引论:我们为您整理了13篇碳减排的经济影响分析范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。
篇1
水资源不仅关系到人们的日常生活,也对经济发展和社会进步起着重要作用。当下,在社会日益严重的能源紧缺、水环境污染、能源及水资源利用率低等现实面前,不仅困扰国计民生,而且也是制约社会经济可持续发展的重要因素。据水利部统计,90年代以来,我国城市缺水范围不断扩大,缺水程度不断加剧,全国670座建制城市中400座不同程度的缺水,110座严重缺水。正常年份全国城市缺水60亿万m3。2000年由于我国北方地区春、夏连旱,严重影响了城市供水。据国家防总办公室统计,今夏已有100多个县级以上城市被迫限时限量供水,面对缺水的现状,节约用水已成为我国的基本国策。根据《中华人民共和国节约能源法》的有关规定,固定资产投资工程项目的设计和建设,应当遵循合理用能标准和节能设计规范,达不到合理用能标准和节能设计规范要求的项目,依法审批的机关不得批准建设;项目建成后,达不到合理用能标准和节能设计规范要求的,不予验收。因此给排水工程节水更为任重道远。
二、给排水环保节能施工工艺过程中的阶段实施
1.设计阶段
应充分利用管网余压。一般市政给水管网余压在0.2~0.4Mpa之间,可满足地下各层及地上3~5层供水要求,即上述部位无需增压而直接供给。对于超出市政压力供给范围部位则采用增压设备进行增压供水,而该增压也应采用能充分利用管网余压,即可采用无负压变频供水设备。该设备直接与自来水管网串联,无需再建水池;能充分利用自来水压力,节电50%~90%;没有跑、冒、滴、漏现象和定期冲洗水池的用水量,节水13%以上;能避免普通泵体直接从室外管网抽水时使外网压力降低甚至造成外网负压的情况发生;变频调节水泵转速,使水泵始终在高效率工况下运行,节能效果达20%。如果能够充分利用管网余压,建筑给水节能效果将十分显著,同时直接供水也能起到不错的节水效果。
2.施工阶段
施工阶段有其特殊性,即施工阶段本身耗费水资源及能源就较多,其中节水节能潜力巨大。施工用水在盐碱度不影响钢筋混凝土的前提前应首先考虑附近水域变频直供水,如附近无天然水源的情况下,也应考虑变频供水甚至无负压直供水。施工用水管道管材在埋深不够时应采用钢质管,以避免管道轻易损坏而大量浪费水资源。应建立严格节约用水管理制度,,对浪费水资源的班组应采取一定的经济处罚措施。应加强现场水电工的巡视,对损坏的管道和水嘴等应做到及时修复。对于有条件的施工单位,还应做到用水量自动监控。
3.使用阶段
建筑给水排水的节水节能需要加强与运行管理相结合。节水节能不能仅仅停留在设计阶段,节水节能系统的维护管理必不可少。节水节能需要运行管理单位定期对建筑物相关系统进行维护、检修、监测、保养及更新置换,及时清除系统故障,保证系统处于最佳状态运行。
加强水表对水量的控制作用,增加小区进户总水表,通过与各户水表进行水量平衡分析,以查出漏水隐患。日常生活中怎样节水,关键是要有节水的意识,无论你是贫还是富,都应该有这份心,这份利己、利他、利社会、利子孙后代的心。只要有心,有很多的小窍门能帮助我们节水。比如淘米水洗菜,再用清水清洗,不仅节约了水,还有效地清除了蔬菜上的残存农药,洗完菜的淘米水可以冲厕或浇花,洗完菜的清水可以檫窗或拖地等;洗衣水洗拖把,再冲厕所;洗脸水用后可以洗脚,然后冲厕所;养鱼的水浇花,能促进花木生长等等。
三,给排水住宅环保节能具体形式及其解决方法
1.充分利用市政管网的水压:城市给水管网的余压,一般可以满足建筑低层的用水压力,应充分利用这部分水头。最好是建筑下部几层采用市政余压供水,上部进行二次加压,上下分区供水,两个分区之间设置联络管,当市政管网停水时,可由屋顶水箱供水。
2.管材的选用:常用建筑给水管材主要是金属管、塑料管和复合管等。近十多年来,国外一些发达国家已先后立法或建立行业规章禁止使用镀锌钢管作为饮水输送管,并提出全面使用以塑料管为主体的不生锈、无腐蚀、无渗漏、无结垢的优质绿色管材,从根本上解决自来水管道系统中的二次污染问题。工程内部排水管道常用的管材为塑料管和柔性接口的排水铸铁管两大类。UPVC管比铸铁管外表美观,价格便宜,但噪音问题在一定程度上影响了在较高环境要求工程上的推广使用。
3.卫生器具的耗水:当给水配件前水压过大,卫生器具不能按给水额定流量出流,就会出现超压出流现象,造成水量浪费。因其在使用过程中流失,不易被人们察觉和认识,而这种不宜察觉的水量浪费,因其未产生使用效益,为无效用水量,这部分水量在使用过程中白白流失。在我国现有建筑中,给水系统的超压出流现象是普遍存在而且是比较严重的,其浪费的水量不容忽视。
4.空调冷凝水的排放:随着人们生活水平的提高,再加上全球气候日益变暖,在夏季家用空调的使用越来越广泛,最为有效的办法是,在阳台设置冷凝水立管,进行有组织排放,可以采用UPVC管材。对新建的住宅,一定要考虑空调冷凝水的有组织排放,并且不能与雨水管共用,以防雨水管由于某种原因堵塞,或者当雨水排放量大于该立管的设计流量时,可能造成倒流,发生雨水倒灌现象。
5.屋顶水箱:城市给水管网提供的压力有限,而我国由于人多地少,为利用有限的土地资源,楼层都建得很高,建筑给水系统有很多情况下不得不设水池(箱)。建议采用不锈钢、搪瓷钢板或达到卫生要求的玻璃钢水箱代替传统钢板水箱,采用钢筋混凝土水池时宜加内衬。另外,水池(箱)检修孔、溢流管等附件极易封闭不严造成水质污染,在设计上应采取在溢流管上加防护网等措施。水在水箱中贮存超过24h后余氯为零,水质会严重恶化,而生活消防合用水池中水的停留时间大都超过24h。为解决这个问题,除尽量单设生活水池外,应在水池中补充加氯或采取其他消毒方法。
6.屋顶雨水的收集利用: 雨水的利用可分为直接利用和作为中水的补充水源。建筑楼顶设置有专门用于收集雨水的蓄水池,直接或者稍加处理用于冲洗厕所,并且在住宅小区、学校、工厂应发展雨水积蓄工程。在降雨充沛的城市,应采用排水分流制,以便于收集使用雨水。
总结:水资源的日渐短缺给社会经济生活带来很大的压力,节水已成为巫待解决的问题,而在居住建筑中采用节水节能技术是缓解水资源短缺的重要途径。随着生活水平的提高、环保意思的加强,人们对居住环境有了更高的要求,本文从建筑给排水的角度,提出环保节能的经验,以期和广大同行交流。
参考文献
[1]王增长.建筑给水排水工程[M].北京:中国建筑工业出版社,2005.
[2]张勤,徐立新.新型建筑给水管材的选用与施工[J].重庆建筑大学学报,2001(23):61-65.
篇2
International Comparison of the Carbon Emissions
Reduction Based on Fair Development RightsLI Jun-jun, ZHOU Li-mei
(Economics School, Fujian Normal University, Fuzhou 350007, China)
Abstract: Developed countries and developing countries have a lot of controversies about historical responsibility for carbon emissions and the task for carbon emission reduction, which make international cooperation mechanism uncertain for international carbon emission reduction responding to global climate change. This paper consturcts an international panel data model to analyze the influence of carbon dioxide emission on economic growth in 32 developed countries and 17 developing countries during 1971―2009, the results show that the income elasticity coefficient of carbon emissions is increasing, that the income elasticity coefficient of carbon emission in developed countries is continuously bigger than that of developing countries, that the developed countries have not strictly fulfilled the obligation for carbon emission reduction, meanwhile, dual policy under “Kyoto Protocol” has not made abnormal transfer of industry. Based on economic development rights owned by each country, it is unfair to require developing countries for taking carbon emission reduction obligation currently, the income elasticity coefficient of carbon emission should be used to evaluate carbon emission reduction effects of each country.
Key words:EKC Curve; economic growth; economic development rights; global carbon emission reduction cooperation mechanism; carbon dioxide emission; carbon emission reduction obligation; carbon emission reduction effect; Kyoto Protocol
一、引言
温室效应导致气候异常变化,已经引起国际社会广泛关注,国际碳减排合作机制正在不断完善之中,以图遏制碳排放量的过快增长。但世界工业发展方式还未实现根本性转变,在维持经济持续增长的压力下,各国都在继续大量使用化石能源,碳排放的增长趋势短期内难以扭转。同时,由于各国经济发展水平的差异和受气候变化的影响程度不同,实施碳减排的经济基础和发展低碳经济的动机也不同,碳减排任务的分配将是一个长期的利益博弈过程。《联合国气候变化框架公约》(简称《公约》)规定了发达国家和发展中国家应对气候变化的不同责任,即“共同但有区别的责任”原则,就是考虑到发展中国家经济发展水平较低,碳减排压力太大。2005起年生效的《京都议定书》进一步要求发达国家在2008年到2012年第一承诺期内的温室气体排放量比1990年平均减少5.2%,大多数国家要求在1990年基础上减排8%,而澳大利亚、冰岛和挪威则允许一定幅度的上升。但事实上,包括美国、日本等国在内的大多数发达国家都没有完成既定的碳减排目标,并企图抛弃《京都议定书》,要求中国等发展中国家也承担硬性碳减排义务,其理由是发展中国家的碳排放总量迅速增长,占全球比重越来越高,对发达国家和发展中国家不同要求的双重政策不公平。
李军军,周利梅:基于公平发展视角的碳减排国际比较按照“污染避难假说”,在不同国家的碳减排政策标准和实施力度有差距的情况下,碳减排压力较大的国家,政策措施更为严格,对产业的影响就越大;同时,为了避免能源约束和碳税等低碳政策带来的不利影响,资本就会转移到碳减排政策更宽松的国家,导致产业非正常转移,二氧化碳排放也随之转移。为了吸引外资,低收入国家可能竞相放松碳排放管制,从而破坏碳减排国际合作机制。积极应对气候变化,是人类面临公共环境问题和可持续发展问题的共同选择,如果不能建立各方都认可的碳减排国际合作机制,全球气候环境就可能陷入“公地悲剧”。那么,《京都议定书》是否真的是约束了发达国家的碳排放,而提高了发展中国家的碳排放增速?发展中国家是否由于宽松的碳减排政策而获得额外经济增长?
从公平角度来看,发达国家和发展中国家都需要发展,都有保持经济增长的权利,但经济结构和发展阶段不同,经济增长过程中碳排放量也不同,要正视这种差异。按照环境库兹涅茨曲线(EKC),二氧化碳排放量和收入之间存在一个倒U形曲线的关系:在相对较低的收入水平,随着收入的增加,能源的消费量增加并引起二氧化碳排放量增长,此时,两者呈正相关关系;随着收入增长到一定的高水平,因为环境保护意识增强,提高了环境政策的调控和传导效果,二氧化碳排放量将减少,两者呈负相关关系。因此,在建立和完善国际碳减排合作机制过程中,应该考虑经济增长对碳排放的影响,科学评价各国经济增长过程的碳减排效果。
自从Grossman 等(1991)较早发现空气污染和人均GDP之间存在倒U曲线关系后,当前多用EKC曲线研究碳排放和经济增长的关系,如:Ang(2007)、Zhang等(2009)、Fodha等(2010)分别建立向量自回归模型、自回归分布滞后模型(ARDL)或者向量误差修正模型(VECM)检验二氧化碳排放和GDP之间因果关系,Azomahou(2006)和Romero-ávila(2008)等人用面板数据模型(Panel Data)验证EKC曲线。但这些研究大多数都基于单个国家或局部区域;也有一些文献选择经合组织或大量国家(Wang,2011)作为样本的,但也都是侧重于验证EKC曲线,没有从国际对比的角度分析不同碳减排义务的国家。有鉴于此,本文将从经济发展对碳排放影响的角度分析处于不同发展阶段的国家碳减排效果。
二、面板数据模型与数据分析
不失一般性,假设碳排放主要来自化石能源消耗,影响二氧化碳排放增长的主要原因是经济增长,据此建立双对数面板数据模型:
如果β>1,说明碳排放增长速度超过经济增长速度,碳减排形势恶化,碳排放强度上升;如果β
为了比较发达国家和发展中国家经济增长对碳排放的影响程度,可以把面板数据的样本分成发达国家和发展中国家两部分,分别估计以后比较弹性系数,根据弹性系数的大小来判断碳减排政策的作用。如果发达国家的弹性系数小于发展中国家,说明经济发展程度高的国家碳减排形势好于发展中国家。尽管《京都议定书》规定了发达国家2008年至2012年的强制性碳减排义务,但协议是从2005年开始生效,此后发达国家之间的碳排放交易非常活跃,清洁发展机制(CDM)也允许发达国家和发展中国家进行项目级的碳减排量的转让,在发展中国家实施温室气体减排项目,CDM项目数量和规模都增长迅速。因此,要判断碳减排协议的签订对各国碳减排效果的影响,可以把2005年作为分水岭,分别估计并比较前后两个期间的弹性系数,如果弹性系数下降,说明碳减排政策取得实质性效果。
《京都议定书》规定41个发达国家具有强制性碳减排义务,由于9个国家缺失部分碳排放统计数据,本研究把具有完整数据的32个发达国家纳入分析范围,包括澳大利亚、奥地利、比利时、保加利亚、加拿大、捷克、丹麦、芬兰、法国、德国、希腊、匈牙利、冰岛、爱尔兰、意大利、日本、卢森堡、马耳他、摩洛哥、荷兰、新西兰、挪威、波兰、葡萄牙、罗马尼亚、斯洛伐克、西班牙、瑞典、瑞士、土耳其、英国、美国。由于发展中国家较多,本研究选择其代表性国家,选择依据是2009年二氧化碳排放量超过一亿吨,符合这个标准的国家共17个,分别为中国、印度、伊朗、韩国、沙特、墨西哥、印尼、南非、巴西、泰国、埃及、阿根廷、马来西亚、委内瑞拉、阿拉伯联合酋长国、巴基斯坦和越南。二氧化碳排放和GDP数据都采集自国际能源署(IEA)的能源统计年鉴,时间跨度为1971年至2009年。其中二氧化碳排放(CO2)单位是百万吨;GDP以十亿美元为单位,按汇率(GDPE)和按购买力评价(GDPP)两种方法折算为2000年不变价格。
数据测算表明,2009年世界各国二氧化碳排放总量为290亿吨,是1990年的1.38倍,比1971年翻了一倍。样本中49个国家碳排放总量为238.3亿吨,占全球总量的82.2%,具有较好的代表性。其中,17个发展中国家碳排放总量从1990年的47.9亿吨快速增长到2009年的126.9亿吨,年均增长5.26%,占全球总量的比重从1990年的22.9%上升到2009年的43.9%。同期32个发达国家的碳排放总量则从108.1亿吨上升到111.3亿吨,上涨了3%,比重从51.6%下降到38.4%。据此来看,近年来全球碳排放总量的快速增长主要归因于发展中国家,只有发展中国家实施严格的碳减排措施,才能有效控制全球碳排放总量的过快增长,这也是近年来在全球气候峰会上,发达国家强硬要求发展中国家承担硬性碳减排义务的主要原因。但是从碳排放和经济发展的关系来看,发展中国家的经济发展水平较低,大多处于工业化起步阶段,增长速度普遍高于发达国家,碳排放增速较快是正常的;而发达国家基本完成工业化,经济增长速度普遍放缓,碳排放增速理应降低。如果不顾这个事实,强行要求发展中国家承担严格的碳减排义务,不但忽视了发达国家碳排放的历史责任,也会剥夺发展中国家的经济增长的权利,加大发达国家和发展中国家的差距,对发展中国家而言是极不公平的。衡量发展中国家碳减排效果,重要的是看经济增长过程中碳排放的收入弹性,如果弹性系数和碳排放强度下降,就说明其碳减排政策的有效性。
三、检验与参数估计
1.单位根检验
由于每个时间序列都是由多个国家组成,其检验方法要考虑到截面的差异。LLC方法是应用于面板数据模型时间序列单位根检验较早的方法,假设各截面序列具有一个相同的单位根,仍采用ADF检验形式(Levin et al,2002);而IPS检验则是对每个截面成员进行单位根检验以后,利用参数构造统计量检验整个面板数据是否存在单位根(Im et al,2003)。Fisher-ADF检验和Fisher-PP检验也是对不同截面进行单位根检验,利用参数的p值构造统计量,检验整个面板数据是否存在单位根。分别用四种方法对CO2、GDPE和GDPP三个序列进行单位根检验,检验时的滞后阶数都按AIC最小化准则确定,结果如表1所示。表1 面板数据序列的单位根检验
四种方法的检验结果非常接近,通过对原序列和一阶差分的单位根检验结果进行判断,在1%显著性水平下三个变量都是非平稳序列,都有单位根,并且是一阶单整。因此,可以对三个变量进行协整检验。
2.协整检验
协整检验是判断变量之间是否存在长期稳定关系的方法,Engle和Granger最早提出的协整检验方法是判断两个或多个变量回归后的残差是否平稳,如果残差是平稳的,说明变量之间存在协整关系;对于面板数据的协整检验,Pedroni(1999)的检验方法是假设各截面的截距项和斜率系数不同,Kao(1999)的检验方法却规定第一阶段回归中的系数相同;Maddala等(1999)提出根据单个截面序列的协整检验结果构建新的统计量,从而判断整个面板数据的协整关系。表2列出了采用不同方法分别对CO2和GDPE、CO2和GDPP两组变量协整检验的结果。检验结果一致拒绝不存在协整关系的原假设,表明CO2和GDPE、CO2和GDPP两组变量之间存在长期的稳定关系,据此可以对模型(1)进行参数估计。
表2 面板数据变量的协整检验
CO2与 GDPECO2 与GDPPPanel v-Statistic-0.40-0.39Panel rho-Statistic-2.53**-2.53**Panel PP-Statistic-4.36***-4.36***Panel ADF-Statistic-5.27***-5.27***Kao(Engle-Granger)6.49***4.20***Johansen FisherTest trace statistic 163.00*** 163.30***Max-eigenvalue statistic 159.90*** 159.70***
3.参数估计
由于各国经济发展程度不同,碳排放水平有很大差异,参数估计应该选择面板数据的变截距模型;至于选择固定效应还是随机效应,尽管样本国家只有49个,但仅仅用于分析这些个体,不涉及其他国家,因此选择固定效应模型更为合适。另外,截面随机效应的Hausman检验p值为0.94,也不支持采用随机效应模型。考虑到存在截面异方差,采用加权广义最小二乘法(GLS)估计参数,并处理序列相关性,参数估计结果如表3所示。
方程1的解释变量是按汇率计算的国内生产总值(GDPE),方程2的解释变量是按购买力平价计算的国内生产总值(GDPP),方程拟合优度较高,除截距项外参数都能通过1%显著性检验,两个方程的系数比较接近,说明以不同方式换算的GDP对结果影响不大。考察不同期间的系数,1971―2009年碳排放的收入弹性系数0.607
D.W.2.0982.1362.571.8991.8741.759Chow-F1.72***0.79方程3的样本由32个发达国家组成,方程4的样本由17个发展中国家组成,方程拟合优度较高,除截距项外参数都能通过1%显著性检验。方程3的系数0.712大于方程4的系数0.574,在两个不同时期内,发达国家的碳排放的收入弹性系数都超过发展中国家。按照公式(2),方程3的分割点检验Chow-F值在1%显著性水平下通过检验,也是明显大于2005年以前的弹性系数。而发展中国家的弹性系数虽然也有上升,但没有通过分割点检验。
四、结论
在环境和能源约束下维持经济持续稳定增长,无疑是各国经济政策的重要目标。旨在应对气候变化的国际碳减排合作机制能否发挥作用,关键在于碳减排目标的设定对经济增长的影响程度以及碳减排任务的分配能否得到各国认可。只有在碳减排任务合理、公平分配的前提下,兼顾到处于不同发展阶段国家的承受能力,才能得到广泛认可,形成合作的基础。碳排放的收入弹性系数反映经济增长对碳排放的影响程度,弹性系数的大小和变化趋势能够说明一个国家应对气候变化的努力程度和碳减排效果,也可以作为碳减排任务分配的依据之一。利用面板数据模型分析1971―2009年主要国家经济增长对碳排放的影响,弹性系数为0.6,碳排放增幅低于经济增幅,碳减排政策发挥了一定的作用。但是分割点检验判定弹性系数有明显上升趋势,说明近年来经济增长过程中碳减排力度在减小。对比发达国家和发展中国家,尽管发达国家的碳排放总量增长缓慢,部分国家的碳排放总量甚至下降,而发展中国家的碳排放总量增长比较快,但发达国家碳排放的收入弹性系数在各个阶段一直大于发展中国家,2005年以后也没有明显改变。这一方面说明发达国家碳减排政策实施力度不够,效果还不甚明显;另一方面也说明《京都议定书》规定发达国家和发展中国家不同的碳减排义务形成的政策差异,并没有造成资本因为规避碳排放约束而发生明显的非正常转移。
因此,从各国公平拥有经济发展权的角度来看,应该坚持“共同但有区别的责任”原则,在明确发达国家碳排放历史责任前提下,发挥发达国家良好经济基础和先进技术优势,确实降低碳排放强度。同时,加强国际合作交流,加大技术转让和资金援助力度,扩大碳排放权交易范围,完善清洁发展机制,提高发展中国家的碳减排积极性,降低发展中国家的碳排放增速。只有建立在公平、合理基础上的国际碳减排合作机制,才能发挥各国碳减排的积极性,有效控制全球碳排放过快增长。
参考文献:
ANG J B. 2007. CO2 emissions, energy consumption, and output in France[J]. Energy Policy(10):4772-4778.
AZOMAHOU T,LAISNEY F,VAN P N. 2006. Economic development and CO2 emissions: a nonparametric panel approach[J]. J Public Econ,90:1347-1363.
FODHA M,ZAGHDOUD O. 2010. Economic growth and pollutant emissions in Tunisia: an empirical analysis of the environmental Kuznets curve[J]. Energy Policy,38:1150-1156.
GROSSMAN G M,KRUEGER A B. 1991. Environmental impacts of a north American free trade agreement[R]. National Bureau of Economic Research,working paper,No.3914:1-38.
IEA.2011. CO2 Emissions from Fuel Combustion 2011[EB/OL].省略.
IM K S,PESARN M H,SHIN Y. 2003. Testing for unit roots in heterogeneous panels[J]. J Economet,115:53-74.
KAO C.1999. Spurious regression and residual-based tests for cointegration in panel data[J]. J Economet,90:1-44.
LEVIN A,LIN C F,CHU C. 2002. Unit root tests in panel data: asymptotic and finite-sample properties[J]. J Economet,108:1-24.
MADDALA G S,WU S.1999. A comparative study of unit root tests with panel data and a new simple test[J]. Oxford Bull Econ Stat,61:631-652.
PEDRONI P.1999. Critical values for cointegration tests in heterogeneous panels with multiple regressors[J]. Oxford Bull Econ Stat, 61:653670.
