同时硝化反硝化的重要因素之一,一般控制在0.5~1.0mg/L。溶解氧过高,反应器内缺氧区域减小,反硝化受抑制;溶解氧过低,则不利于硝化反硝化的进行。微观上认为微生物絮体内的溶解氧梯度使得同时硝化反硝化发生,所以絮体的大小也是影响因素之一。研究表明,当絮体粒径在50~110微米时可在絮体内形成缺氧区。此外,温度、碱度、pH和污泥龄等也会对同时硝化反硝化产生影响。[3]

(2) 短程硝化反硝化

短程硝化反硝化顺利进行的关键在于HNO2的积累,传统生物脱氮过程中,硝化反应的主要产物是NO3-,一般占95%左右,而NO2-的含量极低。由于亚硝化菌和硝化菌有着密切的互生关系,想要将HN4+完全氧化成NO2-是不可能的。衡量短程硝化反硝化能否顺利进行的标识是NO2-的累积量,以NO2-/( NO3-+ NO2-)的值表示,一般认为累积量至少大于50%。[4]

(3) 厌氧氨氧化

厌氧氨氧化是指在厌氧或缺氧条件下,厌氧氨氧化微生物以NH4+为电子供体,以NO2-为电子受体,将NH4+和NO2-转化为N2的过程。

影响厌氧氨氧化的因素主要有温度、溶解氧、pH值、底物浓度等。研究表明,当温度由15℃逐渐升至30℃的过程中,反应速率随温度的升高而提高。温度小于15℃时反应速率较低,温度大于35℃后,反应速率开始下降。另有研究表明,厌氧氨氧化对DO非常敏感,须在严格厌氧的条件下进行。一般认为最适宜的pH指为7.0~9.0。NO2--N浓度的增加会提高厌氧氨氧化的反应速率,过高的亚硝态氮浓度则会抑制反应的进行。[5]

3.3强化污泥处理

污泥的处理影响着整个污水处理厂的工作效果,对于大型污水处理厂,产泥量大,可采用污泥集中厌氧消化;中小型污水处理厂除选用污泥浓缩脱水机处理外,亦可贮存至一定量后进行厌氧消化。

为使厌氧消化能产生更多的CH4,可以考虑将污水中尽可能多的有机碳进入污泥消化环节,这与传统方式将有机碳通过外部供能转化成CO2比较,将会更加节能,同时由于无需曝气,将会大大减少CO2的排放,达到节能减排目的。[6]

3.4 高效的装置实现节能

3.4.1曝气组件

扩散曝气系统是目前使用最为普遍的充氧方式,曝气设备的充氧能力取决于多个因素,包括:氧曝气头类型,池体形状,扩散器安装深度,水温,环境大气压,曝气器设计以及污水的特征等。氧转移效率(OTE)是衡量曝气系统的重要指标,OTE的改善能有效提高能量利用效率。影响氧转移效率的的因素有水质特征、反应器水深、气泡直径、风量风速、扩散器密度以及曝气头的堵塞情况等。

OTE随着生物反应器中扩散器数量的增加而提高,有些污水厂在设计时根据反应池的尺寸来布置和安装曝气器;还有些污水厂采用将原有的粗孔曝气器更换为微孔曝气器,这样也能大大提高用电效率。

篇12

引言

目前,我国的污水处理厂所采用的主要处理方法有活性污泥法和生物膜法,这两种方法都是利用生物来进行生物处理,为了保证处理效果,微生物能发挥发最佳的处理作用,就要为生物处理池提供适宜的溶解氧(DO),所以污水处理厂的曝气系统是必不可少的,也是占整个污水处理厂总能耗一半以上的能耗大户,所占比例一般超过60%[1]。由此可见研究如何降低污水处理厂曝气系统能耗的意义是多么的重大。

1氧化沟工艺概念

氧化沟又名氧化渠,因其构筑物呈封闭的环形沟渠而得名。它是活性污泥法的一种变型。因为污水和活性污泥在曝气渠道中不断循环流动,因此有人称其为“循环曝气池”、“无终端曝气池”。氧化沟的水力停留时间长,有机负荷低,其本质上属于延时曝气系统。