篇3
文献标识码A文章编号1002-2104(2017)06-0010-06DOI:10.12062/cpre.20170369
21世纪以来,关于温室气体控制的呼吁日益强烈,欧盟、美国、日本、澳大利亚、中国等国家纷纷提出自己的减排承诺。中国政府先后对全球宣告了“2020年碳强度比2005年削减40%―45%,2030年碳强度比2005年降低60%―65%,力争在2030年达到碳排放峰值”的减排承诺。众所周知,碳减排政策主要包括行政工具、市场手段(碳税和碳交易)两大类。为实现强度减排承诺,我国政府从2005年开始就对各省级行政区采用了以强度减排为目标的强制性减排政策,并且对碳税、碳交易机制进行了诸多讨论和实践。2013年7月,财政部长楼继伟在中美战略经济对话上高调宣称中国会在适当的时候征收碳税。与此同时北京、上海、天津、重庆、广东、深圳、湖北等“六省一市”已经先后启动了碳交易试点,而且有望在2017年建立全国性碳市场。由此可见,我国政府仍然在摸索和寻找适合的减排方式来实现减排承诺。就这三种政策的影响而言,国内外学者往往采用一般均衡模型来模拟分析其对经济增长、就业、社会福利的影响,但鲜有学者基于我国的国情来展开讨论。与西方发达国家不同的是,外资企业在我国经济发展中起到了重要推动作用,其技术水平往往高于内资企业,并且通过并购、控股、独资等方式在我国一些行业处于强势地位而继续巩固技术优势。这种技术差距的存在会导致内外资企业在边际减排成本上存在差异。由此可知,不同碳减排政策将直接左右内外资企业的利润分配格局,进而影响其市场竞争力。那么,不同的碳减排政策究竟在多大程度上影响社会总产出与内外资企业的市场竞争力?显然,对于这一问题的回答将有利于我国政府从合理引进外资的初衷来考虑碳减排政策的选择问题。然而,现有研究几乎没有考虑到这一问题。对此,我们以相同的强度减排目标为基础,基于内外资企业低碳技术差距这一新的研究视角构建博弈模型来论证不同减排政策对社会总产量、内外资企业及其市场份额的影响。
1文献述评
国外关于减排政策的研究主要集中在理论研究和模拟分析这两方面。Montgomery[1]、Stern[2]指出:在各种减排方式中,排放权交易的成本最低且激励作用更强。Adly等[3]认为,如果考虑到未来不确定性、税收扭曲和收入分配效应等问题,则这两类工具的作用效果将不再一致。Pizer[4]、Hoel 和Karp[5]指出,如果减排的成本冲击持续下去,那么税收的福利效果将不再那么明显,而Karp和Zhang[6]进一步发现限额排放权交易体系能够更好地应对这些冲击。Murray等[7]考察了允许实施排放权的储存或出借的情形,研究发现限额交易体制的福利效果将优于碳税。另外一些学者则尝试运用多种方法模拟分析了中国实施全国性碳交易机制的相关效果。Klaassen等[8]在拍卖情形下的博弈实验中发现:碳交易机制可以达到市场均衡,实现经济效率最大化。Subramanian等[9]构建了企业在投资减排、拍卖排放权、实施生产三阶段的博弈模型并得出了最优策略。Mandell[10]通过构建随机模型表明:采用限额碳交易机制和碳税组合政策的经济效率比使用任何一种单一政策都要好。Wang等[11]、Hubler等[12]、Cui等[13]认为碳交易机制能够更好地促进节能减排和减少经济增长代价。
国内关于碳减排政策的研究起步较晚,现有文献主要是从国外经验介绍、理论机制以及模拟分析来研究碳税和碳交易政策。乔晗和李自然[14]对近几年来世界主要代表性国家碳税政策的税基、税率、实施强度等方面进行了比较和分析。自贺菊煌等[15]率先利用可计算一般均衡模型定量分析碳税政策的经济效应以来,国内学者们对碳税和碳交易的模拟分析逐日增多。姚昕和刘希颖[16]在充分考虑中国经济增长阶段性特征的基础上对最优碳税征收路径及其宏观经济效应进行了研究。崔连标等[17]通过构建无碳交易市场、仅试点地区和全国性碳交易等3种政策情景的省际排放权交易模型,量化模拟了碳交易机制在实现各省减排目标的过程中所发挥的成本节约效应。此外,学者们还将碳税和碳交易从不同角度进行了比较分析。石敏俊等[18]基于动态CGE模型构建了中国能源―经济―环境政策模型,通过设计单一碳税、单一碳排放交易等情景模拟分析了不同政策的减排效果、经济影响与减排成本。吴力波等[19]通过构建中国多区域动态一般均衡模型模拟分析了各省市2007―2020年的边际减排成本曲线,并比较分析了碳税、碳交易的减排效果。曹裕和王子彦[20]系统分析了碳税与碳交易在理论基础、效果成本、减排效果、监督机制等方面的差异。
然而现有文献至少存在以下不足之处:其一,大多是在完全竞争的框架下进行分析的,而实际上各国碳减排政策所覆盖的产业大多都是不完全竞争甚至是寡头垄断的;其二,大多忽视了不同碳减排政策对低碳技术存在差异的内外资企业的不同影响,而这一问题的回答将有利于我国政府从实现引进外资的初衷来考虑碳减排政策的选择问题。因此,我们基于内外资存在低碳技术差距的视角,通过构建两阶段博弈模型来比较分析强制减排、碳税与碳交易对内外资企业产量、市场份额及其社会总产量的影响,以期为相关决策提供依据。
2博弈模型基本假定
我们以国家承诺的碳强度减排目标为基础。考虑到我国内外资企业的生产技术和低碳技术存在差异,我们把每一行业(或地区)都抽象为由一个“复合型”内资企业和“复合型”外资企业进行古诺竞争。由此,我们把核心问题设定为:比较分析相同强度减排目标下强制性减排、碳税与碳交易机制对内外资企业的产量、市场份额及其社会总产量的影响。众所周知,企业面临减排约束实现经济效益最大化的方法分为两大类:①内部自我实现,即提升自己的技术水平;②借助外部转移减排代价,通过购买减排技术或者排放权来使成本最小化。为简化分析,我们仅考虑短期情况,假定:内外资企业在短期内难以突破低碳技术,并且低碳技术的溢出效应短期内难以发挥作用(例如低碳技术的掌握因技术复杂而需要一定时间),从而内外资企业的低碳技术在短期内将保持不变。
设市场反需求函数为:P=a-bQ,Q=∑qi,其中i=f,d即代表外资、内资企业。显然,内外资企业的成本由生产成本和减排成本组成。由于企业在短期内难以采用新的低碳技术,并且边际减排成本呈现上升趋势。为简化分析,我们假设内外资企业的边际生产成本均为c,减排成本RCi=δiR2i(Ri为减排量,δi为边际减排成本)。由于外资企业一般具有先进的生产技术和低碳技术,进而外资企业的碳强度更低(ef
考虑到2008年我国已经统一内外资所得税,因此为公平起见我们假定政府要求内外资承担相同的强度减排任务,即单位产量碳排放下降幅度一样φf/ef=φd/ed。根据ef
3模型求解及分析
无碳减排政策时,古诺模型假定下内外资企业的均衡产量为:q′f=q′d=(a-c)/3b,Q′=(2a-2c)/3b,各占一半的市场份额。考虑到我国已经实行了碳强度减排政策(称为强制减排政策),即将建立覆盖部分行业的全国统一碳交易市场,而且财政部也对外声称适时开征碳税政策。因此,我国碳税、碳交易这两种政策应该是建立在强度减排目标的基础上。由于上述三种减排政策所面临的减排目标一样,因此比较这三种碳减排政策的优劣性主要就是依据产出效应和市场份额变化来判断(即将其与无减排政策进行对比)。对此,我们构造市场份额变化指标marketi=qi*/(qi*+qj*)-1/2=(qi*-qj*)/(2qi*+2qj*)。显然,内外资企业的市场份额变化率数值相等,符号相反。
3.1强制减排政策
在碳强度减排情形下,企业利润最大化可表示为:
maxπi=[a-b(qi+qj)]qi-cqi-δi(φiqi)2s.t.(eiqi-φiqi≤Ei)。
对应的库恩塔克条件为:
Li/φi=-δiφiqi2+λiqi=0;
Li/qi=a-b(2qi+qj)-c-δiqiφi2-λi(ei-φi)=0;
Li/λi=-eiqi+φiqi+Ei=0,其中λi≥0;
联立上述方程可解得:
qf*=(b+δdφded)(a-c)3b2+2bδfφfef+2bδdφded+δfδdφfφdedef;
qd*=(b+δfφfef)(a-c)3b2+2bδfφfef+2bδdφded+δfδdφfφdefed;
Q*=(2b+δfφfef+δdφded)(a-c)3b2+2bδfφfef+2bδdφded+δfδdφfφdefed。
由于ef
现在,我们把强制减排情形与无碳减排政策情形进行比较分析,得到如下表达式。
Δqfq′f=qf*-q′fq′f=
δfφfef[(τdf3-2)b-τdf3δfφfef]3b2+2b(1+τdf3)δfφfef+τdf3(δfφfef)2;
Δqdq′d=qd*-q′dq′d
=-δfφfef[(2τdf3-1)b+τdf3δfφfef]3b2+2b(1+τdf3)δfφfef+τdf3(δfφfef)2
Δqfq′f-Δqdq′d=3bδfφfef(τdf3-1)3b2+2b(1+τdf3)δfφfef+τdf3(δfφfef)2>0;
Δmarketf=qf*qf*+qd*-12=(τdf3-1)δfφfef4b+2(1+τdf3)δfφfef;
ΔQQ′=-δfφfef(b+bτdf3+2τdf3δfφfef)6b2+4b(1+τdf3)δfφfef+2τdf3(δfφfef)2
由此可以得知命题1:面临相同降幅的碳强度强制约束时,社会总体产出水平下降,内资企业的市场份额一定会下降,且内外资企业低碳技术差距越大时内资企业的市场份额会下降越多。
3.2碳税情形
由于内外资企业承担相同减排任务即单位产量碳排放下降幅度一样即ω=φf/ef=φd/ed,于是政府可以通过制定恰当的碳税税率使得外资企业和内资企业单位产量的碳排放量为(ef-φf)、(ed-φd)。因此,碳税情形的博弈过程主要为:①由于2008年我国已经统一了内外资所得税,为体现公平性我们假定政府δ谕庾势笠狄坏ノ惶寂欧帕客骋徽魇展潭ǖ拇恿克t,从而政府向内外资企业征收的单位产量碳税为:t(ei-φi);②企业在考虑碳税的基础上选择产量。对此,我们采用逆向求解法。
(1)企业产量选择。碳税情形下企业利润最大化可表示为:
maxπi(qi,φi)=[a-b(qi+qj)]qi-cqi-δi(φiqi)2-t(ei-φi)qi。
其对应的拉格朗日一阶条件为:
πi/qi=a-b(2qi+qj)-c-2δiφi2qi-t(ei-φi)=0;
πi/φi=-2δiφiqi2+tqi=0;
联立解之得:qf*=[a-c+t(ed-2ef)]/3b,qd*=[a-c+t(ef-2ed)]/3b;从而Q*=[2a-2c-t(ef+ed)]/3b。
现在,我们将其与无碳减排政策的情形进行比较:
Δqf/q′f=(qf*-q′f)/q′f=t(ed-2ef)/(a-c),
Δqd/q′d=(Δqd-q′d)/q′d=t(ef-2ed)/(a-c);
Δmarketf=qf*qf*+qd*-12=3tef(τdf-1)4a-4c-2tef(τdf+1);
ΔQQ′=Q*-Q′Q′=-tef(ed/ef+1)2a-2c=-tef(τdf+1)2a-2c
当12时,Δqf>0,Δqd
由此可以得到命题2:只要内资企业碳强度大于外资企业碳强度,征收碳税将削弱内资企业的市场份额;内外资低碳技术差距越大,内资企业的市场份额下降越多。
(2)政府最优税率的设定。设外资企业、内资企业根据自身边际减排成本和利润最大化原则的排放量分别为Ef=(ef-νf)qf、Ed=(ed-νd)qd,其中νf、νd为外资企业、内资企业单位产值碳排放的下降量,则总的排放量为E=Ef+Ed。
根据上述分析,我们可以得到如下表达式:
t*=3bδfδd(efq′f+edq′d-E)δfδd(ef2+ed2-efed)+b(ef+ed)
令ΔE=efq′f+edq′d-E,于是最优税率t*仅仅是ΔE的函数,且t*/ΔE>0。由此可以得到命题3:最优税率仅仅是减排目标的增函数,即减排目标越高应征收的税率也越高。
3.3碳交易情形
在没有碳交易的情形下,内外资企业在相同强度减排目标下的排放量分别为Ed=(ed-φd)qd、Ef=(ef-φf)qf,且ω=φf/ef=φd/ed。在碳交易机制下,内资企业因边际减排成本更高而成为碳市场的购买方,而外资企业成为碳市场的出售方。设外资企业、内资企业根据自身边际减排成本和利润最大化原则的排放量分别为Ef=(ef-ξf)qf、Ed=(ed-ξd)qd,其中ξf、ξd为外资企业、内资企业最终实际的碳强度减少量。显然,ξf>φf,ξd
由此可知,内外资企业利益最大化决策可表示为:
maxπi(qi,ξi)=[a-b(qi+qj)]qi-cqi-δi(ξiqi)2-χ(φi-ξi)qi。
其一阶条件为:
πi/qi=a-b(2qi+qj)-c-2δiξi2qi-χ(φi-ξi)=0,
πi/ξi=-2δiξiqi2+χqi=0。
显然,与同碳税情形类似,求解过程也类似,从而有:
qf*=a-c+χ(φd-2φf)3b,qd*=a-c+χ(φf-2φd)3b,
Q*=2a-2c-χ(φd+φf)3b。
根据ω=φf/ef=φd/ed、τdf=ed/ef,可以得到:
Δmarketf=qf*-qd*2qf*+2qd*=3χ(φd-φf)4a-4c-2φf-2φd
=3χωef(τdf-1)4a-4c-2χωef(τdf+1)
由于我们设定碳交易与碳税情形下的碳强度下降幅度一致,并且短期内企业的低碳技术和生产技术都没法改变,因此双方基于边际减排成本的差异而在碳市场的出清状态下进行交易。可知,碳交易情形与碳税情形的排放量一样,唯一不同的是外资企业因边际减排成本更低而从内资企业获得了相应的收益,即利润发生了转移。因此,市场出清的碳排放权交易价格等同于征收碳税率,其表达式如下:
χ=t*=3bδfδd(efq′f+edq′d-E)δfδd(ef2+ed2-efed)+b(ef+ed)
由此我可以得到命题4:碳交易将削弱内资企业的市场份额,相同强度减排目标下碳税机制和市场出清的碳交易机制等价;市场出清的碳交易价格和碳税税率相等,且其数值仅与减排目标正相关,而与碳排放权的分配无关。
3.4不同碳减排政策的比较分析
结合前文分析,我们把三种减排政策对内外资企业的产出、市场份额及其社会总产量的影响汇总于表1。
由表1可以看出:总体来看,三种政策都降低了内资企业的产量和市场份额,而强制减排政策降低了社会总产量,碳税和碳交易则可以同等幅度地提高社会总产量。进一步地,我们可以从市场份额的变化来比较分析碳税和碳交易这两种减排政策对内外资企业的影响。由于市场出清时碳交易价格与碳税税率相等(χ=t)且0
由此我们可以得到命题5:相同强度减排目标下强制减排降低了社会总产量,碳税和碳交易同等幅度地减少了社会总产量,且碳交易比碳税更有利于“保护”内资企业的竞争力。
4结论与启示
基于内外资存在低碳技术差距的视角,我们在面临相同的强度减排目标下通过构建两阶段博弈模型比较分析了强制减排、碳税与碳交易对内外资企业产量、市场份额及其社会总产量的影响。结果表明:①三种减排政策都降低了内资企业的产量和市场份额,且内外资企业低碳技术差距越大时内资企业的市场份额会下降越多。②强制减排降低了社会总产量,碳税和碳交易同等幅度地减少了社会总产量。③最优税率仅仅是减排目标的增函数。④市场出清的碳交易价格和碳税税率相等,且其数值仅与减排目标正相关,而与碳排放权的分配无关。⑤碳交易比碳税
更有利于“保护”内资企业的竞争力。
基于上述结论,我们得到了如下政策启示:①尽快确定普适的碳排放核算标准,核算出各行业内外资企业的低碳技术差距;②尽快在全国范围内启动碳交易机制,建立促进缩小内外资企业低碳技术的机制,如政府可以增强对内资企业自主研发的科技奖励;③在碳交易市场条件不成熟的行业可以率先推出碳税政策;④政府应该根据内外资企业低碳技术差距来对不同行业采取减排政策,如低碳技术差距较大的行业,碳税比碳交易政策更有利于保持对外资企业的吸引力,从而为内资吸收其先进低碳技术提供更好的平台;而在低碳技术差距较小的行业,碳交易比碳税更有利于保护内资企业的竞争力,从而应该优先考虑采取碳交易政策。
参考文献(References)
[1]MONTGOMERY W D. Markets in licenses and efficient pollution control programs [J]. Journal of economic theory, 1972, 5(3): 395-418.
[2]STERN N. The economics of climate change: the Stern review [M]. Cambridge: Cambridge University Press, 2007: 532-535.
[3]ALDY J E, KRUPNICK A J, NEWELL R G, et al. Designing climate mitigation policy [J]. Journal of economic literature, 2010, 48(4): 903-934.
[4]PIZER W A. Combining price and quantity controls to mitigate global climate change [J]. Journal of public economics, 2002, 85(3): 409-434.
[5]HOEL M, KARP L. Taxes versus quotas for a stock pollutant [J]. Resource and energy economics, 2002, 24(4): 367-384.
[6]KARP L, ZHANG J. Regulation of stock externalities with correlated abatement costs [J]. Environmental and resource economics, 2005, 32(2): 273-300.
[7]MURRAY B C, NEWELL R G, PIZER W A. Balancing cost and emissions certainty: an allowance reserve for capandtrade [J]. Review of environmental economics and policy, 2009, 3(1): 84-103.
[8]KLAASSEN G, NENTJES A, SMITH M. Testing the theory of emissions trading: experimental evidence on alternative mechanisms for global carbon trading [J]. Ecological economics, 2005, 53(1): 47-58.
[9]SUBRAMANIAN R, GUPTA S, TALBOT B. Compliance strategies under permits for emissions [J]. Production and operations management, 2007, 16(6): 763-779.
[10]MANDELL S. Optimal mix of emissions taxes and capandtrade [J]. Journal of environmental economics and management, 2008, 56(2): 131-140.
[11]WANG K, WANG C, CHEN J. Analysis of the economic impact of different Chinese climate policy options based on a CGE model incorporating endogenous technological change [J]. Energy policy, 2009, 37(8): 2930-2940.
[12]HUBLER M, VOIGT S, LOSCHEL A. Designing an emissions trading scheme for China:an uptodate climate policy assessment [J]. Energy policy, 2014, 75(12): 57-72.
[13]CUI L B, FAN Y, ZHU L, et al. How will the emissions trading scheme save cost for achieving China’s 2020 carbon intensity reduction target? [J]. Applied energy, 2014, 136(12): 1043-1052.
[14]乔晗, 李自然. 碳税政策国际比较与效率分析 [J]. 管理评论, 2010, 22(6): 85-92. [QIAO Han, LI Ziran. An international comparison and efficiency analysis of carbon policy [J]. Management review, 2010, 22(6): 85-92.]
[15]R菊煌, 沈可挺, 徐嵩龄. 碳税与二氧化碳减排的CGE模型[J]. 数量经济技术经济研究, 2002, 19(10): 39-47. [HE Juhuang,SHEN Keting,XU Songling. A CGE model of a carbon tax and carbon dioxide emissions [J]. The journal of quantitative & technical economics, 2002, 19(10): 39-47.]
[16]姚昕, 刘希颖. 基于增长视角的中国最优碳税研究[J]. 经济研究, 2010, 45(11): 48-58. [YAO Xin, LIU Xiying. Optimal carbon tax in China with the perspective of economic growth [J]. Economic research journal, 2010, 45(11): 48-58.]
[17]崔连标, 范英, 朱磊, 等. 碳排放交易对实现我国“十二五”减排目标的成本节约效应研究[J]. 中国管理科学, 2013, 21(1): 37-46. [CUI Lianbiao, FAN Ying, ZHU Lei, et al. The cost saving effect of carbon markets in China for achieving the reduction targets in the‘12th fiveyear plan’ [J]. Chinese journal of management science, 2013, 21(1): 37-46.]
[18]石敏俊, 袁永娜, 周晟吕, 等. 碳减排政策:碳税、碳交易还是两者兼之? [J]. 管理科学学报, 2013, 16(9): 9-19. [SHI Minjun,YUAN Yongna, ZHOU Shenglv, et al. Carbon tax, capandtrade or mixed policy: which is better for carbon mitigation? [J]. Journal of management science in China, 2013, 16(9): 9-19.]
[19]吴力波, 钱浩祺, 汤维祺. 基于动态边际减排成本模拟的碳排放权交易与碳税选择机制[J]. 经济研究, 2014, 49(9): 48-61,148. [WU Libo, QIAN Haoqi, TANG Weiqi. Selection mechanism between emission trading and carbon tax based on simulation of dynamic marginal abatement cost [J]. Economic research journal, 2014, 49(9): 48-61,148.]
[20]曹裕, 王子彦. 碳交易与碳税机制比较研究[J]. 财经理论与实践, 2015,36(5): 97-102. [CAO Yu, WANG Ziyan. Comparative research on carbon trading and carbon tax mechanism [J].The theory and practice of finance and economics, 2015,36(5): 97-102.]
Comparative analysis of effects of different carbon regulation policies
on market competition between domesticfunded and foreignfunded companies
CAO Xiang1,2FU Jingyan1,2
(1.School of Economics, Jinan University, Guangzhou Guangdong 510632, China; 2.Institute of Resources,
Environment and Sustainable Development Research, Jinan University, Guangzhou Guangdong 510632, China)
篇4
(一)测算方法
碳排放主要来源于三个方面:煤炭、石油、天然气的使用。本文参照各类能源的碳排放系数(表1),计算出中国代表性产业的二氧化碳的排量,据以观察国民经济增长中二氧化碳排放量的重点产业。本文用于计算碳排量的公式为Et=δfEf+δmEm+δnEn ,其中,Et为碳排放量,δf为煤炭消耗的碳排放转换系数,Ef为煤炭消耗量;δm为石油消耗的碳排放转换系数,Em为石油消耗量;δn为天然气的碳排放转换系数,En为天然气消耗量。
表1 各类能源的碳排放系数表
资料来源:根据徐国泉、汪刚等人的相关研究整理得出。
(二)数据来源
数据根据1994-2012年的中国统计年鉴获取,代表性行业选取了农业,工业,建筑业,交通运输、仓储及邮电通信业,批发零售贸易、贸易、餐饮业和其他产业。
三、中国碳排放变化特征分析
根据已给出的碳排放测算公式,测算1996-2011年中国碳排放总量的变化趋势。结果表明,1996年碳排放总量为467646.21万t,而2011年碳排放总量为852116.88万t,年均增速为4.12%,从总体上来看,碳排放量的年均增速呈阶段性上升趋势。
从中国碳排放量变化趋势( 图1) 中可以看出,1996-2011年碳排放量一直呈现上升趋势,但不同阶段增速存在着一定差异,总体上可以分为三个变化阶段:
第一个阶段为1996-2000年,不稳定快速增长期,年际增长率基本大于5%。这主要是由于步入20世纪90年代后,中国现代化进程进一步加快,对煤炭等能源需求增加。另一方面,国家对于建造现代工业的经验不足,政策制定频繁变化,导致碳排放不稳定增长。
第二个阶段为2001-2007年,缓慢增长期,年均增速低于3%。这主要是由于前一个时期盲目加快现代化进程,导致很多经济结构性问题凸显,受其影响,各个行业对能源的需求放缓,碳排放的增速放慢。
第三个阶段为2008-2011年,增速反弹回升期,年均增速介于2.5%-4.5%之间。这是由于国家调整了经济发展政策,解决了一些前期出现的矛盾与问题,经济增速回升,对能源的需求增加,碳排放稳定增加。
图1 中国碳排放总量及年均增速
四、中国碳排放总量影响因素分解
(一)研究方法
Kaya 碳排放恒等式是用数学分析方法将人类社会活动产生的碳排放量与经济、政策和人口等因素建立起联系。该恒等式显示,碳排放主要的影响因素有四个,分别是人口、生活水平、能源使用强度和碳排放强度。具体公式为:
其中,P 、CI、EI、G、分别为人口规模因素、能源结构因素、能源效率因素、经济规模因素,C表示的是碳排放量,E为能源消耗总量,而GDP、P则为国内生产总值和人口总量。为了便于分析,各产业间以产值代替规模,统一采用产值作为比较量。为了消除残差对于分析的影响,将该恒等式的残差部分去除。故将该恒等式变形为:
CIt:代表从T -1年到T年仅有单位能源消耗碳排放强度变化而其它因子未发生变化而导致的碳排放量相对于基年的排放量变化。
EIt:代表T- 1年到T年仅有能源效率发生改变而CI、G、P 均保持在T年水平条件下碳排放量的变化。
Gt:代表从T -1年到T年仅有经济规模变化而其它因子未发生变化而导致的碳排放量相对于基年的排放量变化。
Pt:代表从T -1年到T年仅有劳动力规模变化而其它因子未发生变化而导致的碳排放量相对于基年的排放量变化。
通过变形可以得到以下公式:
这是一种没有残差的分解方法,通过此方法可以得到:
(二)结果及分析
根据上述模型以及搜集得来的数据,借助相关分析工具,得出中国各产业碳排放驱动分析结果如图2所示:
图2 基于Kaya恒等式的中国各产业碳排放影响因素分解结果
生产效率因素、结构因素一定程度上抑制了碳排放量,尽管促进碳减排逐年增强,但是作用有限。1997-2011年相比基期,生产效率因素、结构因素分别累计贡献13.6% (217.54万t) 、43.9% (982.37万t)的碳减排。总体来看,碳减排的效果为:结构因素 生产效率因素。从图2波动下降的态势可以看出,近年来随着生产效率的提高和结构的优化,有助于碳减排。随着劳动力规模的增大,不利于生产效率的提高,进而不利于实现规模经营,不利于碳减排,而经济发展则成为了碳排放增加的最主要因素。结果表明,1997-2011年相比基期,劳动力规模因素累计产生了34.4%(718.24万t) 的碳排放增量,经济发展水平因素则贡献了127.6%(7358.74万t)的碳排放增量,因此,随着经济的增长以及劳动力的增加,碳排放会增加,在今后一段时间内,经济发展仍会成为碳排放增加的主要因素。
五、促进中国碳减排的政策建议
(一) 加快提高生产效率,促进碳减排
生产率提高在提高经济发展水平的同时可以促进碳减排,要使国家发展经济以及节能减排目标真正得以实现,提高生产率是最为有效的方法。应加大生产技术的改进,从而减少劳动力的投入,发展规模经济,同时提高资源的利用率,实现高产出、低能耗的生产方式,达到碳减排的目的。
(二) 进一步调整优化能源结构,减少产业碳排放
在确保经济稳定的前提下,进一步调整优化能源结构,不断优化区域布局。当前我国能源消耗仍以碳排放量大的能源种类如煤炭、石油为主,绿色能源如风能以及低耗能产业发展水平相对滞后。因此,我国经济在未来发展中应减少对高耗能产业以及高排放能源的依赖,适当向低耗能产业以及绿色能源扩展,尤其是环保产业,一方面发育水平较低,拥有广阔的开发潜力;另一方面还能起到增加碳汇、保护生态环境的作用。减少资源高消耗、投入大的产品的制造,加大高生产率、低资源消耗产品的研发与制造。
(三) 兼顾环境保护与经济发展,切实转变经济发展方式
经济发展是碳排放增加的主要因素,因此发展经济的同时,要切实转变经济发展方式,摒弃传统的发展思维和发展模式,在发展思路上彻底改变重开发、轻节约,重速度、轻效益,重外延扩张、轻内涵发展,片面追求GDP 增长、忽视资源和环境的倾向,加快推进低碳经济发展,实现经济、社会、生态效益三者统筹兼顾,促进经济与气候资源环境的全面协调可持续发展。
篇5
(一)经济发展、能源消耗与碳排放的关系
Ugur Soytas,et al(2007,2009)采用VAR模型对美国和土耳其的实证研究均表明,碳排放增长的格兰杰成因并非GDP,而是能源消耗,并据此提出了降低能源强度、增加使用清洁能源等措施来实现碳减排的政策。Xingping Zhang (2009)基于多元模型对中国的实证研究显示,GDP对能源消耗量存在单向格兰杰因,能源消耗量对碳排放存在单向格兰杰因,而碳排放量和能源消耗量都不是经济增长的格兰杰因。碳排放与经济发展之间的关系也是国外学者研究的重点。Schmalesee(1998)、Gale Ahuja (1999)均证实了人均收入和碳排放量间存在着倒U型曲线关系,Grubb(2004)对早期英国的实证研究也得出了两者间类似的对应关系。Huang(2008)对21个发达国家的GDP与温室气体排放关系进行了分析,发现有7个国家出现了EKC现象。OECD(2002)对比分析了脱钩指标的国家差异后,发现环境与经济脱钩的现象普遍存在于OECD国家中,而且还有可能实现环境与经济的进一步脱钩。Tapio(2005)通过脱钩指标体系的设计,将脱钩现象进一步细分为相对脱钩和绝对脱钩,前者指GDP 增长率高于碳排放增长率,而后者则指GDP稳定增长时碳排放量反而减少的情形。其实,EKC曲线反映的就是经济增长与环境污染的关系从不脱钩到相对脱钩、再到绝对脱钩的动态变化轨迹。
(二)碳排放的影响因素
首先,Kaya Yoichi (1990) 提出了著名的KAYA恒等式, 即一国或地区碳排放量的增长主要取决于人口、人均GDP、能源强度和能源结构等4个因素的推动。而后,Salvador Puliafito (2008)与Michael Dalton (2008)分别采用L-V模型和PET模型的研究,均验证了人口数量与结构、GDP及能源消耗对碳排放量的影响。但Lantz V、Feng Q(2006)对加拿大1970-2000年的数据进行回归分析后,得出的结果却表明人均GDP与 CO2 排放不相关,人口与 CO2 排放呈倒 U型关系,而技术与 CO2 排放呈U型关系。Fan Ying等(2006)利用 STIRPAT模型分析了不同经济发展水平的国家后,客观地指出人口、经济和技术水平等因素对不同发展水平国家碳排放的影响是不同的。国际贸易也是影响碳排放的一个不可忽略的因素。Paul B Stretesky (2009)以1989-2003年世界169个国家的面板数据为样本,采用了固定效应模型进行估计,其结果显示:各国人均碳排量与对美国出口量之间存在显著关系。YanYunfeng、et al(2010)基于对中国因出口而增加碳排放的实证研究表明,国际贸易具有促进碳排放在各贸易国间自由转移的作用。
(三)国民经济中的高碳产业
由于不同产业使用能源的种类、强度与方式与不同,国民经济中不同产业排放温室气体的数量与特征有很大差异。T.C Chang (1999)采用灰色关联分析法测算了台湾34个行业产值、各种能源使用量与碳排放量之间的灰色关联系数,其结果显示:造纸、橡胶、石化与金属制品等11个行业属于能耗强度、碳强度与碳排放系数 “三高”的碳密集型行业。Marco Mazzarino(2000)采用比较静态法和货币估值技术研究后发现,运输业是OECD国家碳排放量最大的行业,约占到碳排放总量的1/3。R. Rehan (2005)指出,水泥制造业是高碳排的主要行业,在京都议定书三种碳交易机制下水泥业的发展前景值得进一步探讨。Keith Paustian(1998)认为农业生产对碳循环的影响具有“双刃剑”的作用,一方面农业生产使自然生态系统转换成农业土地利用,增加了大气中CO2排放;另一方面也可通过土地利用变化、土地整治等增加碳“汇”,从而减少碳排放。
(四)发展低碳经济的政策工具
开征碳税和推行碳交易被认为是最有效的减排政策工具。Toshihiko Nakata(2001)研究发现,能源税和碳税的征收能使碳排放下降到预计目标水平,同时也使能耗结构由煤向天然气转换。Annegrete Bruvoll(2004)对碳税征收先行国挪威的研究也发现,1990-1999年挪威平均单位GDP的碳排放降低了12个百分点,但碳税对碳减排的贡献只有2.3%,因此碳税的效果并不理想。Cheng F Lee(2007)基于灰色理论和投入―产出理论,运用模糊目标规划法构建模型,模拟预测了3种碳税方案下碳减排的力度和经济影响,以期为各国选择碳税方案增强碳税效果提供依据。Andrea Baranzini (2009)进一步分析指出,当前各国碳税税率的差别仍然很大,要达到减排目的,必须协调各国税率并对能源税制进行改革。目前世界上最大的碳交易项目是基于《京都议定书》架构下的三种排减机制,即清洁发展机制(CDM)、联合履行(JI)、排放交易(ET)。J Liski (2000) 指出,CDM机制下的项目型碳交易不仅有利于发展中国家吸收发达国家的资金和技术,也是发达国家降低减排成本的有效途径之一。Wara(2007)也认为,CDM不仅是全球碳交易市场的主要部分,而且也是一种变通的旨在援助发展中国家的政治机制。在“限额-贸易”排放交易机制中,初始排放权的分配直接影响到各国的发展权利和济福利水平,所以其有效、公平的分配一直是国外学者研究的焦点。当前比较认可的三种分配原则是:按人均碳排放量分配、按GDP排放强度分配以及按历史责任分配。Grubb和Sebenius (1992)则基于上述原则提出了“混合”分配原则,即以人均碳排量为基准进行分配时,兼顾各国经济总量和单位GDP排放强度。Smith,Swisher 和 (1993)都主张在分配初始排放权时,应同时考虑一国能够且愿意支付的可用资源和基于人均累积排放的历史责任两个因素。
(五)碳减排的经济成本
OECD(1992)、Manne(1992)、Ha-Duong(1997)都对减少碳排放的经济代价和社会影响进行了研究,结果表明,严厉的碳减排措施将影响经济发展,但减排强度与经济风险呈非线性相关。Danny Harvey(1996)在分析了无管制排放的危害后,也论述了碳减排的经济风险,诸如挤占紧缺资源、减缓经济增长、政府过多干预造成市场扭曲、减排措施产生副效应或成本高于预期或减排措施失灵等。但也有一些研究结论认为,碳减排的成本并非想象的那么高,也不一定会带来经济衰退,证据是1998年中国、欧盟和日本的经济发展与碳排放均实现了不同程度的绝对脱钩。LARS H・KONSEN(1997)通过引入外部性和碳税两个变量对经济福利模型进行扩展分析后,也指出在当代实施碳减排的成本其实是负的,因此减排属于无悔政策。Reyer Gerlagh(2004)则构建了以技术为内生变量并基于两种能源的宏观经济模型,分析后指出若要将全球升温控制在2度以内,必须尽早采取减排措施,而且减排成本也是很低的。
篇6
一、问题的提出
(一)背景和意义
在经济社会发展过程中,由于CO2等温室气体的大量排放而引起的全球变暖,给人类自身可持续发展带来了严重的威胁,因此发展低碳经济已成为当今社会的重要课题。2009年11月中国政府首次提出了到2020年单位GDP的CO2排放量比2005年降低40%~45%的数值目标。
值得注意的是,工业历来是我国CO2排放的主要部门,占我国CO2总排放量的70%以上,且近年来一直呈增加态势。因此,研究工业部门的CO2排放对低碳经济发展有着十分重要的现实意义。
(二)与先行研究的关系
在CO2排放研究方面,目前学术界的研究主要集中在发展低碳经济最基础的工作,即对CO2排放量的推算及其影响因素的分析上。
在中国CO2排放量的推算方面,关键步骤是确定各种能源的CO2排放系数。多数学者是利用联合国政府间气候变化专门委员会(IPCC)温室气体清单指南中提供的方法进行的,如燕丽、杨金田[1]、金艳鸣[2] 等;也有利用美国能源部能源情报局(DOE/EIA)、日本能源经济研究所、中国国家科委气候变化项目等几家的平均值,如王怡[3]等。
在中国碳排放的影响因素研究方面,较早期的有张宏武运用Divisia分解法、基于Kaya模型Kaya模型是日本学者Kaya Yoichi提出的一种方法,详见Kaya Yoichi . Impact of Carbon Dioxide Emission on GNP Growth: Interpretation of Proposed Scenarios [R]. Presentation to the Energy and Industry Subgroup,Response Strategies Working Group,IPCC,Paris,1989. 对1980~1999年我国CO2排放量变化的研究 [4]。此后,有学者陆续对此展开研究,如徐国泉等[5]的研究等。自2007年中国政府提出发展低碳经济以来,这方面的研究逐渐增多,如冯相昭[6]、朱勤[7],宋德勇、卢忠宝[8]、王锋等[9],赵奥、武春友[10]、李艳梅等[11]、郭朝先[12]、蒋金荷[13]等。
在工业部门碳排放研究方面,有Liu Lancui等.对我国工业最终消费能源导致的CO2排放量变化因素的研究[14],刘红光、刘卫东对我国工业燃烧能源导致碳排放的影响因素的研究[15],卢祖丹、赵定涛对西部大开发中工业碳排放影响的分析[16],邵帅等对上海市工业能源消费碳排放影响因素的研究[17],潘雄锋等对中国制造业碳排放强度影响因素的研究[18]等。
纵观上述学者的研究,虽然对碳排放分解的研究相当活跃,对碳减排政策的制定起到了重要作用,但也存在不足。
首先,大多数研究在计算碳排放时采用的能源种类、消费部门分类甚少,大多只是仅仅粗略地分为煤炭、石油和天然气三大类,而消费部门也只有工业、农业、交通运输业、商业、其他服务业等,没有工业内部的行业;其次,上述研究大多着眼于国家层面,对不同部门、不同区域的研究较少,而对工业各行业的系统分析则更少;再次,大多数研究是以数年间隔(例如每五年等)为单位,根据本文试算,只采用期首和期末两年的数据与每年累加计算比较会造成很大偏差,影响计算结果的准确性。
本文拟首先对1991~2010年中国工业行业CO2排放量进行推算,然后对其特征及变化动态作一分析,在此基础上对存在于这些变化特征背后的影响因素进行分解,最后基于这些分析提出中国CO2减排的对策建议。
二、中国工业行业CO2排放变化及其特征
(一)中国工业行业CO2排放量的推算
1. 推算方法
CO2排放量的推算,基本上是按照每个部门各自燃料的消费量乘以各自的CO2排放系数来进行的。如果用C表示化石能源起源的CO2排放量,则可得到:
2. 数据来源及处理
本文所用工业各行业的能源消费数据来源于《中国能源统计年鉴》各年版,工业生产总值数据来源于《中国统计年鉴》各年版,工业增加值除了2004年及2008~2010年取自相应年份的《中华人民共和国国民经济和社会发展统计公报》,并采用计量经济学中相应的处理方法对个别行业的缺失资料进行补齐外,其他年份的数据也来源于《中国统计年鉴》各年版,而CO2排放数据采用的是根据前述推算方法得出的结果。在对数据的处理过程中,各行业的工业增加值和工业生产总值按不变价格统一调整为2005年价格。
(二)分析结果
1. 中国工业部门影响因素驱动力的作用分析
图4是以1991年为基础年,对工业部门的分解结果进行逐年累加的情况。从图(4)可以看出,对工业部门CO2排放量增加驱动力最大的是经济(工业)规模因素,而且除了个别年份外基本上保持了持续增加的趋势;能源效率因素和经济效率因素则是工业部门CO2减排的主要驱动力,而且基本保持了持续减排的趋势;能源转换因素则驱动作用很小。
从具体计算数字来看,在研究对象期内,由于经济规模因素的驱动增加CO2排放117.76亿吨(表示如果不考虑其他影响因素的情况下会净增的排放量),能源转换因素增排0.42亿吨,而能源效率因素减排42.39亿吨,经济效率因素减排34.94亿吨,四项因素增减相抵,净增数为40.85亿吨,与1991~2010年工业部门CO2排放量变化的实际数值相当,几乎没有残差,基本做到了零残差分解。2. 中国工业行业影响因素驱动力的作用分析
(一)能源转换减排对策
能源转换减排是指通过转换能源结构来实现CO2减排的一种政策手段,从本文的分析中可知,研究期内我国能源转换因素不仅没有减排驱动,而且增排0.42亿吨,可见今后在这方面有着很大的潜力。通过能源结构转换来发展低碳经济的手段包括:脱化石能源化(从化石能源转向非化石能源)、脱煤炭化(从煤炭转向石油、天然气)以及煤炭利用的高度化(煤炭清洁利用技术的开发和促进)等三种。
1. 脱化石能源化
脱化石能源化是要加大化石能源以外的如水力、核能、风能和太阳能等利用的比重。
水力发电是清洁再生的能源利用方式,中国的水力资源十分丰富,应该优先开发,但也不应该忽视在小水电开发中对生态环境的影响。
中国今后通过大力发展核电来解决能源供应问题是一个出路,不过2011年日本发生核电泄露事故后,在世界范围内对核安全异常关注的背景下,发展核电尤其应该注意确保安全。
在发展风电的过程中,有必要采取加强风能的计划和管理、开发与电网的协调以及财政、税收、价格政策支持等措施,着重解决技术开发以及发电送电之间的衔接问题。此外人才培养也是必须解决的课题。
在太阳能产业发展方面今后应采取有效措施大力扶持和加强太阳能开发利用的产业和技术,争取在这一领域占据有利位置、保持强有力的国际竞争力。
2. 脱煤炭化
煤炭是在化石能源中单位发热量的CO2排放量最多的一种能源。从CO2减排的角度出发,天然气是化石能源中最清洁、利用效率高又便利的能源。今后的脱煤炭化对策应该是在逐渐减少煤炭消费比重的基础上,将以前投向煤炭开发、利用的人材、技术、资金等逐渐转移到石油、天然气等能源的开发利用上。
3. 煤炭利用的高度化
煤炭利用的高度化是指在对选煤、洗煤加工、型煤加工等成熟技术进行普及的基础上,构建以先进的清洁技术开发、煤炭气化等为中心的煤炭精加工体系。在煤炭利用中削减CO2排放量的方法有两个,一是在CO2向空中排放前对其进行捕获,二是在燃烧的过程中降低CO2的排放量。今后有必要在煤炭产地推进煤炭清洁利用技术的开发。
(二)能源效率减排对策
能源效率减排是指通过提高能源利用和经济投入产出效率来达到CO2减排的一种手段。从本研究的因素分解结果来看,这20年间,工业部门通过提高能源效率减少CO2排放高达42亿吨,驱动力为各种影响因素减排之首,为我国CO2减排立下了汗马功劳。由此可见,长期以来能源效率减排一直是我国工业部门CO2减排的主要途径。
虽然我国工业行业的能源效率有了很大的提高,但仍有较大的提升空间。当前中国的能源效率与发达国家相比还有很大差距,节能的余地还很大。减排主要有三个途径,分别是技术节能、结构节能和管理节能。
(三)经济效率减排
经济效率减排,主要是指通过提高工业增加值在工业总产值的比重来衡量的附加价值率实现相对减排的一种政策手段。从本文的研究可知,我国工业的经济效率是重要的减排驱动因素,CO2减排效果达到34.9亿吨,驱动力仅次于能源效率减排。
在工业行业效率改善方面,迄今为止主要采取的对策包括能源管理的改善、强化和设备新增改造、工艺流程的改进等,今后首先应大力加强既有设备和工艺流程的更新改造,特别需要加强高耗能产业的效率改善。例如对钢铁工业,需要采用高效率设备、废热回收等手段,对水泥制造需要对新一代流动床水泥烧成系统技术进行开发,对煤炭和石油化学工业需要加强对低温、低压生产流程进行开发,对造纸业可以采用高效率设备(蒸解、纸浆洗净、漂白、脱木质素工程),废纸利用的扩大,残材、低质材的充分利用等;其次要大力发展高附加值的节能环保产业、新一代信息技术产业、生物产业、高端装备制造产业、新能源产业、新材料产业和新能源汽车产业等战略性新兴产业。
(四)经济规模减排
经济规模减排就是通过人为放慢经济规模扩大的步伐甚至缩小规模的手段来实现CO2减排。因为在其他条件相同的前提下,规模越小CO2排放量就越少。但在一般情况下人们是不大愿意采用这种政策手段的,而且这种规模的扩大还有着一定的客观规律,例如中国现阶段正处于工业化阶段,由于基础设施建设的需要,原材料等重工业的规模扩大不可避免。从前面的分析也印证了我国工业部门CO2排放的增加主要是由于规模扩大所引起的,这就使得我国面临着工业化和低碳化的两难选择,给我国的CO2减排带来了极大的困难。
在规模减排方面可以采取的措施之一是适当调低经济增长目标的方式来给转型提供空间,因为发展高附加值产业就可以实现在经济规模不变甚至缩小的情况下达到CO2总量减排的目的。二是调整工业行业结构,降低高耗能行业比重,促进传统产业的低碳化升级改造。
参考文献:
[1]燕丽,杨金田. 中国火电行业CO2排放特征探讨[J]. 环境污染与防治, 2010,32(9):92-94.
[2]金艳鸣. 我国各省电力工业碳排放现状与趋势分析[J]. 能源技术经济,2011,23(10):56-60.
[3]王怡. 环境规制视角下我国工业碳排放的灰色斜率关联分析[J]. 科学技术与工程,2011,11(40):791-797.
[4]张宏武.我国CO2排出量的要因分析[J]. 山西师范大学学报(自然科学版),2002,16(2):78-84.
[5]徐国泉,刘则渊,姜照华. 中国碳排放的因素分解模型及实证分析:1995~2004[J]. 中国人口·资源与环境,2006,(6):158-161.
[6]冯相昭,邹骥. 中国CO2 排放趋势的经济分析[J] . 中国人口资源与环境,2008,18(3):43-47.
[7]朱勤,彭希哲,陆志明,等. 中国能源消费碳排放变化的因素分解及实证分析[J] . 资源科学,2009,31(12):2072-2079.
[8]宋德勇,卢忠宝. 中国碳排放影响因素分解及其周期性波动研究[J]. 中国人口·资源与环境,2009,19(3):18-24.
[9]王锋,吴丽华,杨超. 中国经济发展中碳排放增长的驱动因素研究[J]. 经济研究,2010(2):123-136.
[10]赵奥,武春友. 中国CO2 排放量变化的影响因素分解研究——基于改进的Kaya等式与LMDI分解法[J]. 软科学,2010,24(12):55-59.
[11]李艳梅,张雷,程晓凌. 中国碳排放变化的因素分解与减排途径分析[J]. 资源科学,2010,32(2):218-222.
[12]郭朝先. 中国碳排放因素分解:基于LMDI分解技术[J]. 中国人口·资源与环境,2010,20(12):4-9.
[13]蒋金荷. 中国碳排放量测算及影响因素分析[J]. 资源科学,2011,33(4):597-604.
[14]Liu Lancui,Fan Ying,Wu Gang,et al. Using LMDI Method t Analyze the Change of China’s industrial CO2 Temissions from Final Fuel use:An Empirical Analysis[J]. Energy Policy,2007,35: 5892-5900.