2现有污水处理厂曝气系统能耗的分析

2.1从生物处理工艺方面分析

在污水处理中必须对曝气系统进行控制,要对气量的大小,曝气的时间长短进行控制,以为污水处理工艺的曝气池后往往会有二沉池,如果曝气时曝气量过小,在后续工艺中的二沉池就可能出现因缺氧而造成污泥的腐化,池底厌氧产生大量气体,使池底的污泥上浮。如果曝气时间过长,就会导致曝气量过大,曝气池能就会发生过高的硝化作用,这样就会有大量的硝酸盐进入沉淀池,再由反硝化细菌的作用在沉淀池产生大量的N2,致使池底污泥上浮。处理效果降低,能耗增加。

曝气量的分布是否均匀也影响曝气效果。一般污水处理工艺会在曝气池底均匀分布曝气装置,但如果有部分曝气头堵塞,就会大致发生堵塞的位置曝气量少,其他没有堵塞的位置相应的曝气量就增大;有事也会存在某些位置的曝气头损坏,造成损坏位置曝气量剧增,其他位置曝气量大大减少。这些情况都会造成生物反应池能曝气不均匀,处理效果降低,造成曝气系统的能耗损失。

2.2从行业现状方面分析

对已经建成并运行的污水处理厂进行调查,发现自动化程度较低,能耗较高。在很多水厂存在设计与实际投产运行的自动化要求不符,或在运行一阶段后,把部分自动装置改成手动,特别是曝气系统,半自动半手动。总结其原因有以下几点:

自动化技术未能与工艺设计相结合。由于我国我国污水处理起步较晚,早先的自动化系统都是引进国外的技术,即使现在部分产品我国已经有成熟产品,但自动化软件编程工程师一般都不是专业的污水处理行业的,大部分都是化工。冶金行业的自动化工程师,所以对无视处理工艺了解不深,不能完全达到污水处理工艺进行编程设计,大多数是套用自己所熟悉的本行业的一些技术及参数,这样就导致所用的自动化系统与污水处理工艺并不完全相符,造成处理效果不理想。

运行维护时自动化系统操作培训不到位。很多厂家调试运行时对污水处理厂的运行人员的培训不到位,只培训一些基本的操作,运行人员不能从理论上深入的研究和了解控制系统,或污水处理厂的运行人员更换频繁,致使部分培训内容丢失,使自动化操作达不到运行要求。

运行经验利用不足。因为污水处理厂在长期的运作中,会有规律可循,但污水处理厂的运行和管理人员往往不注意总结这些经验,致使其他相同规模的水厂在建设中利用不上这些经验。

2.3从计算建模方面分析

污水处理曝气量的计算非常繁琐,在对曝气池中溶解氧(DO)的控制时,自动系统的参数都是根据水厂的水质和季节不同进行不断的调整。从理论方面来看,污水的生物处理时非线性的,具有随机性、多变性及滞后性的特征,所建立的模型都是有条件和现有的经验所确定的参数,所以通过建模也不能准确的调节溶解氧(DO),这样就造成了风机出口阀门的频繁开闭,降低设备寿命,能耗的增大。

3污水处理厂曝气系统的节能分析

好样生物处理的曝气过程是个非常重要的过程,处理出水的水质的好坏,直接受曝气池内溶解氧(DO)的多少和污水混合程度的影响。曝气有充氧和搅动、混合的作用。常用的生物反应池内的曝气系统是由鼓风机、管道及曝气装置组成。所以实现曝气系统的节能就要从这几方面组成着手。

3.1曝气装置的选择

选择曝气装置应遵循系列原则:

为了节能效果好,应选用氧利用率较高的曝气装置;

应选择不易堵塞,便于维护,故障易于排除的曝气装置;

应选择结构简单,工程造价较低的曝气装置。

现在常用的曝气装置时微孔爆气器,其主要有盘式微孔爆气器和管式微孔爆气器,盘式微孔爆气器分为橡胶膜和陶瓷。盘式曝气器以其低廉的价格首先被广泛采用,但在应用过程中其易老化、易堵塞、使用寿命短等缺点就暴露出来了,所以技术更为先进的管式曝气器就被当下设计人员广泛选用。通过应用对比,管式曝气器要比盘式曝气器的氧利用率高20%,可以降低能耗20%左右[3]。随着技术的进步,要选用更先进的曝气器,这样才能真正实现能耗的降低。