[15]刘红光,刘卫东. 中国工业燃烧能源导致碳排放的因素分解[J]. 地理科学进展,2009,28 (2):285-292.
篇7
实证研究方面,首先是我国碳排放的时间和空间关系研究。彭佳雯等[5]发现1998-1999年和2006-2008年间,我国经济增长与碳排放呈现扩张性负脱钩状态,2000-2005年期间为弱脱钩状态;此外,东部地区的脱钩现象较为显著,且有从分散到集聚的态势。魏下海和余玲铮[6]采用MoranⅠ指数作为空间依赖性检验标准,发现我国29个省市的人均碳排放存在较强的空间自相关。
其次是从产业角度研究碳减排。现有文献仅有通过三次产业划分来观察产业调整的碳减排效应[7-8],由于分类简单而导致内部排放效用相抵的情况,分析结果不甚理想。
第三是碳关税对我国出口贸易的影响。郑春芳和赵亚平[9]认为如果欧美等国实施碳关税会增加我国高碳行业产品的出口成本,促使我国制造业出口额下降,进而改变商品出口贸易结构与方式,并在一定程度上恶化我国出口环境。张茉楠[10]则认为碳关税的征收对我国外贸产业虽有以上威胁,但效应并不全是负面的,碳关税形成的强大倒逼机制可以促进我国产业结构升级,作为外部动力刺激我国完成节能减排目标。
最后是应对欧美碳关税的策略。韩景华和张智慧[11]提出推进低碳技术合作与发展,改变进出口商品结构以引导出口贸易升级。朱阿丽[12]提出在国际层面开展“环境外交”,国内层面建立“碳税”自我约束机制的策略方法。不难发现针对碳关税问题的经济学研究主要为规范经济分析,实证研究较少。由于缺少现实数据的深入剖析,提出的碳关税应对措施针对性与可行性较弱。
2我国产业实施碳减排的实证分析
将国内产业细分为九个部门,研究不同部门产业增长与碳排放间的联系,针对电力、交通、制造、采掘及商业为主的其他第三产业等五个减排重点部门,提出有针对性的减排策略。
2.1数据来源与分析方法
2.1.1 数据来源
魏一鸣等[13]学者利用Divisia分解法测算我国一次能源利用过程中CO2的排放量,将其运用于能源消耗相关碳排放研究,得到较好效果。因此本文在研究我国各产业碳排放量时沿用能耗测算方式,具体方法基于联合国政府间气候变化专门委员会(Intergovernmental Panel on Climate Change, IPCC)温室气体指导方针,如公式(1)。其中,Ct代表该行业t时期的碳排放总量,ECi,t代表t时期第i类能源的消费量,EFi代表能源i的碳排放系数,Oi代表能源i的碳氧化率。能源碳排放系数与碳氧化率采用任洁和陈东景[14]根据《2006年IPCC温室气体排放清单指南》与2003年国家发改委能源研究所各类能源碳排放系数的修正结果,见表1。
碳排放总量数据选取美国能源情报署统计的我国CO2排放总量实际数,美国相关碳排放数据也源自该处。为保持实证分析部分借鉴美国产业、贸易数据的对称性,中美两国碳排放总量均取1980-2010年度数据,共31对,由于我国2010年碳排放量数据缺失,本文以基于碳排放量对数序列为因变量、年份为自变量的三次幂拟合回归预测该值,方程形式选择基于我国30年碳排放量图型及环境库兹涅兹曲线启发,拟合优度为0.977 5,预测我国2010年度碳排放量为85.24亿t。
本文GDP数据采自EPS数据平台。为去除物价水平带来的影响,选取实际GDP作为解释变量。鉴于GDP平减指数比CPI具有更广泛的计算基础,本文以2005年市场价格作为基准的GDP平减指数,计算实际GDP。中国产业增加值数据采自《2011年中国统计年鉴》,分行业能源消耗量数据采自《2011年中国能源统计年鉴》。进出口额数据采自WTO官方网站,中美间货物进出口数据采自国别贸易报。基于比较方便并减小计算误差,未特殊说明本文所有价值单位以十亿美元计,重量单位以百万t计。
2.1.2Tapio脱钩理论
脱钩分析是一种衡量环境压力与经济发展之间均衡增长关系的分析方法,由脱钩弹性系数表示。Tapio[15]在其论文中将脱钩弹性分解为产业发展弹性与产业排放弹性两部分,并衡量了欧洲1970-2001年间经济发展与碳排放增长之间的关系。本文沿用Tapio的分析思路,将产业碳排放脱钩弹性计算公式划分为能耗碳排放弹性与产业能耗弹性两部分,公式如下:
式中,C代表碳排放,VA代表产业增加值,EC代表能源消耗,t代表时间期。e (C, VA)表示产业碳排放脱钩弹性,e(C, EC)表示能耗碳排放脱钩弹性,e (EC, VA)表示产业能耗脱钩弹性。根据弹性的大小及变量增长率的不同可将脱钩分为八种状态,不同状态代表行业增长与环境压力间不同的连带关系。此外,本文还将此种方法延伸用于我国对美货物出口增长与碳排放量间的脱钩关系,以期考量受关税影响出口方面的碳排放特性。
2.2各产业碳排放与增加值脱钩性研究
依据我国能源统计年鉴各类能源消耗量产业统计分类,兼顾各产业增加值及碳排放程度,将我国产业分为九个子类。其中第 一产业概括为一类,称为农业;第二产业中工业划分为三类,分别为采掘业,制造业与电力、
煤气及水生产和供应业,建筑业单独划分一类;第三产业划分四类,分别是交通运输、仓储和邮政业,批发、零售和住宿、餐饮业,生活消费行业及非属以上行业汇总的其他行业。2009年各产业碳排放与增加值脱钩性研究结果见表2。
以上脱钩分析分为三个层次:第一层次是碳排放与能源消耗的脱钩研究,理想的强脱钩状态出现于能源消耗增加但碳排放量减少,主要用于考量能源消耗结构;第二层次是能耗与增加值间的脱钩研究,理想的强脱钩状态出现于经济增长但能源消耗减少,主要用于考量经济增长的能耗技术;第三层次为碳排放与增加值的脱钩研究,理想强脱钩状态出现于经济增长的同时碳排放量下降,主要用于考量经济增长与碳排放间的连带关系。
从能源消耗结构看,采掘业与电力行业的能源使用结构最不理想,使用正向高碳排能源转移;农业、制造业与零售餐饮业能源消耗结构保持稳定,碳排放量随能源消耗同步上升;建筑行业、交通行业、生活消费品及其他第三产业碳排放量与能耗之间存在弱脱钩,说明以上产业碳排放增速不及能源消耗增速,能源消费结构正在改良。这里的零售餐饮业指批发、零售与住宿、餐饮业,由于篇幅限制简写为零售餐饮业。
从经济增长能耗技术研究来看,采掘业的分析结果最令人担忧,为强负脱钩,说明该产业萎缩同时能源消耗却在上升;交通行业的脱钩研究结果也不理想,虽然行业经济总量在上升,但能耗增速却显著高于经济增速,即行业能源利用技术水平在下降;农业、电力行业、建筑行业、零售餐饮业的能耗与增加值处于增长连结状态,即行业能源消耗随经济增长稳步上升;生活消费行业与其他第三产业能源与增加值处于弱脱钩,说明以上行业的能源利用效率正在改进。
综合碳排放与行业增加值总体脱钩情况发现,农业、制造业、建筑业、生活消费行业与其他第三产业等多数行业的碳排放水平均得到一定控制,处于弱脱钩状态;交通业与零售餐饮业碳排放量随经济增长稳步提升,能源消耗结构与利用效率没有明显改善;电力行业碳排放与增加值之间为扩张负脱钩,主要问题为能源消耗结构不合理;采掘业发展途径最不理想,无论能源消费结构还是能源利用效率均有待进一步提高。但总体来看,我国经济整体发展与碳排放量弱脱钩,即可以做到经济增长的同时碳排放总量的适当控制,但由于我国各行业尚未达到强脱钩状态,不能同时实现经济增长与碳排放降低的双重目标。
2.3各产业碳减排重要性分析
通过产业碳排放与增加值的脱钩可知我国各行业减排问题关键所在,但由于精力与经济增长外在目标的限制,我们不能够对所有产业等量齐观地采取措施,而会将减排力量用于主要产业之上。通过2009年产业碳排放总量比、经济增长贡献率与碳排放强度三个指标衡量九大产业的减排重要性(见表3)。
从表3可以看出,制造业与电力行业年碳排放量约占我国碳排放总量的85%。为了减排的同时不影响我国经济正常增速,减排重点产业选择还应兼顾各行业的经济增长贡献率,我国目前经济增长主要动力来自制造业与其他第三产业。碳排放强度衡量了碳排放增长与经济增长间的均衡关系,单位增加值碳排放最多的行业是电力行业与制造业。因此,从碳排放与经济增量两方面共同衡量,我国碳减排应主要关注制造业、电力行业与其他第三产业。
此外,由于美国碳关税是国内减排措施的递延,因此关税的征收也会倾向美国碳排放结构,对美国各产业碳排放量考量可以为我国有目的的减排提供标杆。美国能源情报署将碳排放总量分作六个部门统计,分别是生物质能源消费部门、商业部门、电力部门、工业部门、居住部门以及运输部门。表4为以月为单位的六大行业1973年1月-2011年10月碳排放量描述性统计表。
20世纪70年代初美国碳排放量最大的部门是工业部门,其次是居住部门,再次是电力部门与运输部门,构成美国碳排放总量的四大版块。经过40年的变迁,美国产业已逐渐从第二产业主导转向第三产业占有绝对优势,工业碳排放比重也伴随着工业占比逐年下降。截至2011年10月,碳排放量比重最大部门已被电力部门取代,其次是运输部门,排在第三位的才是从前碳排放主力工业部门,居住部门的碳排放量下降,已接近商业部门,而由于美国农业比重一直较小,碳排放量始终处于六大部门碳排放量排名末位。总体来看,只有工业部门的碳排放量在逐年减少,居住部门碳排放量波动性很大,每年末及下一年初都会出现周期性的碳排放量增加,电力部门与运输部门的碳排放量大幅度增加,生物质能源消费部门与商业部门碳排放量则小幅上扬。
从美国各产业中电力与运输部门是目前碳排放量最大的部门,可减排程度高,将会成为“碳关税”征收重点。此外,结合各行业碳排放与经济增长脱钩关系,采掘业、电力行业与交通运输业脱钩情况不理想,也应受到关注。加之各行业碳排放重要性分析结果,我国碳减排重点关注产业应为:电力行业、交通运输业、制造业、采掘业与商业为主的第三产业。
2.4重点产业碳减排的途径分析
2.4.1电力行业
电力行业经济增长贡献率虽小,但碳排放量极大,碳排放强度远高于其他产业。从碳排放与经济增长脱钩性来看,碳排放总量增速高于产业增加值增速,由于产业能耗弹性处于增长连结状态,但碳排放与能源消耗间呈现扩张负脱钩,所以电力行业碳排放量过高主要源自能源结构不合理。表5为我国与日本发电来源结构对比表。
我国电力主要来源于煤炭火力发电,供电总规模近90%;而日本电力主要来源于核能,煤、油、气、核四大电力来源也较为平均,共同支撑全国约94%的电力供应。目前世界范围来看电力生产来源主要分为四类:其中火力发电碳排放影响最为严重,且产生大量粉尘,资源消耗巨大,也是我国电力生产的主要来源;水力发电需淹没大量土地,受季节影响较深;风力发电主要产生噪声、视觉污染,发电量不稳定;核能发电的以上污染虽小,但安全性有待提高。从碳减排以及保护环境整体角度讲,更推崇风能及核能发电。日本核能发电比例约为中国核能发电比例的13倍,这部分电力鲜有CO2排出,代表着新能源发电的地热、风能以及可再生能源发电比例也远高于中国,说明电力能源开发方 面我国已落后。此外,即使同为火力发电,煤、油、气的发电过程CO2气体排放系数也各不相同,三种化石燃料煤的碳排放率最高,而我国的电力来源却又主要依靠于煤。
电力来源能耗结构不合理是我国电力行业碳排放负担的主要方面,但硕大火电产业背后,能耗技术徘徊不前更使该问题雪上加霜。以生产单位千瓦时电力煤耗衡量能源利用率,多余煤耗意味着多余的碳排放。直至2009年我国火电供电技术仍不及日本1990年水平,每提供1 kW·h电量消耗煤炭比日本多33 g,参考《2006年IPCC温室气体排放清单指南》的计算方法,我国2011年1-11月全国主营业务收入2 000万元以上火电企业发电34 612亿kW·h,进而推算2011年由于火电能耗技术原因我国多排放CO2约8 500万t。
因此,对于我国减排重点的电力行业来说,减排第一步、也是最为关键的一步是能耗结构调整,在此基础上兼顾能源使用效率提高。初期调整火电能源的使用构成,提倡天然气等能源,逐渐降低煤炭的使用比例;中期主要提高能源使用效率;长期应从火力发电转向风能、核能为主导的新能源发电体系,从根本上解决电力行业高碳排问题,提升产业的竞争力。
2.4.2交通运输业
现阶段我国交通运输业碳排放总量与经济贡献率并不占有主要地位,但随着经济发展、资源优化配置的需要,其重要性与日俱增,且美国现有碳排放量中交通运输业占有很大比例,势必会加强此类行业的监管。目前我国交通运输业发展环境并不乐观,主要问题出自能源利用效率方面,能源消耗与经济增长间呈现扩张负脱钩。我国与日本各种交通方式运输能耗对比,客运方面汽车运输单位能耗远高于日本;货运方面,汽车、铁路与水运均处于劣势,交通运输产业能耗提高还有很大空间。交通运输行业碳排放控制的关键在能耗效率的提高,重点在公路运输上。
2.4.3制造业
制造业在我国经济中占有举足轻重的地位,其碳排放量也是各行业中最多的。从目前发展趋势看,碳排放与制造业发展间已出现弱脱钩关系,即制造业碳排放增速没有产业增加值增速快。
以钢和水泥为例,中国钢与水泥单位可比能耗均大于日本,但差距正在逐步缩小,已从1990年的每t钢煤耗997 kg下降至2009年的679 kg,水泥也从日本单产煤耗的1.63倍下降至2008年的1.23倍。
2.4.4采掘业
无论从碳排放贡献率还是经济增长贡献率,采掘业均不是碳减排控制的重点,但它却是我国目前低碳经济发展进程中表现最堪忧的产业。采掘业不仅碳排放量与能源消耗间呈现扩张负脱钩,能源消耗与经济增长间甚至存在强负脱钩,使得该产业增加值下降,碳排放量却在上升。庆幸的是采掘业在我国产业中的比重正在逐年下降,但经济增长需要采掘业的健康发展做后盾,因此采掘业碳减排理应引起重视。
采掘业关系煤炭、石油等燃料能源的提供,关系钢铁、铝、铜等制造业的原料来源,其影响力延伸至经济行业各个方面,因此减排也需从我国整体减排视角着手。产业内部主要关注燃料能源开采、金属生产锻造以及含碳氢化合物的提取等温室气体重点排放行业的工作效率,充分利用煤矿中的甲烷气体;外部方面提高各行业资源使用效率以减少采掘需求,通过碳税、碳交易等途径促进低碳开采企业发展及高碳排企业转型。
2.4.5其他第三产业
被归为其他类第三产业的行业碳排放强度很小,却是我国经济增长的强动力。由于其产值较高且对GDP增长贡献较大,行业微小调整都可引起减排的规模效应。目前,以商业、技术服务产业为主的其他类第三产业碳排放总量仍很小,且碳排放总量与产业增加值间是弱脱钩关系,即相比而言,其他类第三产业经济增长带来较少的碳排放增量,因此针对该类产业,我们倡导做好承接其他产业(尤其为第二产业中采掘、制造等行业)转移的准备,通过产业间调整实现减排。
3开放条件下出口产业减排与抗关税能力
贸易出口产业作为行业重要组成部分,是此次“碳关税”征收的主要对象。
贸易减排应对“碳关税”的重点在货物贸易。目前具有全面碳关税征收计划的只有美国,因此本部分出口货物减排分析也以美国为例。选取2009年-2010年美国自中国进口货物增加值前十五类商品作为研究对象,覆盖我国出口美国货物总额的96.44%。
从美国进口我国主要产品产值及增长情况来看,倘若“碳关税”对我国出口美国贸易构成冲击,出口下降最大的仍应当是抗冲击性较小的金属制品、化工与运输设备等,而纺织、机电类产品的需求下降不会很大。我国制造、采矿业出口依存度较大,若商品碳排放密度很大将来“碳关税”征收会产生巨大影响,另一方面,我国出口商以中小规模企业为主,统一减排管制难度大。
2010年我国对美国货物出口贸易与碳排放脱钩性良好,这与金融危机使得2009年出口下降货物囤积有关。2010年出口的货物部分由2009年生产并排放污染,以至贸易额增长同时碳排放增长很小,为避免此类影响,本文选取2009-2010年间跨越贸易增长与下降的一个时期研究脱钩关系。皮革、箱包、鞋靴等轻工业制品贸易与碳排放强脱钩,机电、纺织以及各种设备贸易与碳排放量弱脱钩,说明以上行业出口增长时,国内相应产业碳排放总量增长不及出口快,是可以促进减排的对美贸易行业。玩具、金属制品、化工产品、纸业、木制品等行业出口与国内产业碳排放强负脱钩,塑料、橡胶制品出口贸易与国内产业碳排放扩张负脱钩,说明以上行业环境污染比贸易增速更快。尤其金属制品与化工产品,当美国实际开始增收“碳关税”时,由于相对价格升高,出口量会迅速递减,但国内碳排放水平却不会随之下降。我国应尽早提高这两个产业的出口抵御风险水平并降低其碳排放密度。从行业出口价值占对美国出口总价值比重以及抵御风险情况看,机电行业是我国产业中较为推崇的出口产业,其出口增长时行业碳排放量不与之同步上升,“碳关税”开征前应鼓励该出口行业的扩张。
4政策建议
4.1采用新能源,发展碳减排技术
新能源消耗过程多不排放碳,由新能源代替一次能源可大大降低碳排放浓度。支持减排技术与倡导新能源相辅相成,广义上说新能源也是减排技术的一部分。减排技术前期研发资金需求大、效率低,后期使用阶段效益才会凸显,技术发 展存在障碍,我国可通过创立碳基金并提供有导向性的碳减排投融资支持,或由国家集中力量开发减排新技术。此外,技术引进也是短时间提高减排技术的有效方法。
4.2重视重点产业减排
我国碳减排应重点关注电力行业、交通运输业、制造业、采掘业与其他类第三产业五类行业。电力行业减排重点在能源结构调整,初期主要进行火力发电燃料能源替代调整,中期提高发电技术、减少单位发电能耗,远景为新能源发电对火力发电的替换,实现发电零碳排。交通运输业减排重点在能耗技术,主要减排范围是公路运输,可引进国际领先节能减排环保技术。商业为主的其他类第三产业应保持良好低碳增长势头,做好采掘业、制造业等高碳产业转移承接工作。
4.3健全碳税与碳市场机制
健全碳税与碳市场机制,实现产业结构调整,可促使我国建立低碳、绿色产业结构,具体可通过增收碳税和健全碳排放权交易机制完成。应根据各行业的碳排放强度制定有导向的碳税水平,减排同时兼顾经济发展,对于碳排放较大却关系经济增长的产业施以适当高于减排技术改造成本的碳税,促进其技术革新及低碳转型;对于碳排放量巨大且具有可替代性的行业施以重税率,加快其产业转移;对于碳排放量较小的替代型产业以及新能源技术产业适当减免碳税,鼓励发展。此外,增收的碳税可以作为环境友好型企业的补贴,使低碳产业优势更加明显。碳排放交易机制方面,可由自愿性改为强制性,让高污染企业对外部成本负责,实现减排单位市场自由流动,促进资源优化配置,使清洁能源行业以及能效高、低排放企业可以通过排放权交易市场,激励企业自行减排。
4.4调整货物贸易结构
篇8
随着世界工业经济的发展、人口的剧增、人类欲望的无限上升和生产生活方式的无节制 ,世界气候面临着越来越严重的问题。尤其是由化石燃料过度消耗所导致的全球变暖,引起了世界范围的广泛关注。全球变暖严重危害了社会经济的发展,深刻触及到能源安全、生态安全、水资源安全和粮食安全,甚至威胁到人类的生存。这一现象亦引发了国际社会对现有经济发展模式的反思,在此背景下,“低碳经济”(lowcarbon economy)的概念应运而生,并越来越受到国际社会的重视。
“低碳经济”的概念最早由英国政府在2003年发表的《能源白皮书》中提出,题为“我们能 源的未来:创建低碳经济” 。《能源白皮书》指出,“低碳经济是通过更少的自然资源消 耗和更少的环境污染,获得更多的经济产出;低碳经济是创造更高的生活标准和更好的生活质量的途径和机会,也为发展、应用和输出先进技术创造了机会,同时也能创造新的商机和更多的就业机会。”
低碳经济发展模式提出后,各国纷纷相应。学术界围绕低碳经济的研究也不断地发展和丰富。国外学者对低碳经济的研究起步较早,研究成果也颇为丰富。总结国外现有的研究成果, 主要可以归纳为三个方面:一是低碳经济与经济增长,研究重点在碳排放的影响因素,碳排放与经济增长的关系及碳减排对行业发展的影响等;二是低碳经济实现的制度安排,研究主要集中对碳税(carbon tax)和碳交易(carbon trading)的讨论;三是不同国家发展低碳经济的进程。
1 低碳经济与经济增长
关注“低碳经济”的一个重要方面就是对碳排放量(carbon emission)的控制,碳排放量受到哪些因素的影响一直是学者们研究的一个热点。通过对现有文献的分析发现,碳排放量的影响因素不仅包括Kaya公式所揭示的人口、GDP和能源消耗[1],还包括国际贸易,两国的商品贸易为碳排放创造了一种转移机制。
1.1 人口规模、结构对碳排放量的影响
不言而喻,人口越多,碳排放量就越多。即便中国超过美国成为全球碳排放最多的国家,也不足为怪,因为中美人口相差4倍多。此外,人口结构对碳排放量也有影响。Salvador Enrique Puliafito, et al采用LotkaVolterra模型对人口、GDP、能源消耗与碳排放量的相互关系的探析,Michael Dalton, et al采用PET模型(PopulationEnvironmentTechnology model)的研究,均验证了上述结论。随着世界人口转型,人口老龄化现象逐渐凸显,发达国家将在2020年前后进入老龄化社会,人口老龄化因素会降低碳排放量,这一效果与技术变革的效果相当[2-3]。
1.2 GDP、能源消耗与碳排放量的因果关系
低碳经济不是贫困的经济,因此不能通过降低GDP实现碳减排。碳排放最主要的来源是能源的消耗,能源强度和碳强度是衡量能源消耗的两个重要指标。“能源强度”(Energy Intensity)是指单位GDP的能源用量。不同产业的能源强度不同,一般第二产业的能源强度最高,而第二产业中,重化工的能源强度又远高于一般制造业。能源强度还受到技术的影响,同一行业中技术水平低则能源强度高。因此降低能源强度,提高技术水平是减排的有效方向之一。而单位能源用量的碳排放量,则称为“碳强度”(Carbon Intensity)。能源种类不同,碳强度差异很大。化石能源中,煤的碳强度最高,石油次之,天然气较低。可再生能源中,生物质能有一定的碳强度,而水能、风能、太阳能、地热能、潮汐能等都是零碳能源。
尹希果等:国外低碳经济研究综述
中国人口•资源与环境 2010年 第9期学者也对GDP、能源消耗与碳排放量的关系进行了定量研究。Ramakrishnan Ramanathan采用DEA方法(Data Envelopment Analysis,数据包络分析法)同时分析了GDP、能源消耗、碳排放量之间的联系。他指出以往研究的缺陷是,只分别分析了GDP对碳排放量的影响或者能源消耗对碳排放量的影响,没有对三者的联系进行分析。在指标选取上,他以化石能源消耗释放的二氧化碳代表碳排放量,化石能源包括了石油、天然气和煤炭;以全球生产总值衡量经济增长;能源消耗中只选取了非化石能源消耗量,包括水利、核能和地热能,没有包括化石能源消耗量是为了避免与第一个指标的重复。在DEA分析效率指标构建中,将GDP和碳排放量作为产出,非化石能源消耗作为投入。结果显示效率指标在1980年时最高,接下来的7年急剧下降,随后呈现反复震荡下跌趋势,1996年开始回升。基于DEA分析的技术预测(technology forecasting)得到了碳排放量与能源消耗量的曲线图[4]。
Ugur Soytas, et al采用包含GDP、能源消耗、二氧化碳排放量、劳动力和固定资本总额等变量的VAR模型研究了美国能源消耗、GDP与碳排放量之间的因果关系。研究发现碳排放量的格兰杰成因不是GDP增长,而是能源消耗。并提出碳减排政策的制定应该从降低能源强度角度考虑,还应该增加如风能、太阳能等清洁能源的使用,提高可再生能源的利用率[5]。后来,Ugur Soytas, et al对土耳其的实证研究也得到类似的结论[6]。
XingPing Zhang, XiaoMei Cheng研究了中国能源消耗、碳排放量与经济增长之间的格兰杰因果关系及方向。他建立了一个包含GDP、能源消耗量、碳排放量、资本和城市人口指标的多元模型,以1960-2007年的实证结果显示,GDP对能源消耗量存在单向格兰杰成因,能源消耗量对碳排放量存在单向格兰杰成因,而碳排放量和能源消耗量都不是经济增长的格兰杰成因。这意味着,从长远来看,中国政府可以推行渐进的能源政策和碳减排政策,而不会妨碍经济增长[7]。
定量分析的结果表明,低碳经济是经济增长与化石能源消耗脱钩的经济。化石能源消耗是碳排放的主要来源,在低碳经济模式下,经济增长不依赖于化石能源的消耗。从长期来看, 经济增长与碳排放量也不存在因果关系,而能源消耗是碳排放量的重要影响因素。因此碳减排政策应关注能源消耗:通过技术改革、产业结构 升级,降低能源强度;增加清洁能源的使用和可再生能源的利用率,降低碳强度。
1.3 行业碳排放量存在差异
碳减排的重要措施是降低能源强度和碳强度,而由于行业差异以及不同行业使用能源的差异,不同行业的碳排放量相差很大。因此将行业分类,并研究其在低碳经济下的发展是一个不可忽视的问题。
T C Chang, S J Lin采用灰色关联分析(Grey Relation Analysis)测算了台湾34个行业产值与碳排放量的灰色关联系数、总能源使用量以及各种能源使用量与碳排 放量的灰色关联系数。研究结果显示,在分辨系数取0.5的情况下,从34个行业的平均情况来看,产值与碳排放量的灰色关联系数为0940,总能源使用与碳排放量的灰色关联系数为-0912,单个能源与碳排放量的灰色关联系数分别为电力0913、煤炭0.800、石油-0.79、天然气0.513。这些结果说明了台湾经济依赖于二氧化碳密集型的行业,电力能源在台湾经济发展中起着越来越重要的作用。分行业来看,根据产值与碳排量的灰色关联系数、能源使用与碳排量的灰色关联系数的正负及其大小关系,可以将行业分成两种不同的类型。其中,采矿业、有色金属、电力和发电业、公路运输业为“三低行业”,即能源强度低、碳强度低、碳排放系数低。而农林渔业、食品业、纺织业、皮革业、造纸业、石化原料业、橡胶业、化工产品业、金属制品业、运输设备业、燃气及水供应业、建筑业等11个行业为“三高行业”,它们的能源强度高、碳强度高、碳排放系数高,因此减排政策的制定应主要关注这些行业[8]。
此外,Marco Mazzarino采用比较静态方法(comparative static approach)和货币估值技术的研究发现运输业是OECD国家碳排放量最大的行业,约占到总碳排放量的三分之一[9]。R. Rehan, M. Nehdi(2005)认为水泥业也是温室气体排放的主要行业,并探讨了在清洁发展、联合履行、排放交易三种机制下水泥业的发展前景[10]。
1.4 碳排放量随国际贸易而转移
关于碳排量的影响因素,不仅有国内因素,如人口、GDP、行业等,同时国际贸易也是影响 碳排放量的一个重要因素。Paul B Stretesky , Michael J Lynch以1989-2003年世界169个国家的面板数据为样本,研究了各国人均碳排量与对美国出口量之间的关系。以人均二氧化碳排放量为因变量,各国对美国的出口量为自变量,人口密度、GDP和FDI为控制变量,采用固定效应模型的估计结果显示:人均碳排放量与出口有着显著的关系。细分产业后的分析结果显示在出口行业中,天然气、石油和煤炭、化工产品和再进口产品等四个行业对人均碳排放量的影响最大。这意味着,在控制了人口密度、GDP和FDI的情况下,一国对美国出口越多,人均碳排放量也越大,出口产品中天然气、石油和煤炭、化工产品和再进口产品所占的比重越大,人均碳排放量就越大[11]。
Yan Yunfeng, Yang Laike提出,国际贸易创造了一种转移机制,不仅使产品可以在世界各国之间自由流动,同时也使得碳排放可以自由转移。1997-2007年,中国碳排放量的10.03%-26.54%是由出口产品的生产所引致的,进口产品的碳排放量仅占到4.40%(19 97年)和9.05%。世界其他国家因转移机制减排的二氧化碳从1997年的150.18Mt增加到2007年的593Mt,而中国在1997-2007年间因生产出口产品而净增的二氧化碳达到4 894Mt。他们的研究为近年来中国碳排放量激增找到了一个新的解释视角,同时这些数据也印证了中国在国际贸易中处于世界工厂的地位。对这一领域的研究,正催生着像在国际贸易中征收碳关税这样的动议,有学者担忧这会引发新一轮的贸易保护主义[12]。
2 低碳经济实现的制度安排
低碳经济是在全球气候恶化的背景下提出的,是世界经济发展的新模式。为实现经济发展中的“低碳”,各国主要的制度安排有征收碳税和碳交易制度。前者是由政府通过税率来确定进行碳排放的活动要付出多少代价;后者是在《京都议定书》的规定下,通过碳排放权的交易实现全球范围内碳减排的目的。
2.1 碳税
碳税是指针对二氧化碳排放所征收的税,它通过对燃煤和石油下游的汽油、航空燃油、天然气等化石燃料产品,按其碳含量的比例征税,以实现减少化石燃料消耗和二氧化碳排放的目的。碳税最早由芬兰于1990年开征,此后,瑞典(1991年)、挪威(1991年)、荷兰(1992年)、丹麦(1992年)、斯洛文尼亚(1997年)、意大利(1999年)、德国(1999年)、英国(2001年)、法国(2001年)等国也相继开征。近年来,为履行《京都议定书》义务,一些国家如日本、加拿大、瑞士等国也纷纷开征碳税。
关于这些国家实施碳税的经验,Andrea Baranzini, et al在分析了各国能源产品的碳税税率后指出:各国的能源税(energy tax)税率差别相当大,从而碳税税率各不相同,这成为国际协调碳税的一个主要障碍;从理论上说,征收碳税的目的在于提供一种碳减排的激励机制,但在实践中存在其他目的,如基于财政(筹集资金)的目的,对需求弹性很小的产品征收很高的碳税;对于某些能源产品,如煤炭,有些国家的碳税税率相当低,有些国家还实行补贴,因而还不是真正意义上的碳税;要达到减少碳排放的目的,实施碳税的同时要对能源税进行改革[13]。
在此之后,日本的研究发现,能源税和碳税的使用能够使碳排放下降到预计目标水平,同时也使能源种类的使用发生了变化,即由煤到天然气[14]。对碳税征收先行国挪威的研究发现,1990-1999年挪威平均每单位GDP的碳排放降低了12个百分点,但碳税对碳减排的贡献只有2.3%,碳税的效果并不理想。原因在于挪威对不同的产业实行差 别税率,且不同类型燃料的碳含量与税额的比率也不相同[15]。Cheng F Lee, et al在 灰色理论(grew theory)和投入―产出理论(inputoutput theory)的基础上,运用模糊目标规划(fuzzy goal programming)方法构建模型,模拟了三种碳税方案下碳减排的力度和经济影响。预测碳税实施的影响有助于各国碳税方案的选择,也能更好的发挥碳税的效果[16]。
2.2 碳交易
碳交易是为促进全球温室气体减排,减少全球二氧化碳排放所采用的市场机制,即把二氧化碳排放权作为一种商品,从而形成了二氧化碳排放权的交易[17]。其兴起源于《京都议定书》所制定的三种减排机制:一是排放贸易机制(ET,Emission Trade),允许附件 一国家(主要是发达国家)之间相互转让它们的部分“容许的排放量”(“排放配额单位”);二是联合履行机制(JI,Joint Implementation),允许附件一国家从其在其他工业化国家的投资项目产生的减排量中获取减排信用,实际结果相当于工业化国家之间转让了同等量的“减排单位”;三是清洁发展机制(CDM,Clean Development Mechanism),允许附件一国家的投资者从其在发展中国家实施的、并有利于发展中国家可持续发展的减排项目中获取“经核证的减排量”。即允许附件一国家出资支持无减排义务的国家通过工业技术改造、造林等活动,降低温室气体的排放量并抵顶附件一国家的减排指标。
根据以上三种机制,碳交易可以分为两种形态:基于配额的交易和基于项目的交易。配额型交易指总量管制下所产生的排减单位的交易,主要是《京都议定书》规定的附件一国家之间超额排减量的交易,通常是现货交易。项目型交易指因进行减排项目所产生的减排单位的交易,如清洁发展机制下的“排放减量权证(CERs)”、联合履行机制下的“排放减量单位(ERUs)”,主要是通过国与国合作的排减计划产生的减排量交易,通常以期货方式预先买卖。自2005年《京都议定书》正式生效后,碳交易市场发展迅速。根据世界银行的数据,2008年碳交易市场成交总额为1 263.45亿美元;预计2012年成交总额将达到1 500亿美元,有望超过石油市场成为世界第一大市场。
清洁发展机制是《京都议定书》中唯一涉及到发展中国家的机制,并且《京都议定书》还承认了森林碳汇(carbon sink)对减缓气候变暖的贡献,并要求加强森林可持续经营和植被恢复及保护,允许发达国家通过向发展中国家提供资金和技术,开展造林、再造林碳汇项目,将项目产生的碳汇额度用于抵消其国内的减排指标[18]。这些规定的出现在发达国家和发展中国家之间开启了一个巨大的碳交易市场。CDM项目和碳汇CDM项目成为发展中国家的一个新的经济增长点。
3 低碳经济的国别研究
3.1 发达国家的低碳经济
英国作为第一次工业革命的先驱,正从自给自足的能源供应走向主要依靠进口的时代,按传统的消费模式,预计2020年英国80%的能源都必须进口。因此英国于2003年首次以政府文件的形式正式提出“低碳经济”概念,并积极推动世界范围的低碳经济。随后,Johnton D et.al(2005)探讨了英国大量减少住房二氧化碳排放的技术可行性,认为利用现有技术到本世纪中叶实现1990年基础上减排80%是可能的[19]。Treffers T, et al探讨了德国在2050年实现1990年基础上减少温室气体排放80%的可能性,认为通过相关政策措施,经济的强劲增长和温室气体排放减少的共同实现是可能的[20]。Koji Shimada , et al构建了一种描述城市尺度低碳经济长期发展情景的方法,并将此方法应用到日本滋贺地区[21]。
在实践中,低碳经济发展模式受到各国政府组织的广泛关注和青睐,向低碳经济转型成为世界经济发展的大趋势。英国把发展低碳经济置于国家战略高度,2008年颁布实施的“气候变化法案”使英国成为世界上第一个为温室气体减排目标立法的国家。按照该法律,到2050年英国要达到减排80%的目标。另外,政府大力促进商用技术的研发推广,以占领低碳产业的技术制高点。在低碳生活上,英国社会运用多种手段引导人们生活方式的转变。比如,要求所有新盖房屋在2016年达到零碳排放,新建房屋中至少有三分之一要体现碳足迹减少计划,不使用一次性塑料袋,等等。在洁净能源的开发上,英国发挥其海岛国家的自然优势,注重利用海洋资源,在发展海上风能、海藻能源等低碳能源方面居于全球领先水平。
同样是岛国的日本也在向低碳经济发展模式转变。日本内阁会议于2008年7月通过的“低碳社会行动计划”阐述了在未来三五年内将家用太阳能发电系统的成本减少一半等多项有关减排的措施,其重要内容都与开发新能源有关。根据日本内阁政府2008年9月的数字,在科学技术相关预算中,仅单独列项的环境能源技术的开发费用就达近100亿日元,其中创新性太阳能发电技术的预算为35亿日元。2009年4月,日本又公布了名为《绿色经济与社会变革》的政策草案,目的是通过实行减少温室气体排放等措施,强化日本的低碳经济。
为带动欧盟经济向高能效、低排放的方向转型,2007年3月欧盟委员会提出一揽子能源计划,承诺到2020年将可再生能源占能源消耗总量的比例提高到20%,将煤炭、石油、天然气等一次能源的消耗量减少20%,将生物燃料在交通能耗中所占的比例提高到10%。此外,2007年年底,欧盟委员会通过了欧盟能源技术战略计划,明确提出鼓励推广低碳能源技术,促进欧盟未来能源可持续利用机制的建立和发展。欧盟国家利用其在可再生能源和温室气体减排技术等方面的优势,积极推动应对气候变化和温室气体减排的国际合作,力图通过技术转让为欧盟企业进入发展中国家能源环保市场创造条件。
3.2 发展中国家的低碳经济
《京都议定书》是旨在限制发达国家二氧化碳排放的国际协议,发展中国家未被规定必须承担减排义务。但是随着发展中国家的工业化和城市化进程加速,其二氧化碳排放量也迅速增加。虽然历史排放量和人均排放量还相对较低,但是在后京都时展中国家尤其是中国的减排压力已经越来越大。在2009年的哥本哈根会议上,中国是否应该承担减排义务及能否获得资金支持成为会议争论的一个焦点。
发展中国家中尤其是中国,被指责为一个“搭便车者”,在降低碳排放、延缓气候变暖上毫无贡献。ZhongXiang Zhang(2000)通过分析中国1980-1997年间二氧化碳排量的历史演变,以及中间燃料转换、能源消耗、经济增长和人口规模增长对二氧化碳排量的影响,指出上述指责是没有根据的。实际上,中国在能源节约上采取了一系列的措施,1997年单位GDP能耗只有1980年的一半。如果没有这些努力,1997年的能耗总量将比实际排量多出50% [22-23]。Walter V Reid, José Goldemberg的研究也指出,发展中国家已经采取了有效措施遏制二氧化碳的排放。他指出中国从80年代开始实行能源价格改革,碳补贴从1984年的37%下降到1995年的29%,石油补贴从1990的55%下降到2%。另外,中国在提高能源利用率,开发可再生能源上也取得了一定的成效[24]。Paul B. Stretesky, Michael J. Lynch(2009)、YanYunfeng, Yang Laike(2010)的研究则指出两国之间的商品贸易为碳排放提供了一种转移路径。中国为美国的碳减排做出了很大的潜在贡献,因此美国等发达国家应该为中国等发展中国家提供切实有效的气候与环境友好型技术援助。
尽管中国的碳历史排放量和人均排放量相对较低,但是其排放总量的激增引起了世界各国的关注。中国的碳排放受到哪些因素的影响,为迈入低碳经济中国应如何改进措施,Hu Chuzhi, et al的研究比较具有代表性。他基于EKC模型,采用平均分配余量的分解方法,构建了中国碳排放的因素分解模型,定量分析了1990-2005年经济规模、产业结构和碳排放强度对碳排放的贡献,即规模效应、结构效应和技术效应。结果表明:①采用EKC曲线模拟结果显示,我国碳排放量呈现“N”型,并没有呈现严格的倒“U”型特征,这与规模效应具有一致性。说明我国经济增长并不会自发导致碳排放量的减少,经济增长也并不一定引发碳排放的增加,关键是我国的环境治理的机制、市场和政策不完善,若不施行合理有效的控制措施,未来在降低碳排放方面面临着许多风险。②我国的碳排放政策的缺失,节能减排政策实施滞后,这是导致我国碳排放持续上升的又一重要因素。③在规模效应、结构效应和技术效应中,只有结构效应的平均值为负,表明经济结构优化能降低碳排放,是减少碳排放的有效手段。④我国碳排放技术效应具有随意性,这说明技术在降低碳排放方面并未发挥优势,现行技术应用主要目的是提高劳动生产率,许多技术进步并非与提高环境质量有关,尽管技术进步非常快,但对降低碳排放的作用并不大。在此基础上,他提出了控制碳排放的政策性建议:建立和实施不同时间尺度上的环境调控政策;积极推进产业结构向节能型、高级化发展,并大力发展环保产业;推行削减碳排放的技术,提高能源利用效率;发展低碳能源和可再生能源,改善能源结构[25]。
Guo Ru, et al以上海为例,采用情景分析法(scenarios analysis)对上海2010-2020年的碳排放量进行了估计,并提出了一些碳减排建议。研究结论显示:①上海的主要能源消耗在过去的15年呈现不断上升的趋势。②上海的能源主要是用于生产,而第二产业的能源消耗占比最大。③上海2005年的碳排放量达到58.05 Mt Ceq,是1990年的两倍。④在“十一五”计划指导下,上海的碳减排量将分别达到17.26 Mt Ceq(2010年)和111.04 Mt Ceq(2020年)。作为中国的发达城市之一,上海在碳减排上要承担起更多的责任,基于以上分析上海可以通过以下措施实现低碳经济:①上海的碳排放主要来自于第二产业,因此提升产业结构是第一要务。发展能耗低且产品附加值高的行业,同时加快第三产业的发展。②优化能源结构和能源效率,结合地域优势开发使用清洁能源,如上海可以开发风能。③加强碳汇建设,树木、绿化带、湿地、农田是上海重要的碳汇。扩大城市树木和绿化带的范围,对崇明和南汇的湿地要加强保护[26]。
4 结 语
“低碳经济”概念的提出源于全球气候恶化的背景,从《京都议定书》到“巴厘岛路线图”,及至最近的哥本哈根会议,世界各国都在为解决气候问题而努力。围绕低碳经济,学者们从不同视角、运用不同方法、对不同区域(全球、国家、地区)进行了研究。
关于低碳经济与经济增长,目前比较一致的结论有:①影响碳排放量的因素有人口、能源消耗、技术水平等,国际间的商品贸易也可以导致碳排放的转移。②经济增长对碳排放量的影响是通过能源消耗来实现的,为实现低碳经济,应该增强能源强度及碳强度,逐渐由化石能源过度到清洁能源的使用。③不同行业的碳排放量有显著差异,一个国家或地区应该在总体层面上规划产业发展,提升产业结构。在研究方法上,灰色关联分析法、数据包络分析法以及对人口经济学中LotkaVolterra模型的应用等,值得国内研究者的借鉴。在实践中,实现低碳经济的制度安排主要有征收碳税和碳交易制度。发达国家是低碳经济发展模式的倡导者,在向低碳经济的转变进程中,推出了各种法案措施。低碳经济已成为一种国际潮流,也影响着发展中国家的经济社会发展进程。各国都致力于向低碳经济的转变,并从中寻找新的经济增长点。
参考文献(References)
[1]省略/anglais/documentationa/greenhouse/kayaequation.htm
[2]Salvador Enrique Puliafito, José Luis Puliafito, Mariana Conte Grand. Modeling population dynamics and economic growth as competing species: An application to CO2 global emissions[J]. Ecological Economics, 2008,(65): 602-615.
[3]Michael Dalton, Brian O'Neill, Alexia Prskawetz, Leiwen Jiang, John Pitkin. Population aging and future carbon emissions in the United States[J]. Energy Economics, 2008,(30): 642-675.
[4]Ramakrishnan Ramanathan. A multifactor efficiency perspective to the relationships among world GDP, energy consumption and carbon dioxide emissions[J]. Technological Forecasting & Social Change, 2006,(73): 483-494.
[5]Ugur Soytas, Ramazan Sari, Bradley T. Ewing. Energy consumption, income, and carbon emissions in the United States[J]. Ecological Economics, 2007,(62): 4 82-489.
[6]Ugur Soytas, Ramazan Sari. Energy consumption, economic growth, and carbon emissions: Challenges faced by an EU candidate member[J]. Ecological Economics, 2009,(68): 1667-1675.
[7]Zhang XingPing, Cheng XiaoMei. Energy consumption, carbon emissions, and economic growth in China[J]. Ecological Economics, 2009,(68): 2706-2712.
[8]T C Chang, S J Lin. Grey relation analysis of carbon dioxide emissions from industrial production and energy uses in Taiwan[J]. Journal of Environmental Management, 1999,(56): 247-257.
[9]Marco Mazzarino. The economics of the greenhouse effect: evaluating the climate change impact due to the transport sector in Italy[J]. Energy Policy, 2000,(28): 957-966.
[10]R Rehan, M Nehdi. Carbon dioxide emissions and climate change: policy implications for the cement industry[J]. Environmental Science & Policy, 2005,(8): 105-114.
[11]Paul B Stretesky, Michael J Lynch. A crossnational study of the a ssociation between per capita carbon dioxide emissions and exports to the United States[J]. Social Science Research, 2009,(38): 239-250.
[12]YanYunfeng, Yang Laike. China's foreign trade and climate change: A case study of CO2 emissions[J]. Energy Policy, 2010,(38): 350-356.
[13]Andrea Baranzini, José Goldemberg, Stefan Speck. A future for carbon taxes[J]. Ecological Economics, 2009,(32): 395-412.
[14]Toshihiko Nakata, Alan Lamont. Analysis of the impacts of carbon ta xes on energy systems in Japan[J]. Energy Policy, 2001,(29): 159-166.
[15]Annegrete Bruvoll, Bodil Merethe Larsen. Greenhouse gas emissions in Norway: do carbon taxes work?[J]. Energy Policy, 2004,(32):493-505.
[16]Cheng F Lee, Sue J Lin, Charles Lewis, Yih F. Chang. Effects of carbon taxes on different industries by fuzzy goal programming: A case study of the petrochemicalrelated industries, Taiwan[J]. Energy Policy, 2007,(35): 4051-4058.
[17]John A Mathews. How carbon credits could drive the emergence of renewable energies[J]. Energy Policy, 2008,(36): 3633- 3639.
[18]J Liski, T Karjalainen, A Pussinen, GJ Nabuurs, P Kauppi. Trees as carbon sinks and sources in the European Union[J]. Environmental Science & Policy, 2000,(3): 91-97.
[19]Johnston D, Lowe R, Bell M. An Exploration of the Technical Feasibility of Achieving Carbon Emission Reductions in Excess of 60% Within the UK Housing Stock by the Year 2050[J]. Energy Policy, 2005,(33): 1643-1659.
[20]Treffers T, Faaij APC, Sparkman J, Seebregts A. Exploring the Possibilities for Setting up Sustainable Energy Systems for the LongTerm: Two Visions for the Dutch Energy System in 2050[J]. Energy Policy, 2005,(33): 1723-1743.