3.2曝气装置的分布

曝气池内微生物降解污水中的有机物的工程,包含微生物自身生长的过程,微生物经历对数期、衰减期及内源呼吸期。同时曝气池能的溶解氧(DO)也随之变化,符合曲线(见图),通过曲线可以看出曝气池能的曝气装置应该按照推流式进行分布,沿池长方向,污染物浓度减低,所需曝气量递减,这样分布就避免了沿池长末端的曝气量的浪费,达到节能的作用。

活性污泥的增殖曲线

3.3曝气量的控制

我们在计算曝气量的时候,曝气池不按平均需氧量计算,这样就会造成曝气池进口端有机污染物含量高的位置曝气量不够,曝气池出口端的有机污染物含量低的位置曝气量过多,造成能耗的浪费,出水也不合格。所以在曝气池内布置曝气管时,要根据每段的曝气量合理的选用曝气管,如曝气池进口端选用φ63的UPVC管道,在中间端选用φ53的UPVC管道,在出口端选用φ32的UPVC管道。这样就避免了曝气量的浪费。

3.4鼓风机的选择

鼓风机是目前应用最广的曝气风机,所以合理的选用风机,也是节能的关键,鼓风机的出口一般会有挡板、逆止阀、调节阀等,阀门和管道管件过多会造成能耗。由于曝气池内的曝气量和曝气时间是变化的,所以曝气风机出口的阀门就处于频繁的调节状态,随着科技的进步,一种采用变频器改变电机转速的变频分风机慢慢的得到大多数人得认同,通过曝气量的大小改变曝气风机电机的转速,这样就避免了传统机械运行方式的能耗的损失。

结束语

综上所述,造成曝气系统能耗的原因有很多,节能方面我们主要从曝气装置的选择、分布、曝气量的控制及鼓风机选择这几个方面进行系统的论述,选用管式曝气器代替盘式曝气器,曝气装置选用沿池长方向渐疏的布置方式,严格控制曝气量,在满足工艺对风量及风压的要求下选用变频风机,来有效的降低污水处理厂曝气系统的能耗。

污水处理厂的曝气系统的节能,不是一天两天就能实现的,是需要做好长期作战的准备的,要想实现污水处理厂曝气系统的真正节能,就要从污水处理厂的最初设计着手,从建设前的设计阶段就完善设计,选用合理的工艺和设备,并在运行时加强管理,发现有落后的工艺或设备,就马上进行的改造,这样才能不断的降低污水处理厂的能耗,真正的为国家倡导的“节能减排”贡献力量。

篇13

Key words: sewage treatment plant; energy saving; of UNITANK process; manufacturing operations

中图分类号: TU992.3献标识码:A文章编号:2095-2104(2012)01-0020-02

引言:随着国家以及政府对城镇污水处理的问题高度重视,城市污水处理设施不断的更新变化,尤其是“十一五”期间,我国采取更多的措施进一步加强污水处理节能减排的设施,使我国城市污水处理事业得到发展和进步,城市污水处理能力以及技术手段等得到很大的提高。UNITANK工艺作为一项集科学性、实用性以及经济性的污水处理工艺在污水处理厂中应用前景非常广阔。

一、UNITANK工艺简介

UNITANK工艺主要部分是由被间隔成数个单元的矩形反应池组成,反应池一般有A、B、C三个池子组成,各个池子之间水力相同、并且都具有曝气装置,其中A、C两个池子中设置有污泥排放口和出水堰,从而能够实现交替作为沉淀池和曝气池,可以按照规定的时间周期进行交换运行,所以UNITANK又被称为交替式生物处理池。在污水处理厂应用UNITANK工艺的过程中通过进行调整UNITANK系统的运行状态,能够实现污水处理中空间以及时间的控制,并形成良好的缺氧、好氧、厌氧等条件,以达到污水处理的要求[1]。广东某城市污水处理厂一期工程采用UNITANK工艺,处理能力4万吨/天,出水执行《城镇污水处理厂污染物排放标准》(GB 18918-2002)中的一级B排放标准。其工艺流程如下图1所示:

图1:UNITANK工艺流程图

二、污水处理工程的改造设计

1、节省电耗工程设计

(1)在管网来水液位允许的情况下,尽量提高提升泵房液位,增加提升泵的效率。经过对粗格栅进水渠改造设计之后,提升泵房液位较之以前提高1.8m。

该厂使用76kw和37kw的提升泵各两台,粗格栅进水渠改造前后电耗情况如表1:

表1粗格栅进水渠改造前后电耗对比

(2)根据提升泵效率下降情况进行研究和分析,及时检修和更换配件。

在运行过程中,该厂发现期中一台77kw提升泵效率下降较快,电耗超过0.066 kw.h/m3。检查后发现叶轮被硬物所伤缺失一块,同时泵体震动较大。经研究后该厂更换全新叶轮(2.2万元)、更换轴承(0.6万元)以及动平衡校准(0.15万元)。提升泵大修之后电耗降低到0.054 kw.h/m3,电费单价按照0.80元计算,只需72天即可收回投入费用。

(3)根据进水有机物浓度偏低的实际情况,将半周期从设计的4h延长至6h。

由于该厂实际进水有机物浓度长期偏低,COD平均浓度101mg/L,仅为设计值的40.4%;在运行初期,由于半周期较短、进水COD太低导致好养时间段DO很容易出现过曝现象。DO过曝一方面浪费了能源,另一方面使本来处于老化状态的活性污泥加速老化而解体。经过研究讨论后,将半周期从4h延长至6h,见表2。

表2UNITANK半周期工艺矩阵

优化后连续运行1个月,出水水质稳定达标,生物池内活性污泥状态保持良好。因此,半周期时间的适当延长不仅优化利用了鼓风机供气量,节省电耗,而且减少生物池各阀门的开停次数,延长阀门寿命。

2、节省药耗工程设计

(1)除磷药剂:采用质量浓度不小于10%的聚合氯化铝铁(PAFC)液体药剂,PAFC加水稀释后在边池精曝时单点投加,通过投加除磷药剂,对TP的去除取得一定的效果,出水TP基本可以达标排放。但同时也存在一些问题:

a、投加点仅一个点,位于边池的池壁处。由于投加点单一,除磷药剂不能迅速扩散至整个池子,也不可能在池内均匀分布,因此会浪费部分药剂,PAFC达不到最佳的除磷效果;

b、随着出水时间的延长,出水中由中池和进水边池进入的水的混合比例增加,出水TP会逐步升高;这使得我厂除磷药剂需要增大投加量,并且在半周期出水的后期出水TP仍有超标的危险[2]。

在原有除磷投药点的基础上,我们将单个投药点改造成两个对称的投药点,同时在边池配水井处增设一个投药点,通过出水时段控制PAFC药剂的投加,在出水TP稳定达标排放的前提下,投药比从55mg/L下降至40mg/L,降低27%。

(2)絮凝剂(PAM):

a、比选确定最佳的PAM

絮凝剂投加效果的优劣,不仅取决于其本身的化学特性,更与其处理对象、水质条件有关;此外,不同厂家生产絮凝剂的效果也存在很大的差异。因此,我们通过对多家絮凝剂厂商的药剂进行横向和纵向的烧杯小试,最后确定使其中一种阳离子絮凝剂作为污泥脱水药剂。

b、不断优化脱水机运行状况

根据剩余污泥浓度的变化和污泥性质的变化,同步改变PAM配比浓度,根据前期试验,PAM配比浓度在1.2‰~2.5‰之间为最理想状态[3]。

上机试验后,在保持泥饼含水率稳定达标且PAM投加量最少的情况下,PAM配比浓度随剩余污泥浓度变化的曲线如下图3(纵坐标为PAM配比浓度,单位:‰,横坐标为剩余污泥浓度,单位:g/L):

图2:PAM配比浓度曲线图

友情链接