[21]Koji Shimada, Yoshitaka Tanaka, Kei Gomi, Yuzuru Matsuoka. Developing a Longterm Local Society Design Methodology Towards a Lowcarbon Economy: An Application to Shiga Prefecture in Japan[J]. Energy Policy, 2007,(35): 4688-4703.
[22]Zhong Xiangzhang. Decoupling China's Carbon Emissions Increase from Econo mic Growth: An Economic Analysis and Policy Implications[J]. World Development, 2000,(28): 739-752.
[23]Zhong Xiangzhang. Can China afford to commit itself an emissions cap? Aneconomic and political analysis[J]. Energy Economics, 2000,(22): 587-614.
[24]Walter V Reid, José Goldemberg. Developing countries are combating climate change:Actions in developing countries that slow growth in carbon emissions[J]. Energy Policy, 1998,(26): 233-237.
[25]Hu Chuzhi, Huang Xianjin. Characteristics of Carbon Emission in Chi na and Analysis on Its Cause[J]. Chn Popu Res Envi, 2008, 18(3): 38-42.
[26]Guo Ru, Cao Xiaojing, Yang Xinyu, Li Yankuan, Jiang Dahe, Li Fengting. The strategy of energyrelated carbon emission reduction in Shanghai[J]. Energy Policy, 2010,(38): 633-638.
A Synthesis of Foreign Scholars' Research on Low Carbon Economy
YIN Xiguo HUO Ting
篇9
气候变化给企业的外部经营环境带来了变化,使得企业出现了新的经营风险。与气候有关的立法频繁的出台且提出的苛刻减排目标,尽管这些指标将如何落实到每个企业还有待完善,但企业面临的气候立法压力则与日俱增。此外,来自国际贸易政策中以碳关税、碳配额购买、碳准入、碳审计与信息披露为形式的障碍,势必会影响企业的国际竞争力。首先,来自供应链的碳减排压力变得更加广泛和深入。许多大企业由于受本国立法或者舆论的压力,开始采取严格的碳排放管理方案,与此同时对供应商也提出了要求。因此,越来越来的企业不得不面对供应链巨头的变革压力来调整经营战略。其次,来自气候变化问题的投资风险正在逐渐进入金融机构和企业的投资决策模型之中。传统行业中高碳产品在面对严格的气候立法时,其生存空间受到巨大挤压,而这也进一步影响到企业评级、融资等后续行为。再次,低碳环境下,消费者环保意识增强,越发关注碳足迹;产品碳足迹标签使得碳排放信息显性化,碳足迹成为消费者产品价值认知和效用函数的重要因素,对市场需求和市场份额产生较大的影响。需求端消费者效用函数的变化将成为供应链碳减排的引导和驱动因素之一。企业所面临的品牌风险并不只是与其碳排放密度有关,相当程度上取决于公众的消费习惯和认知能力。“低碳忠诚度”或许可以更好的描述消费者在选择产品和服务时的心理倾向。此外,在低碳经济下,企业的竞争力模型里,出现了一条虚拟的碳价值链。尽管它由企业的实际经营活动产生,却又与这些产品或服务的生产成本或利润分布情况明显不同,甚至完全脱节。一些创造最多利润的环节可能带来很少的碳排放,而利润较低的环节可能主导了大部分碳排放。同时,在不同环节降低排放的成本和效率也存在着差异。如果给碳定价,那么企业产品、服务的价值曲线将发生重大变化。在未来,经济转型的成本将被分配给每个行业与每个企业,而这种分配既不是平均主义,也不是完全基于公平的市场机制,很可能存在很多不合理的因素。这将给现有的企业经营环境带来一系列不确定性变化。因此,这就使得企业必须重新评估生存的风险和机遇,将外部影响内部化,迅速变革商业模式和管理方式,进行价值创新,重塑低碳竞争力。
(二)企业内部因素变化
1.低碳经济下企业的成本结构的变动低碳经济要求企业不断提高“碳生产率”(单位二氧化碳的GDP产出水平),也就是说生产相同数量的产品消耗更少的能源,从而大大降低企业的生产成本。在低碳经济发展战略下,政府实行相应的政策来限制企业排放温室气体。无论政府选择征收碳税还是碳排放指标交易,企业采用低碳的经济发展模式都会减少相应的碳排放指标成本和缴纳的碳税总额,从而降低企业的生产成本。但是,新技术的研发会加大企业的研发成本,同时,管理成本在低碳经济发展初始阶段,由于新的管理制度的不完善、低碳技术的不成熟都会导致管理成本上升,随着低碳技术运用的成熟度的日趋提高,企业管理成本也会随之降低。
2.低碳经济下企业的融资途径发生了变化政府为支持低碳经济的发展,在政策上对低碳行业或者低碳企业进行倾斜,使企业获得政府资金补贴、优惠的信贷政策。企业可以通过碳排放机制中的CDM项目来获得发达国际的资金支持,通过自愿减排市场的交易获得收益。
3.低碳经济下企业的资产范围发生了变化碳排放机制下,碳作为一种新型商品引入市场,碳交易把原本一直游离在资产负债表外的气候因素纳入了企业的资产负债表,改变企业的收支结构,使得企业在传统的盈亏模式下,多了一种影响现金流和利润的因素。因此,在对企业经营状况进行评判的时候,需要考虑这一新的资产形式——碳资产。
二、低碳经济下企业盈利模式创新探索
(一)打造低碳产业链的盈利模式
产业链产生于上下游产业之间的联系,上游企业向下游企业输送产品或服务,最终形成一个功能完善、服务健全的产品或服务支撑链。在传统产业链下,产生高价值的环节或者产业很可能是碳排放量最低的,产生低价值的环节或者产业很可能是碳排放最高的,而在低碳环境下,加入碳排放因素的产业链,其价值分布将发生很大的变化。要打造一整条低碳产业链,首先要改变产业价值链的分布。传统产业价值链的分布一直是向资源型企业倾斜,而我国大多资源型企业都是碳排放量极高的,因此,从低碳产业价值链的角度来讲,就必须改变资源型企业的生产状况,大力发展高新技术产业,向掌握低碳核心技术的环节和链条倾斜,走低碳产业链与产业结构的发展模式。低碳经济下的新兴产业革命本身即意味着对现有产业制度进行创新,其核心在于从纵向的高碳产业结构和横向的高碳产业链条两个角度来改善现有高碳排放量下产业制度。
1.改变产业链条中高碳产业高碳产业低碳化首先是缩短能源、化工、建材、钢铁、汽车、交通等高碳产业所引申出来的产业链条,把这些产业的上、下游产业链“低碳化”,通过低碳技术的引入和改造,使之成为探索低碳经济发展的重点领域。例如,在跟物流密切相关的交通运输领域,应加速淘汰高耗能的老旧汽车,加快发展柴油车、大吨位车和专业车,推广厢式货车,发展集装箱等专业运输车辆,控制高耗油汽车的发展;加快发展电气化铁路,开发高效电力机车,推广节电措施,发展机车向客车供电技术,推广使用客车电源,逐步减少和取消柴油发电车;采用节油机型,提高载运率、客座率和运输周转能力,提高燃油效率、降低油耗。
2.发展低碳产业调整高碳产业结构,逐步降低高碳产业,推进产业和产品向利润曲线两端延伸:即向前端延伸,从生态设计入手形成自主知识产权;向后端延伸,形成品牌与销售网络,提高核心竞争力,最终使国民经济的产业结构逐步趋向低碳经济的标准。在限排的情况下,必须调整能源的利用结构,发展清洁能源。例如:太阳能、风能、生物质能等。
(二)引入碳管理的盈利模式
1.在碳盘查的基础上实行碳减排碳盘查是以企业或集团为单位,计算该单位在生产活动中各环节直接或间接排放的温室气体的总量,将其编制成一份温室气体排放清单,并进行温室气体管理体系(ISO14064)的认证。碳减排解决方案是在碳盘查的基础上,根据ISO14064编制企业温室气体排放清单报告,为实现减少企业温室气体排放,实施碳管理并优化企业碳管理体系而制定的包括碳减排目标、碳测量、碳减排措施等内容的方案。低碳经济下,制定碳减排解决方案,首先,有利于企业对其排放的温室气体进行全面掌握与管理,并获得准确而完整的企业碳排放清单和温室气体管理体系(ISO14064)认证;其次,明确的碳减排目标和清晰的节能碳减排机会,不仅为发掘潜在的节能碳减排项目提供可能,而且为企业降低能耗,节约成本,提高运营效率提供支持;再次,有利于提升企业碳的管理和社会形象,以及应对气候变化带来的风险的能力,减少相关方风险,最后,有利于应对国家以及地区相关法规政策的能力,履行社会责任,与国际标准接轨,转换传统经济增长模式,发掘参与国际和国内的碳排放交易的机会,实现低碳经济下的可持续发展。
2.通过碳足迹的测量来获得碳标签的使用权,使企业获得更多的市场份额。产品或者服务的碳足迹是指某个商品生产或服务的生命周期内的总温室气体排放量。对于一件产品来说,从生产该产品的原料收集开始,到产品制作、运输、使用,一直到产品最终废弃或者回收,所有碳足迹评价过程都包括在其生命周期之内。碳足迹的评估分为三个阶段,首先,在启动阶段需要设定目标,选择碳足迹测量的对象产品,并让供应商参与,根据产品的生命周期从供应链上考虑总的温室气体排放量。其次,在产品碳足迹计算阶段,通过绘制碳足迹项目过程图,确定优先顺序,对边界进行界定,然后对范围内的数据进行收集,最后根据PAS2050(ISO14067)计算产品碳足迹,编制碳足迹数据报告,对其中不确定性的环节、数据进行最终确定。最后,在后续阶段要审定和核查结果,根据碳足迹报告实行减排措施,评估减排效果。通报碳足迹,获得碳足迹标签的使用权,公布减排量。开发碳足迹,对企业来说,使产品获得准确的产品生命周期内的碳排放信息,获得潜在的节能减排机会和产品碳排放基准线,为企业确定减排目标和途径提供依据,同时,应对日益严格的国际标准要求,满足消费者对产品碳信息披露与使用低碳产品的要求,提高品牌和企业知名度,获得国内外客户认可,提高产品在同行业内的竞争力。
(三)开发碳资产的盈利模式
碳规制下,包括二氧化碳在内的温室气体的排放行为都要受到限制,这就使得碳排放权和碳排放额(信用)开始稀缺,《联合国气候框架公约》的100个成员国及《京都议定书》签署国在《京都议定书》规定的责任前提下,使其成为一种有价产品,被称为碳资产。从现实来看,发达国家的能源利用效率高,能源结构优化,新的能源技术被大量采用,因此在发达国家进一步减排的成本极高,难度也较大。而在发展中国家,能源利用效率低下,缺乏对新技术的研发和新能源的开发,如果能源运用发达国家先进的技术和新能源技术,那相对于发达国家来说减排空间很大,成本也低。这导致了同一减排单位在不同国家之间存在着不同的成本,形成了高价差。《京都议定书》中的CDM机制,使得这种交易成为可能,发达国家和发展中国家可以通过项目合作的形式,由发达国家帮助发展中国家减排,而减排额可以通过交易的形式进行买卖,那么国际碳交易市场由此产生。碳交易市场虽然尚未扩展到全球范围,但这个市场创造出了一种新型的虚拟商品。这种新型商品的引入,使得企业在传统的盈亏模式下,多了一种影响现金流和利润的因素。评判企业经营状况的标准发生了变化,这两个标准之间本质上并不是完全重叠的,如果这一新的资产形式(碳资产)写入财务报表,那么意味着虚拟经济将不可阻挡地进入到企业微观层面,并直接影响到企业的经营成果。
1.通过清洁发展机制(CDM)项目来开发企业的碳资产《京都议定书》所签订的三种碳减排机中唯有CDM机制是包括发达国家(买方)和发展中国家(卖方)的机制。在该机制下,发达国家的政府和企业可以到发展中国家购买由温室气体减排项目产生的核证减排量(CER)以抵消其在《京都议定书》框架下的减排义务,发展中国家的政府和企业从中获得资金与技术的支持。对中国的制造业而言,通过CDM项目,可以减少项目投融资的障碍与风险,从发达国家获得资金和技术支持,增加项目经济吸引力,项目签发成功后,每年将获得直接经济收益。
2.自愿减排项目(VER)自愿减排(VER)是随着《京都议定书》强制型市场的发展而伴随形成的碳市场。在自愿型市场中,任何组织或个人为了抵偿自己排放的各种形式的温室气体,自愿交易碳信用额。自愿减排市场为那些前期成本过高、或其它原因而无法进入CDM开发的碳减排项目提供了途径。VER由不同的机构和不同的标准在执行,在自愿减排市场,只要能找到买家购买即可交易,省掉很多中间申请的环节,节省时间。而且,项目开发期间无需任何资金投入;可以从项目减排量交易中直接获得收益。公司或者个人通过自愿购买能够减少温室气体排放的自愿减排量以减少碳足迹,由此产生的收益可以帮助减少投资运营成本、引入更加清洁高效的技术、减少对环境的影响,从而提高企业形象、提升品牌竞争力,为企业参与国内碳交易市场作准备。
3.通过中国自愿减排项目(CCER)根据《温室气体自愿减排交易管理暂行办法》,参与自愿减排的减排量需经国家主管部门在国家自愿减排交易登记簿进行登记备案,经备案的减排量称为“核证自愿减排量(CCER)”。自愿减排项目减排量经备案后,在国家登记簿登记并在经备案的交易机构内交易。国内外机构、企业、团体和个人均可参与温室气体自愿减排量交易。可申请备案的自愿减排项目有:
(1)2005年2月16日后开工建设;
(2)采用经国家主管部门备案的方法学开发的自愿减排项目;
(3)获得国家发展改革委批准作为清洁发展机制项目,但未在联合国CDM机制执行理事会注册的项目;
(4)获得国家发改委批准作为CDM机制的项目并在联合国CDM机制执行理事会注册前就已经产生减排量的项目;
(5)在联合国CDM机制执行理事会注册但减排量未获得EB签发的项目。
篇10
本专著共七章。第一章是全书的导论和前提,先分析当前气候变化的严峻形势和消费碳减排的重要性、紧迫性,在此基础上提出本书的研究对象和核心概念。第二章、第三章分别从计量分析和理论探索视角分析全书的两个基本概念:消费碳排放和外部干预政策。第二章先对消费碳排放进行总体测算,再考察消费碳排放的结构特征和区域差异,以便为进一步分析消费碳减排的外部干预政策奠定基础。第三章先对行为干预的相关理论进行回顾,其次对外部干预政策的内涵和分类维度进行分析,接着分别探讨信息干预政策和结构干预政策对消费碳减排的影响作用,最后探索社会文化情境对消费碳减排的影响作用。第四章、第五章、第六章从三个维度对外部干预政策(包括信息传播政策和经济激励政策)的影响效应进行实验研究,这是本书的重点和核心。其中,第四章以购买购置环节的消费碳减排为例进行实验分析,第五章以使用消费环节的消费碳减排为例进行实验分析,第六章以生活垃圾的回收处理为例进行实验分析。第七章是全书的结论和建议,提出推进消费碳减排的外部干预政策的基本框架和主要思路,最后总结研究的不足之处,并对未来进一步研究领域进行展望。
本专著的科学意义和应用前景至少体现在如下三个方面。(1)为研究外部干预政策对消费碳减排的影响效应提供了第一手基础实验数据,并设计政策效应评估的基础性分析框架和指标体系;(2)为政府相关部门(发改委、环保局、宣传部门、教育部门、街道办等)评估消费碳减排干预政策的有效性提供了理论支持和经验借鉴;(3)为政府相关部门设计和有效实施干预政策以转变消费行为模式提出了针对性的政策建议(包括基本构架、制度设计和主要思路等)。
本专著主要采用现场实验和统计分析技术。(1)本专著进行了三次现场实验。第一次实验招募400个被试者作为对象(分为四个实验组),主要检验绿色信息政策对产品购买中消费碳减排行为的影响。第二次实验招募1316个被试者作为对象(分为四个实验组),主要检验绿色信息政策对产品使用中消费碳减排行为的影响。第三次实验招募1231个被试者作为对象(分为两个实验组),主要检验经济激励政策对产品回收中消费碳减排行为的影响。(2)对大样本实验数据,采用单因素方差分析和多因素方差分析进行统计检验,以客观测度干预政策、文化情境对消费碳减排的主效应、交互效应和调节效应。运用组间设计的实验设计检验特定干预政策的影响效应,运用2×2组间因子设计检验不同干预政策间的交互效应,运用2×2组间因子设计检验社会文化情境对政策干预效应的调节效应。
本专著的创新点主要表现在三方面。(1)从理论上探索了外部干预政策对消费碳减排的影响机理,为干预政策的理论研究提供新的视角、模型、路径和方法。(2)通过大样本政策实验,为测度干预政策的影响效应和文化情境的调节效应提供了第一手实验数据。(3)提出了消费碳减排的两维度三阶段干预政策构架,为政府制定有效干预政策提供了可操作的指导。
本专著提出了若干创新性理论观点。(1)消费碳排放的基础研究应成为中国理论界重视的一个重要议题,它对于中国进行国际商务和气候问题谈判具有积极的实践指导意义。(2)加强对消费者消费模式的干A和引导,促进消费者降低直接和间接能源消费,实现消费碳减排是中国当前重要的现实课题。(3)中国区域间消费碳排放的分布在一定程度上形成“经济发达地区消费,经济欠发达地区承担”的格局。(4)消费碳减排行为的外部干预政策分为两大类:前置政策和后继政策,或者分为信息政策(心理政策)和结构政策两类。(5)在购买购置环节,理性诉求比感性诉求的传播效果更好,利己诉求比利他诉求的传播效果更好。(6)在购买购置环节,宜优先采用理性信息诉求和利己信息诉求向消费者进行绿色信息传播。(7)在使用消费环节,大尺度信息诉求相对小尺度信息诉求更能促进消费者对信息传播形成积极的态度,也更能促进消费者的节能型使用行为。(8)在使用消费环节,宜优先采用大尺度信息诉求向消费者进行绿色信息传播,同时结合利己信息诉求,这样传播效果更好。(9)在回收处理环节,垃圾按量收费政策的实际效应一般不会因为收费标准的高低而产生明显差异。(10)在回收处理环节,垃圾按量收费可以在部分城市(或城区、社区)先试行,特别是针对以年轻人、低学历者、高垃圾问题感知者为主的社区。(11)必须针对各微观主体设计针对性、独特性、具体化、精细化的外部干预政策。(12)消费碳减排的制度设计包括正式制度和非正式制度两大类。(13)绿色信息传播者要特别关注移动互联网时代的新特征,改变绿色信息传播的格局、逻辑和模式。这些理论观点散发着学术的清香,闪烁着智慧的光芒,体现着学者的力量。
本专著得到了国家自然科学基金青年项目“外部干预政策对公众消费碳减排的影响效应和作用机理”(71203192)和浙江省自然科学基金项目“诉求内容、诉求方式对能源节约行为影响的实验研究――主效应、交互效应和调节效应检验(Y15G030053)”和浙江财经大学杰出中青年教师资助计划”(B类)的资助。我认为,本专著试图从消费视角践行“绿水青山就是金山银山”的政策理念,选题有重大理论和实践价值,结构逻辑严谨、数据分析规范,是消费碳减排实验研究领域的一本基础性、创新性、前沿性著作,对消费碳减排政策的理论发展和实践应用具有重大价值。希望王建明博士在消费碳减排领域进一步加强原创性研究,为促进消费碳减排作出更大贡献。
注释:
篇11
一、引言
从1896年Arrhenius首次发现大气中的CO2对地球温度的影响开始,气候变化问题逐渐演变成为全球性的生态危机,也成为全球经济发展的难题。斯特恩(Stern)报告[1]中指出经济发展继续依赖能源消耗、“照常营业”的做法不可取,在气候变化问题上尽早采取有力行动的收益要大于成本。若各国能够做出有力而周详的政策选择,如碳定价、发展低碳技术,就有可能实现所需的“去碳”规模来实现气候安全,并保持经济增长。自20世纪90年代国际气候谈判以来,从《联合国气候变化框架公约》到《京都议定书》,从后京都时期“巴厘岛路线图”到哥本哈根谈判协议,经历无数冲突与磨合,各国都在逐渐形成经济发展与全球减排的统一认识,多国经济经历了不同程度的低碳化。在环境压力和政治博弈中,全球经济向低碳化绿色经济方向转型。
尽管我国对碳税、碳交易、碳金融等的研究起步较晚,但随着我国经济发展模式的转型,我国也在积极探索促进经济低碳发展的理论与实践。低碳经济机制的研究也日益受到重视。本文就碳税、碳交易和碳金融等促进经济社会绿色发展的低碳工具的国内外实践及研究进行归纳与述评,并对下一步研究进行展望。
二、碳税
(一)碳税的引入与内涵
碳税的引入基于庇古税(Pigovian Tax)概念。由于大气层属于公有资源,具备竞争性和非排他性特征,极容易被滥用破坏,产生负外部性。庇古(Pigou)[2]在其著作《福利经济学》中首次提出庇古税概念,他认为自然环境存在市场缺失和价格缺失,这种不完全信息带来外部性效果,政府可以通过对产生负外部性的活动征税和对正外部性的物品给予补贴把外部性内在化,即对边际私人纯产值大于边际社会纯产值的部门课税,使其产品价格提高,产销量降低;对边际私人纯产值小于边际社会纯产值的部门实行补贴,减少边际私人纯产值与边际社会纯产值之间的差距,进而增加社会福利。Baumo和Oates[3]认为,信息的缺乏导致导致边际社会成本难以测量,无法确定最优税收水平,庇古税存在实用性限制。他们运用一般均衡分析方法,从环境政策、污染控制、污染税与统一排污成本等方面进行研究,提出了“标准定价法”,依据一个可接受性强的标准定量收税,达成环保目标。随着“污染者付费原则”理念的深入,Burrows提出了逐步控制法,即在信息不充分情况下,政府为达到环境效益最优可以逐步、连续地对庇古税税率调高或调低进行调整,最终找到最优税率。
碳税的内涵和外延在实践中不断丰富和发展。Hoeller和Wallin[4]认为给碳定价是对投资减碳新技术的激励,碳税是碳定价的一种形式。苏明等人[5]认为碳税与中国现有能源税在对化石燃料的征税上存在一定的重合,且都具有对CO2的减排功用,但碳税与能源税的最大区别在于碳税的征税对象、计税依据等方面都是专门针对碳排量设计的。崔军[6]提出碳税是以减少CO2排放为目的,对化石燃料按照其碳含量或碳排放量征收的一种税。碳税与能源税、硫税、氮税、污水税等税种共同构成了环保税体系。
(二)碳税实践
碳税在诸多排放税中居首要地位,是世界上许多国家应对气候变化的重要政策工具。
以芬兰、丹麦为代表的北欧国家从1990年开始逐次推行碳税,到了20世纪末,基本上构建起较为完备的碳税制度。丹麦碳税由能源消费税演化而来,从1992 年开始,丹麦正式对家庭和企业一并开征碳税,税基较广,包括了除汽油、天然气和生物燃料以外的所有CO2排放,税率并非基于碳排放的边际成本,而是结合了政治和经济方面的考虑。在征收碳税的同时,丹麦实行税收返还和循环机制,将税收的一部分用于补贴工业企业的节能项目,同时工业企业还能通过税收返还和减免来减轻实际税负。挪威对石油、天然气、煤、焦炭、商用柴油等都征收碳税,涉及航空、汽车多个领域,拥有品种繁多的碳税及相关税种,但对面临国际竞争的空运、海运和渔业予以豁免。瑞典碳税税率一直处在较高水平并逐步调高家庭碳税税率,同时降低劳动收入税率。不同于严苛的家庭碳税,瑞典对本国企业尤其是能源密集型产业,如采矿、造纸、电力等行业给予税收减免。
北欧国家碳税实践的特点:一是征收的碳税多从固有的环境税种过渡而来,在征税对象、税率等方面进行了相应调整;二是税基广泛,尽可能扩大碳税的覆盖面;三是对不同行业特别是对高耗能行业和出口依赖型行业实施差别税率和补贴政策,以保护本国产业的核心竞争力。
以美国、德国、加拿大为代表的欧美发达国家碳税起步较晚,在OECD组织的带动下相继开征碳税。碳税在美国并未全面征收,仅在个别地区进行试点。由于美国93%的煤炭用于电力生产,科罗拉多州的博尔德市2007年对除风力发电以外的电力这一中间排放源征收碳税,税率按电费比例征收并逐步上调。碳税收入一般用于提高建筑能源效率以及清洁能源开发等方面。德国能源结构与中国类似,富煤少气,为引导能源消费结构转型,德国设计了复杂的碳税体系,对不同种类和用途的燃料设定不同的税率,制造业、农林渔牧业只需支付税率的20%,其税收循环偏向工业。自2004年德国进行了新一轮碳税改革,税收优惠逐步减小。2008年加拿大不列颠哥伦比亚省开始在能源最终消费环节征税开征碳税,征税对象几乎涵盖所有化石燃料,不同燃料税率有所差别,且逐步提高。当地的家庭住户是主要纳税义务人,缴纳的碳税税收的一部分用于抵消家庭或企业的其他税负如劳动收入税。
欧美发达国家碳税实践的特点:一是量体裁衣,根据本国实际设计税制。各国碳税税率大都采用固定税率,同时根据能源的不同类别实行差别税率。二是逐步推行、循序渐进,构建动态调整机制。在初期为顺利推行碳税,多数国家设计较低碳税税率和配套的优惠政策,在顺利引导家庭和企业改变能源消费选择后逐步提高税率,减少乃至取消某些暂时性补偿。
近年来为履行京都议定书义务,以中国、南非、印度等为代表的发展中国家政府和学者正在积极探索碳税制度构建之路。苏明等人提出中国碳税可以对生产环节中因消耗化石燃料产生的CO2估算排放量作为计税依据,采用从量计征的定额税率形式。碳税在起步的时候定价可放低,对受碳税影响较大的能源密集型行业建立合理的税收减免与返还机制,对低收入群体进行减免优惠,在条件成熟时期渐进提高税率。南非政府拟从2015年1月起开征碳税,并对汽车行业碳税的标准进行调整。为减缓碳税给企业带来的冲击,南非政府还将企业碳排放量前60%的部分免税,同时对出口行业、碳排放强度大的行业给予额外补贴。印度是发展中国家开展碳税的积极探索者,自2010年7月首先在全国范围内对生产和进口的煤炭征收碳税。
发展中国家碳税实践的特点:一是审慎对待,充分考虑国内和国际的政治、经济条件,联系本国减排形势,结合与化石燃料相关的税制改革进程,在前提条件成熟后,选择适时开征碳税。二是在碳税要素、实施路径、调整机制选择上参考国际碳税经验,并结合本国实际进行创新探索。三是注重建立激励机制,对开展节能项目的企业实施税收减免与返还,对低收入群体给予税收补贴,实现税收中性,避免产生消费扭曲。
(三)碳税效应评价
碳税影响广泛而深刻,涉及生态环境、政治经济等诸多方面。国内外学者分析征收碳税的效果,主要对CO2减排效果、国家经济发展、产业竞争力、收入分配效应等进行了研究。
Jorgenson和Wilcoxen[7]认为,相比于能源税,碳税更具成本效益比,也满足全球减排的成本最小化条件,当碳税等于CO2减排的边际成本,就会由碳价因素引发节能行为及对燃料消费的重新选择。不考虑消费者行为变化,Labandeira和Labeaga[8]利用IO(Input-output Model)微型模型,研究碳税在西班牙的环境效应,发现在西班牙财政收入大幅增加的情况下,碳税在减少碳排放方面的影响是温和有效的。Bruvoll和Larsen[9]使用1990-1999年数据,运用Divisia指数分解法和一般均衡模拟方法,指出挪威碳税覆盖大约60%的能源消耗产生的CO2排放,可减少挪威2.3%的CO2排放量。Floros和Vlachou[10]利用希腊1982年至1998年期间时间序列数据,研究碳税对该国制造业和煤炭、石油等能源行业CO2排放量的影响,发现餐饮业、纺织业、冶金业最容易受碳税影响,减少碳排放,开征碳税可以减缓气候变暖的速度。
中国气候变化国别研究组采用一种可计算的一般均衡ERI-SGM模型,结合我国实际试算了两种碳税税率方案,分别为100元/吨碳和200元/吨碳。其结果显示:征收碳税可显著地降低能源消费的增长,改善能源的消费结构,并能有效削减温室气体的排放。魏涛远和格罗姆斯洛德[11]利用CNAGE(China General Equilibrium Model)模型定量分析了对每吨碳排放量征收5美元及10美元碳税对中国短期、长期经济和CO2排放的影响,研究表明,征收碳税将使中国经济在短期内承受损失,但碳排放量将有所下降,长期来看碳税的负面影响将小得多。
Pearce[12]在对碳税的研究中提出双重红利(Double Dividend)理论,所谓双重红利是指若导致税收扭曲的税种能被环境税所替代,将产生双重红利,一能通过纠正市场负外部性,改善生态环境得到绿色红利;二能通过减少税制扭曲,提高效率,进而带来社会福利形成蓝色红利。Feldstein进一步指出碳税不仅通过减少污染物排放达成环境红利,而且还额外具有减少整体经济的成本,提高政府收入的红利。Meng等人[13]根据澳大利亚数据的模拟结果,提出碳税可以有效削减排放,但会造成经济温和收缩。由于GNP中包括本国企业在外国的产值(不受本国碳税约束),不包括外国企业在本国的产值,因而较GDP受碳税影响更小。若碳价格信号机制畅通,碳税补偿计划不会对减排造成重大影响,同时会大大减轻碳税对经济的负面影响。
王金南等人[14]采用国家发改委能源研究所自主开发的我国能源政策综合评价模型――能源经济模型,根据中国目前的CDM价格及外国碳税税率,模拟了三种功能不同碳税方案对中国国民经济、能源节约和 CO2排放量的影响,结果表明即使忽略中国减少进口、增加新兴产业投资等利好因素,三种方案对中国GDP的影响也不会超过0.5%,近期在中国征收碳税是一种可行的选择。同时随着税率的提升,碳税对能源消费的影响愈加显著。当2030年碳税价格为200元/吨碳时,与基准情形相比节能率可达20%,节能效益也将近3%。
Karki等人的[15]分析表明,用非化石燃料替代化石燃料(如核能和可再生能源)可完成全球二分之一的碳减排目标,碳定价政策如碳税更能促进这种替代带来减排效应。征收化石燃料碳排放税,可以提高化石燃料发电价格,减少客户对此方面的能源需求,同时提高可再生能源发电量,这被称为碳税的“收入效应”和 “替代效应”。两种效应叠加影响一国能源产业的格局,风能、生物能等产业有可能占据主导地位。Baker和Shittu[16]研究了企业在不确定的碳税的情景下为实现利润最大化的研究与发展(Research & Development,R&D)投入选择。面对两个不同的研发项目:实现降低低碳能源技术成本研发和现有技术的减排研发,他们发现最优的R&D并不单纯因碳税的征收而递增,一般而言,企业面临碳税压力时对传统能源技术的研发会经历先升后降的过程,那些灵活的企业在面对不确定的碳税税率时会选择研发能源替代技术,实现能源转型。
Zhang和Baranzini[17]认为相对于劳动力成本、国际汇率变动等宏观因素而言,碳税对一国企业的竞争力影响比通常认知要更为微弱。碳税在增加了无碳和低碳产业的竞争力、保护环境的同时,可增加国民收入。税收循环政策比退税和免税措施对贸易和能源密集型产业的成本效益比要高,且更具减排效应。考虑到未来碳税可能以较高的利率征收,其所产生的经济影响如对收入分配、社会福利等的影响可能比当前更加尖锐。
事实上早在1994年,Symons等人就从不同角度探讨了碳税对不同收入阶层的影响,其分析结果显示,碳税具有累退性,碳税导致家用能源、交通、食品价格上涨,相对高收入家庭而言,低收入家庭对家用能源的支出占收入比重更大,会承受更多的负面影响。Metcalf等人也发现碳税的税率增长实际影响着社会福利成本,但其累退性在短期一般均衡中被高估了,碳税的福利损失每年减小0.5%。进一步研究中,Metcalf和Weisbach[18]指出应在碳税征收中考虑通过调整所得税等税收制度改革来平滑碳税的再分配效应。
(四)简要述评
国内外学者多从庇古税角度研究碳税,并提出初步的碳税设计方案。欧美国家相继开征碳税对碳税的效应研究逐渐增多,研究者大多通过构建CGE等相关理论模型,利用数值模拟和情景分析等方法,分析碳税的总体效应和不同的碳税方案产生的效应。碳税效应可分为直接和间接两个方面,直接效应是指征收碳税通过碳定价对能源消耗、CO2排放和气候环境造成的影响,间接效应是指碳税虽不对末端收入征税,但间接对经济发展、产业格局、福利分配等方面造成影响。在对碳税效应的研究中学者们的观点可分为两类:一种观点认为,碳税减排效果明显,对经济、企业竞争力、社会福利等的负面影响小,甚至还能通过税收返还制度使低收入者受益;另一种观点认为,碳税减排的激励效果并不理想,反而会导致化石能源和电力价格上涨,显著拉低国民的生活水平,碳税的累退效应甚至会扩大收入差距,削弱国民的动力。由于存在国家和地区差异,加之可用数据缺乏,各项碳税效应研究结果有所不同,但碳税的负面影响说明对碳税税制进行反思和动态调整是非常必要的。
三、碳交易
(一)碳交易的引入与内涵
碳排放权交易的理念可追溯到污染权交易。排污权交易源于科斯(Coase)定理,科斯[19]最早指出外部性产生的根源在于模糊的产权,只要明确界定产权(在交易成本为零的条件下),就可以最小的成本解决外部性问题。Dales[20]首次提出排污权交易的概念,并指出排污权交易应包括两方面内容:实行排污许可证制度及准许排污许可证转让、买卖制度。Montgomery[21]证明了基于市场机制的排污权交易均衡是存在的,排污权交易体是一种兼具成本优势和公平性的环保手段。Manne和Richel[22]进一步阐释了交易对排放权体系的必要性,认为无论初始排放权如何分配,不同区域的排放权价值很有可能存在偏差,限制交易会导致比较优势的扭曲。Stavins[23]认为排放权交易制度应考虑八方面因素:总量控制目标、分配机制、排污许可、市场运行、市场定义、监督与实施、分配和政治性问题、与现行法律和制度的整合。
1992年,政府间气候变化专业委员会(IPCC)通过谈判,达成了《联合国气候变化框架公约》(UNFCCC,简称《公约》)。1997年12月《公约》的第一个附加协议《京都议定书》正式通过,提出将市场机制作为减排以CO2为代表的温室气体的新路径,将CO2排放权作为一项商品进行交易。《京都议定书》同时建立了三种灵活交易机制,即国际排放交易机制(International Emission Trading,IET)、联合履约机制(Joint Implementation,JI)以及清洁发展机制(Clean Development Mechanism,CDM)。IET机制规定具有减排义务的特定缔约方可以转让碳排放权配额(Assigned Amount Unit,AAU),并形成相应的基于配额的碳金融市场;JI机制允许特定缔约方之间通过投资节能减排项目获取减排单位(Emission Reduction Unit,ERU),相当于在工业国家间转化减排单位;CDM 则允许特定缔约方用在发展中国家推行减排项目获得的经核证的减排量(Certified Emission Reductions,CER)来抵减其减排指标,同时也为发展中国家实现可持续发展,参与国际碳金融市场提供了机遇。
(二)碳交易实践
排放权交易机制可以三种模式建立:限额交易模式、基准线信用模式和混合模式。按照交易的原生产品(CO2排放权)的来源,可分为基于配额的市场(Allowance-based Market)和基于项目的市场(Project-based Market)。配额市场在碳交易市场中占据主导地位,其交易原理为限额交易制度(Cap & Trade),由管理者指定总的排放配额,并在参与者间进行分配,参与者根据自身的需求来进行排放配额的买卖。《京都议定书》中的国际排放交易IET机制、欧盟排放交易体系(European Union Emission Trading Scheme,EU ETS)及一些自愿交易机制均属此类市场。项目市场的交易原理为基准线交易(Baseline & Trade),这类交易主要涉及具体项目的开发,低于基准排放水平的项目或碳吸收项目在经过认证后可获得减排单位。项目市场主要分为JI市场和CDM市场。本文以碳交易市场中的典型代表EU ETS、CDM和芝加哥气候交易所(Chicago Climate Exchange,CCX)自愿减排机制为例进行介绍。
EU ETS属于强制性的配额市场,涵盖整个欧盟层面的区域排放交易体系,它以限额交易为基础,以CO2为管制气体,以能源活动、黑色金属生产与处理、采矿等为管制对象,覆盖电力、热力、钢铁、航空等高排放行业。基于总量控制原则,欧盟评估各成员国的减排目标并分配给各国CO2可排放量(在EU ETS初期配额都是以祖父式分配无偿取得,自2013年起逐渐变为拍卖)。根据历史排放、预期排放等因素,这些配额又被分配到各国的排放企业。经第三方认证机构核准,在区域内CO2排放总量低于允许排放量的条件下,区域内各排放源之间可通过排放配额交易方式调剂余裕排放量。同时欧盟许可其成员国使用JI和CDM项目带来的核证减排量折抵其CO2排放量,形成核证减排交易。
CDM属于项目市场的重要组成部分,是发达国家与发展中国家各自发挥比较优势的双赢选择,核心是发达国家企业实体经发展中国家批准利用资金和技术优势在东道国实施减排项目换取CERs。CDM可分为两级市场:一级市场基本由发展中国家提供,由于风险较大,CERs价格偏低;二级市场囊括了远期合约签订而CERs尚未生成时的交易,市场效率较高,交易额度较大。CDM项目涉及能源工业、化学工业、交通、采矿等十三大项,一方面通过垃圾填埋等清洁技术减少温室气体的排放,另一方面通过改善土地运用和造林等方式增加对大气中温室气体的吸收。项目流程包括论证、设计、审批、注册、实施、核查核证等多个环节,项目设计是其中关键。目前中国是全球 CDM 项目市场的重要参与者,占据签发的 CERs 的半壁江山。
CCX自愿减排市场是全球笫一个运用法律约束力和市场机制来进行温室气体减排的国际性平台。该交易所开展的减排交易项目涉及电力、能源、制造等行业产生的CO2、CH4、N2O、HFCs、PFCs和SF6等六种温室气体,提供温室气体排放配额、经核证的排放补偿量和经核证的先期行动补偿量三种基本产品。目前CCX有四百多个会员实体,会员分别来自航空、汽车、电力等数不同的行业,可分为两类:一类是必须遵守其承诺的减排目标的企业、城和其它减排单位,其义务是在事先设立的减排目标基础上每年减少1%,四年减排4%,若没有完成目标就需向其他会员购买排放许可证,或通过投资减排项目产生的抵扣性碳信用额抵减原来的减排量;另一类则是该交易所的参与者,通过将减排项目集成打包出售、直接出售碳排放权等方式参与交易。
(三)碳交易制度研究
CO2排放权是一种稀缺资源,其初始分配的公平性和有效性是碳交易顺利推行的基础。排放权初始分配主要有两种形式:免费分配和公开拍卖。免费分配包括依据排放企业的历史排放标准获取一定比例排放权的祖父制分配及依据企业当前产量和单位产量获得排放权的分配。由于排放权具有同质多物品属性,公开拍卖多采用标准密封投标方式,包括单价拍卖、首价拍卖和维克里拍卖三类。此外拍卖还可以采用增价拍卖,该拍卖方式具有较好的价格发现机制。多数研究者更倾向于公开拍卖。Goulder等人[24]、Fullerton和Metcalf[25]等运用一般均衡模型分析认为非拍卖的配额方式带来的成本大于其他分配方式,若进行拍卖分配并将所得用来削减排放税带来的税收扭曲,则会带来祖父制分配二倍的成本效益。拍卖可以提高企业革新技术的积极性,减少政治摩擦。同时拍卖方式保障了新进入的企业与原有企业在取得排放权配额方面平等一致。Venmans[26]认为免费分配带来的意外收益将使财富由消费者向企业转移,降低了收入分配的公平性。不过也有学者如Vesterdal和Svendsen[27]认为祖父制分配更适应当前不完备的市场现状。
碳价格是影响碳交易市场的主要力量之一,关于碳价格的研究集中在价格驱动因素等方面。Christiansen等人[28]提出政府政策、技术指标、市场基本面乃至气候等因素都在一定程度上影响了排放权价格,宏观经济状况则决定了市场的均衡价格。Mansanet-Bataller等人[29]运用多元分析法研究了电价和天然气价格与碳价格的关系,发现二者互为因果,极端气候也对排放权价格具有一定影响。Hintermann[30]证实,极端寒冷气候与碳价格存在非线性相关。Chevallier[31]通过EGARCH模型分析,指出企业年度减排的违规情况以及后京都议定书时代国际协议不确定性的增加,可以解释碳价格的不稳定波动。Nazifi[32]通过对EUAs和CERs的动态价格变化的参数分析指出交易限制、监管变化和CERs的不确定性是影响排放权价格的重要因素。在对EU ETS碳价格的研究中,Benz和Hengelbrock[33]依据EU ETS 中排放权价格动态机制指出存贷机制和交易的时间间隔对价格也具有影响。Bredin和Muckley[34]使用静态和递归的Johansen多变量协整近似比率检验,发现在EU ETS的第二阶段产生了新的排放权定价机制,并由市场基本面要素推动价格走向成熟。
在碳交易系统设计方面,一些学者认为热点(hot spots)是限制排放权进行空间覆盖的主要原因,如果不考虑时间热点(temporal hot spots)的风险,一个具有成本效益的排放权交易体系应具备时间柔性,即排放权可以储存和借用。Vesterdal和Svendsen在对于欧洲温室气体排污权交易进行分析,发现管理者在计划初始期间应避免覆盖太多行业,以尽量减轻对经济的负面影响和减少反对者。Perdan和Azapagic[35]认为在克服技术和非技术障碍后,应在政治支持和经济稳定条件下逐步在地域、时间和覆盖行业等范畴扩大排放交易。
各国在实施减排计划的同时,也面临着碳交易所带来的行业管制、经济安全、法律等多方面的风险,以CDM机制为例,Dutschke等人[36]认为CDM项目存在基准线评估风险、商业风险、经营风险、自然灾害等风险,马建平和庄贵阳[37]指出CDM 项目开发过程中可能发生审批失利、审定退回、注册失败、报告偏差和协议违约等五大风险事件和宏观经济不确定性风险,给业主造成经济损失或减少其减排收益,业主须通过关注宏观政策动态、科学确定基准线、加强环境治理等方式规避风险。
(四)碳交易效应评价
有关碳交易效应的研究集中在CO2减排效果、经济发展、行业格局等方面。Babiker等人运用CGE模型和EPPA模型分析认为,国际碳排放交易机制可能导致贸易国的福利损失。通过对印度经济学家Bhagwati提出的贫困化增长国家案例进行分析,他们发现贸易条件恶化和扭曲性税收的交互作用抵消了一国在碳排放交易因低减排成本获得的收益。Silva和Zhu[38]认为由于富裕国家的排放许可证价格更高,国际贸易将导致污染产业由富国转移到较贫穷的国家。同时没有参与《京都议定书》的国家会因排放更多的国际污染和更低的本地污染而获得双重收益。但也有众多学者发出反对声音,Stankeviciute等[39]通过研究欧洲部分部门的边际减排成本曲线,比较不同国家和地区在2010和2020年两种不同的碳交易市场结构下ET EUS的有效性后认为,在短期内超过50%的CO2减排量都是在欧盟排放交易体系中的行业部门尤其是电力部门中实现的。
Bode[40]认为在免费分配机机制中,因引入碳交易导致电价上涨,电力部门从此获益最多。Bunn的研究也证实得出碳排放权确实可以影响天然气或电力的价格。Lee等[41]指出在石化部门,上游行业从碳排放交易中赚取利润,而下游行业因未能实现其减排目标不得不购买额外的排放权。Gulbrandsen和Stenqvist[42]的研究发现,EU ETS通过影响电力价格对纸浆和造纸业产生冲击,造纸业在CO2减排技术的研发和应用方面进行大量投入。Tuerk等人[43]提出具有碳中性特征、零减排成本的生物能源将来会成为碳交易计划的重中之重,对农业和林业部门的政策偏移可以有效引导对碳价格反应敏感的企业发展生物能源。
(五)碳交易与碳税的比较研究
碳税属于价格调节型市场化工具,碳排放权交易制度是数量控制型市场化工具,关于二者的比较研究一直是学界热点。早期受庇古和科斯启发,人们认为只要边际排放成本与碳价格相等即可达到减排作用,碳排放权交易与碳税实质上是等效的。但Weitzman发现,由于政策制定者在决定税率或确定排放许可数量的不确定性,排污边际成本曲线的斜率与边际效率曲线斜率不同,导致两种工具不再等效。Newell和Pizer[44]修改了Weitzman模型并将其应用到环境问题上,发现价格工具比数量工具更加灵活,税收政策所产生的的社会净福利更高。Goldblatt[45]认为考虑到福利冲击、政策的长期稳定性等因素,碳税比碳交易更适合中等收入的发展中国家。但是由于碳税的减排效果确定性较差和政治阻力,碳税并不比碳交易更受国际社会欢迎,《京都议定书》最终选择碳排放权交易制度作为全球减排的主要机制。
也有学者探讨碳税与碳交易综合运用成为复合工具或双轨机制的可能性。McKibbin和Wilcoxen[46]提出混合利用碳税和碳交易政策具有单一措施不具备的优点:可以避免碳税的再分配问题、提供内在的监督与实施机制,还可以获得真实边际减排成本的信息。Tamura和Kimura[47]也提倡碳税与碳交易的结合,他们认为对于日本等工业能耗已经极具效率的国家,仅靠碳税难以实现减排目标,加入排放权交易后,碳税对企业利润的不良影响将减少50%,并且通过贸易的增加获取更多利益。
(六)简要评述
碳交易的研究初期集中在制度设计上,如交易模式、排放总量确定、初始额度分配、交易监管等。在ET EUS、CDM等机制付诸实践后,学者对上述机制的效应评价、制度改进等方面的研究越来越多,对电力、石化、造纸等行业予以特别关注。普遍认为碳交易带来的影响是复杂的,碳交易制度对节能减排有明显作用,但对行业格局、国家福利与发展却有利有弊。多位学者对价格的驱动因素进行了分析,但由于碳交易实践期间短、碳价格数据缺乏,现有的实证研究无法给出碳价格形成机制的有力证明。随着碳交易在各国实践的深化,英国、澳大利亚相继走上碳税与碳交易综合运作的探索之路。在下一步研究中,碳交易与碳税的结合、碳交易的国际流动与协调、交易风险的识别与规避、交易创新机制等都是探讨的新方向。
四、碳金融
(一)碳金融的引入与内涵
从演进进程看,碳金融是环境金融的一个重要分支。Sandor首次提出环境金融定义后,Salazar[48]对环境金融进行了较为深入的研究,认为环境金融是金融业为服务环境产业的新需求而进行的升级和创新,存在体系差异的金融业和环境产业通过环境金融衔接起来,实现保护环境的功用。Cowan[49]认为环境金融解决的是社会推行的环保事项的资金融通问题,并不涉及干预社会决策。金融业在促进资金融通的同时也能从发展环境产业中受益。此外他探讨了实现环境金融的途径,如发展环保基金、小规模排污权交易、债务掉期合约等。Labatt和White[50]将环境金融分为两部分,一是可持续发展与金融绩效的关系,二是环境金融中银行和金融服务的实现。在此基础上他们定义了环境金融产品,认为它是所有为实现保护环境,规避环境风险而开发的、市场化运作的金融产品。
《京都议定书》签订后,三种碳交易市场机制的出现使得温室气体排放权由免费的公共资源变成具有交换价值的私有物品,具备金融资产属性,极大推动碳交易市场与碳金融的形成和发展。世界银行在的研究报告中指出,碳金融为购买产生(或估计产生)温室气体减排量的项目所提供的资源,其定义应为碳减排项目投融资。我国学者王遥[51]也给出碳金融的解释,认为碳金融是应对气候变化的金融解决方案,包含市场、机构、产品和服务等因素,是实现可持续发展、减缓和适应气候变化、灾害管理三重目标的低成本途径。碳金融市场可理解为狭义和广义两个层次:狭义碳金融市场仅指由国际上温室气体排放权指标及其衍生产品的标准化市场;广义碳金融市场还包括与碳交易市场发展紧密相关的CDM投融资市场及节能减排项目融资市场等,本文所指的碳金融市场为广义概念的市场。
(二)碳金融实践
经济低碳化的重点在于节能减排和发展可再生资源,碳金融的功用正在于减排项目的投融资和金融工具的创造。目前碳金融市场集中在欧盟碳排放交易体系和北美碳减排交易体系,本文主要从碳金融市场的参与者与产品角度观察碳金融市场实践。
衍生品交易占到碳金融市场70%以上,欧洲气候交易所(ECX)以EUAs和CERs为基础产品,在2005年4月首次引进EUAs期货合约交易,目前发展相对成熟,引进了具有标准格式、明确规范的碳金融交易合同。纽约―泛欧证券交易集团BlueNext环境交易所现已成为全球规模最大的碳信用额现货交易市场,交易产品有CERs与EUAs的现货和期货。目前全球主要的期货和期权产品为限定于欧盟排放交易体系下的ECX金融合约、EUAs期货及期权、CERs期货及期权。纽约商业交易所(NYMEX)旗下的绿色交易所(Green Exchange)和芝加哥气候期货交易所(CCFE)都是碳金融衍生品交易的活跃平台。
银行业是碳金融市场的主要参与者,绿色信贷是其较早参与的碳金融项目,依据“赤道原则”商业银行在进行贷款投放时,审慎评估贷款方项目的环境破坏风险,有选择性地对可再生资源和清洁燃料项目予以倾斜。荷兰银行、巴克莱银行、花旗银行、兴业银行等银行已经开展了包括低碳项目融资、商业建筑贷款、绿色汽车贷款等多门类的绿色信贷工作。此外,在碳金融市场上商业银行提供的产品和服务还包括:投资参股低碳企业;对CDM等碳项目应收账款融资,并促成排放权交易;为低碳项目交易双方提供咨询、担保、融资租赁、信用增级等中间服务;提供CERs二级市场交易平台,增强碳交易的流动性;推出气候信用卡等个人“碳中和”业务;开发各种与碳交易价格、气候指数挂钩的金融产品,为碳排放权买家提供有效的风险管理工具,为投资者提供新的投资渠道。
为了推进国际碳交易活动,一些国际金融组织实施了专项集合投资计划,设立碳基金。低碳投资的载体一般可分为三类:项目机构、政府购买计划和碳基金,一般而言以上三类都可算作碳基金。按投资主体的不同,碳基金可以分为由国际组织或政府设立管理的公共基金(如英国碳基金、亚太碳基金),由政府、投资银行和企业联合设立实行企业化管理的混合基金(如日本碳基金、德国碳基金)和企业为投资获利而出资设立管理的私人基金(如瑞银绿色投资基金、德银气候保护基金)。目前世界银行管理着12个碳基金以及相关机构,主要有碳原型基金、生物碳基金等特别基金和意大利碳基金、欧洲碳基金等国别基金,特别基金主要功能在于培育京都机制下碳市场的形成和发展,国别基金的主要功能在于购买Jl或者CDM项目的温室气体减排额度,帮助相关工业化国家完成减排目标。
碳金融发展需要金融服务业全方位支持。从碳排放权的产生到最终进入二级市场,过程中资金需求大,未来收益不确定,瑞士再保险创造了具备或有上线的减排交易远期保险产品,美国保险公司已经推出了碳排放信用保险、碳交易保险产品,为碳交易双方提供保障。近年来还出现巨灾债券和天气衍生金融产品规避天气变化对企业运营和销售等造成的不利影响。
(三)碳金融市场研究
碳金融产品价格是吸引和激励投资者与企业关注气候变化,投资碳减排的重要机制。在现货与期货价格的相关性研究中,Wagner和Uhrig-Homburg[52]认为碳期货是合适的风险对冲工具,期货与现货的价格差别在于持有成本,即期货价格是现货价格加上应计利息,风险中性定价理论可运用于碳期货估值。在现货价格与期货价格的关系研究上,Rittler[53]分析EUA现货与期货的短期动态价格和长期价格,发现价格波动传递结构被扩大至高频水平,期货价格最先反映市场信号,后影响现货价格,具有价格发现功能。Arouri 等人[54]也通过VAR模型和STR-EGARCH模型对第二期EUA碳现货和期货价格间的关系进行研究,发现二者的收益和波动性是不对称和非线性的,非线性模型可作为预测EUA价格的有效手段。
碳金融交易是否能够有效运行,市场是否有效,核心在于碳金融产品价格在信息可获得条件下是否有效。Benz和Hengelbrock利用向量误差修正模型对EUA期货市场的ECX和Nord Pool交易平台2005-2007年数据进行分析,发现随着交易强度增加,即使是交易成本较高,流动性较差的期货市场也有助于价格发现。Daskalakis和Markellos[55]对欧盟碳排放交易体系的三个主要交易市场Powernext、Nord Pool和ECX的碳金融资产现货价格和期货价格建模分析,发现现货价格具有跳跃性与非平稳性的特征,碳金融市场是弱势有效的,主要原因在于欧盟碳交易体系尚未成熟,以及政府对短期投资和碳配额融资的限制。
在市场风险方面,Blyth等人[56]采用随机模型分析,发现气候政策不仅对碳金融产品预期价格有直接影响,也强影响碳市场的风险特征。市场设计影响市场风险,同时也影响投资行为。政府在制定碳金融市场规则,预期投资者对价格信号反应程度时应综合考虑风险因素,同样,企业在制定投资和交易时也要区分驱动因素和风险因素。Fankhauser和Hepburn[57]从允许碳排放额度的跨期储藏和跨期借贷等方面对碳金融交易市场进行多角度设计,以此达到碳排放权交易市场具有灵活性和碳排放权价格波动能够具有可预测性。
创新是碳金融不断发展的动力,Fankhauser和Hepburn基于当前碳市场灵活性最大化和成本最小化要求的挑战,从碳排放额度的跨期储藏和跨期借贷等方面进行多角度创新设计。在创新和完善碳市场的研究中,Knox-Hayes[58]提出发达国家碳市场已相对成熟,碳交易可通过现代虚拟的平台实现,但仍需要一个真实的社会连通和人际网络,对于建立未来新型市场,出于社会协调互补和降低沉没成本的考量,可以在现有市场基础上发展伦敦和纽约市场并加强这些金融中心的重要性。
(四)碳金融效应评价
由于具有交易迅捷、流动性高、风控成熟等优势,碳金融衍生品市场在吸引市场参与者、防范碳交易风险方面发挥重要作用。Benz和Klar认为衍生品的价格发现功能可以使投资者对碳交易产品价格做出更合理的估计,制定更加有效的交易策略与风险管理决策。碳金融衍生产品的出现和发展无疑成为碳市场更好发挥资源配置作用的重要推动力量。
相较于传统模式,Haigler[59]认为碳金融通过对温室气体排放权定价的方式提供了更加环保、健康、经济高效的减排机制,可以极大促进发展中国家的清洁能源技术发展。Hogarth[60]对乌拉圭太阳能计划低碳信贷项目的研究得出结论贷款改变当地居民的能源结构,显著降低太阳能使用家庭的系统成本。
杜莉等人[61]还从理论和实证角度分析碳金融的溢出效应,认为碳金融体系的不断拓展,推动减排成本收益的转化,推进能源链转型的资金融通,促进低碳产业发展技术的国际传导,同时转移和管理气候风险,对低碳产业发展发挥重要的助推效能。Kozlecka等人[62]对国际碳基金的研究也从侧面证实国际碳市场的发展和欧盟交易体系的存在提高了投资者特别是欧洲投资者对碳交易的积极性。
(五)简要述评
碳金融已成为低碳研究中一个十分引人注目的新领域。国外研究少见“碳金融”字眼,多以碳市场代替,且研究多基于微观层面(如碳金融产品设计和定价、市场效率、政策设计等),重点关注EU ETS平台和CDM机制,对金融业、工业、农业等各个行业,欧盟、北美、发展中国家均有涉及。由于碳金融仅处在试点阶段,缺乏实践经验,国内研究集中于宏观领域(如市场发展步骤、交易制度选择等),重点研究CDM机制,多为定性分析,定量研究相对缺乏。国内外研究者对碳金融的影响、市场效率等问题有较一致的认识,认为碳金融促成了更规范、安全的碳交易平台,但在微观层面如碳衍生产品定价模式、风险监管等方面莫衷一是。当前的理论研究还难以适应多元发展的碳金融实践,迅速发展的碳金融市场需要加丰富的、前瞻性的理论研究来支撑。
五、主要结论及研究展望
低碳经济实践及低碳研究已经持续数十年,基于上述实践扫描和文献述评可以发现,国内外学者均对以上三种低碳经济工具从不同角度进行了分析和探讨,特别是国外学者对各种工具的优劣、工具和产品定价、制度设计、影响效应等方面已经进行了兼具深度和广度的研究。但囿于实践历史短、数据匮乏、视野狭窄、创新缺乏等原因,各项研究尚未形成一个系统的理论体系,仍存有较多缺陷。为实现低碳实践良性发展,低碳经济理论还有广阔的发展空间。
碳税研究应构建逻辑明晰的因果模型,分析碳税决策者和纳税主体所期望达到的目标、面临的约束及可能的选择,进而对碳税的影响进行科学评价。由于碳税具有累退性,如何在征税同时实现公平是个难题,碳税的设计应着重考量税率上限设定、动态调整、税收返还等方面实现税收中性。单纯依靠征税减排不可避免存在局限性,下一步还应探讨各种减排工具之间的交叉效应及混合工具的设计,以实现最佳成本效益。
碳交易研究中碳排放权配给是起点,随着碳交易市场成熟,分配制度改革是必然趋势,需要更加科学的模型和数据进行理论支持。近年来对碳价格的研究多限于价格驱动因素分析,对价格形成机制、价格波动和调控机制的研究还未深入,欧盟碳排放体系目前处于供大于求状态,且经过金融危机后价格不断下跌,亟需进行价格管理机制的研究。众多文献分析了碳交易市场对电力、能源、造纸等产业的影响,还需随着市场的发展扩展视野,将区域乃至全球层面的产业结升级纳入碳交易市场效应分析架构中。此外欧盟倡议的碳关税充满争议,其正当性辨析和影响分析也有待研究。
因实践起步较晚,国际碳金融市场建设还处于新生阶段,如何设计和建立发展中国家碳金融市场,如何完善发达国家和地区碳金融市场,乃至如何在全球层面建立跨地域、多层次、高效率的市场体系将成为研究重点。在微观层面,碳金融产品定价仍是核心问题,需利用金融学如行为金融、复杂性金融等前沿理论进行研究,形成具有普适性的定价分析范式。金融机构是碳金融市场主要参与者和产品研发者,对其经营模式评价、风险管控进行研究具有重要意义。值得一提的是,随着交易链的不断延展和碳资产证券化,碳掉期交易、碳交易CDs 等创新衍生品将不断涌现,碳金融产品创新设计需要学界给予更多关注。
同时,国内学者应加强对国外经验和理论的学习与反思,考察现行政策和试点实践,结合我国实际,设计我国可行政策组合及实现流程,提出全方位、深层次、多角度的低碳经济实现机制。
参考文献:
[1]STERN N. The Economics of Climate Change: the Stern Review[M]. Cambridge University Press,2007.
[2]PIGOU A C. The Economics of Welfare(4th)[M]. Transaction Publisher,1924.
[3]BAUMOL W J,OATES W E. The Use of Standards and Prices for Protection of the Environment[J]. The Swedish Journal of Economics,1971: 42-54.
[4]HOELLER P,WALLIN M. Energy Prices,Taxes and Carbon Dioxide Emissions[M]. Paris: OECD,1991.
[5]苏明,傅志华,许文,等. 我国开征碳税问题研究[J]. 经济研究参考,2009(72):2-16.
[6]崔军.关于我国开征碳税的思考[J]. 税务研究,2010(1):41-44.
[7]JORGENSON D W,WILCOXEN P J. Reducing US Carbon Emissions: An Econometric General Equilibrium Assessment[J]. Resource and Energy Economics,1993,15(1): 7-25.
[8]LABANDERIRA X,LABEAGA J. Combining Inputoutput Analysis and Micro-simulation to Assess the Effects of Carbon Taxation on Spanish Households[J]. Fiscal Studies,1999,20(3): 305-320.
[9]BRUVOLL A,LARSEN B M. Greenhouse Gas Emissions in Norway: Do Carbon Taxes Work?[J]. Energy Policy,2004,32(4): 493-505.
[10]FLOROS N,VLACHOU A. Energy Demand and Energyrelated CO2 Emissions in Greek Manufacturing: Assessing the Impact of A Carbon Tax[J]. Energy Economics,2005,27(3): 387-413.
[11]魏涛远,格罗姆斯洛德. 征收碳税对中国经济与温室气体排放的影响[J]. 世界经济与政治,2002(08):47-49.
[12]PEARCE D. The Role of Carbon Taxes in Adjusting to Global Warming[J]. The Economic Journal,1991,101(407): 938-948.
[13]MENG S,SIRIWARDANA M,MCNEILL J. The Environmental and Economic Impact of the Carbon Tax in Australia[J]. Environmental and Resource Economics,2013: 1-20.
[14]王金南,严刚,姜克隽,等. 应对气候变化的中国碳税政策研究[J]. 中国环境科学,2009(01):101-105.
[15]KARKI S,MANN M D,SALEHFAR H. Substitution and Price Effects of Carbon Tax on CO2 Emissions Reduction from Distributed Energy Sources[C]//Power Systems Conference: Advanced Metering,Protection,Control,Communication,and Distributed Resources,2006. PS'06. IEEE,2006: 236-243.
[16]BAKER E,SHITTU E. Profitmaximizing R&D in Response to A Random Carbon Rax[J]. Resource and Energy Economics,2006,28(2): 160-180.
[17]ZHANG Z X,BARANZINI A. What Do We Know about Carbon Taxes? An Inquiry into Their Impacts on Competitiveness and Distribution of Income[J]. Energy Policy,2004,32(4): 507-518.
[18]METCALF G E,WEISBACH D. The Design of A Carbon Tax[J]. Harvard Environmental Law Review,2009,33(2): 499.
[19]COASE R H. Problem of Social Cost[M]. JL & Econ,1960:1-44.
[20]DALES J H. Pollution,Property and Prices: An Essay in Policy-making and Economics[M]. Edward Elgar Publishing,1968.
[21]MONTGOMERY W D. Markets in Licenses and Efficient Pollution Control Programs[J]. Journal of Economic Theory,1972,5(3): 395-418.
[22]SUSSMANN A,RICHELS R G. Buying Greenhouse Insurance: The Economic Costs of Carbon Dioxide Emission Limits[M]. The MIT Press,1992.
[23]STAVINS R N. Transaction Costs and Tradeable Permits[J]. Journal of Environmental Economics and Management,1995,29(2): 133-148.
[24]GOULDER L H,PARRY I W H,WILLIAMS Ⅲ R C,et al. The Costeffectiveness of Alternative Instruments for Environmental Protection in a Secondbest Setting[J]. Journal of Public Economics,1999,72(3): 329-360.
[25]FULLERTON D,METCALF G E. Environmental Controls,Scarcity Rents,and Pre-existing Distortions[J]. Journal of Public Economics,2001(80): 249-267.
[26]VENMANS F. A Literaturebased Multicriteria Evaluation of The EU ETS[J]. Renewable and Sustainable Energy Reviews,2012,16(8): 5493-5510.
[27]VESTERDAL M,SVENDSEN G T. How Should Greenhouse Gas Permits Be Allocated in The EU?[J]. Energy Policy,2004,32(8): 961-968.
[28]CHRISTIANSEN A C,ARVANITAKIS A,TANGEN K,et al. Price Determinants in The EU Emissions Trading Scheme[J]. Climate Policy,2005,5(1): 15-30.
[29]MANSANET-BATALLER M,PARDO A,VALOR E. CO2 Prices,Energy and Weather[J]. The Energy Journal,2007: 73-92.
[30]HINTERMANN B. Allowance Price Drivers in The First Phase of The EU ETS[J]. Journal of Environmental Economics and Management,2010,59(1): 43-56.
[31]CHEVALLIER J. Detecting Instability in The Volatility of Carbon Prices[J]. Energy Economics,2011,33(1): 99-110.
[32]NAZIFI F. Modelling The Price Spread between EUA and CER Carbon Prices[J]. Energy Policy,2013,56:434-445.
[33]BENZ E,HENGELBROCK J. Liquidity and Price Discovery in The European CO2 Futures Market: An Intraday Analysis[C]. 21st Australasian Finance and Banking Conference. 2008: 16-18.
[34]BREDIN D,MUCKLEY C. An Emerging Equilibrium in The EU Emissions Trading Scheme[J]. Energy Economics,2011,33(2): 353-362.
[35]PERDAN S,AZAPAGIC A. Carbon Trading: Current Schemes and Future Developments[J]. Energy Policy,2011,39(10): 6040-6054.
[36]DUTSCHKE M,SCHLAMADINGER B,WONG J L P,et al. Value and Risk of Expiring Carbon Credits from CDM Afforestation and Reforestation[J]. Hamburg Institute of International Economics,2005,5(1):109-125.
[37]马建平,庄贵阳. CDM项目开发的风险因素识别与规避对策[J]. 华中科技大学学报(社会科学版),2011(2):87-92.
[38]SILVA E C D,ZHU X. Emissions Trading of Global and Local Pollutants,Pollution Havens and Free Riding[J]. Journal of Environmental Economics and Management,2009,58(2): 169-182.
[39]STANKEVICIUTE L,KITOUS A,CRIQUI P. The Fundamentals of the Future International Emissions Trading System[J]. Energy Policy,2008,36(11): 4272-4286.
[40]BODE S. Multiperiod Emissions Trading in The Electricity Sectorwinners and Losers[J]. Energy Policy,2006,34(6): 680-691.
[41]LEE C F,LIN S J,LEWIS C. Analysis of The Impacts of Combining Carbon Taxation and Emission Trading on Different Industry Sectors[J]. Energy Policy,2008,36(2): 722-729.
[42]GULBRANDSEN L H, STENQVIST C. The Limited Effect of EU Emissions Trading on Corporate Climate Strategies: Comparison of A Swedish and A Norwegian Pulp and Paper Company[J]. Energy Policy,2013,56:516-525.
[43]TUERK A, COWIE A, LEOPOLD A. The Influence of Emissions Trading Schemes on Bioenergy Use[C]. IEA Bioenergy Task,2011.
[44]NEWELL R G,PIZER W A. Regulating Stock Externalities under Uncertainty[J]. Journal of Environmental Economics and Management,2003,45(2): 416-432.
[45]GOLDBLATT M. A Comparison of Emissions Trading and Carbon Taxation as Carbon Mitigation Options for South Africa[R]. Putting A Price on Carbon: Economic Instruments to Mitigate Climate Change in South Africa and Other Developing Countries: Papers Read at The Energy Research Centre,University of Cape Town,Held in Cape Town on,2010(24): 181-195.
[46]MCKIBBIN W J,WILCOXEN P J. The Role of Economics in Climate Change Policy[J]. The Journal of Economic Perspectives,2002,16(2): 107-129.
[47]TAMURA H,KIMURA T. Modeling and Policy Assessment of Carbon Tax and Emissions Trading for Preserving Global Environment[C]. World Congress. 2008,17(1): 15505-15510.
[48]SALAZAR J. Environmental Finance: Linking Two World[C]. A Workshop on Financial Innovations for Biodiversity Bratislava,Slovakia. 1998: 112-117.
[49]COWAN E. Topical Issues In Environmental Finance[R]. Economy and Environment Program for Southeast Asia (EEPSEA),1998.
[50]LABATT S,WHITE R R. Environmental Finance [M]. New York: John Wiley and Sons,2003.
[51]王遥. 碳金融:全球视野与中国布局[M]. 北京:中国经济出版社,2010.
[52]UHRIG-HOMBURG M,WAGNER M. Futures Price Dynamics of CO2 Emission Allowances: An Empirical Analysis of The trial Period[J]. The Journal of Derivatives,2009,17(2): 73-88.
[53]RITTLER D. Price Discovery and Volatility Spillovers in The European Union Emissions Trading Scheme: A High-frequency Analysis[J]. Journal of Banking & Finance,2012,36(3): 774-785.
[54]AROURI M E H,JAWADI F,NGUYEN D K. Nonlinearities in Carbon Spot-futures Price Relationships during Phase II of The EU ETS[J]. Economic Modelling,2012,29(3): 884-892.
[55]DSDKALAKIS G,MARKELLOS R. Are The European Carbon Markets Efficient?[J]. Review of Futures Markets?,2008,17(2) 103-128.
[56]BLYTH W, BUNN D, KETTUNEN J, et al. Policy Interactions, Risk and Price Formation in Carbon Markets[J]. Energy Policy, 2009, 37(12): 5192-5207.
[57]FANKHAUSER S, HEPBURN C. Designing Carbon Markets. Part I: Carbon Markets in Time[J]. Energy Policy,2010,38(8): 4363-4370.
[58]KNOX-HAYES J. The Developing Carbon Financial Service Industry: Expertise,Adaptation and Complementarity in London and New York[J]. Journal of Economic Geography,2009,9(6): 749-777.
[59]HAIGLER E. Carbon Finance for Development: An Efficient Cookstove Case Study[J]. Colo. J. Int'l Envtl. L. & Pol'y,2011(22): 283.
篇12
中图分类号:F426;X24文献标识码: 文章编号:
Abstract: From the perspective of industry emission reduction costs, this paper use the direction distance function to measure carbon reduce marginal cost among China's industrial sectors. Based on the marginal cost curve, we build a carbon trading modeling. According to China current carbon trading pilot emission allocation system, we distribute carbon emissions quota to industrial departments and discuss the influence of the carbon reduce cost and market transaction price in carbon trading market. The results show that: with the increase of emission reduction, the cost of emission reduction shows a rising trend. Lower emissions intensity means higher emission reduction cost. To achieve the reduction of 45% of the 2020 emission reduction targets, it will take three times more cost of reducing emissions than that of 40%.
Keywords: industrial sector; reduction costs; reduction cost curves; carbon trading; direction distance function
引言
伴随经济的高速增长,我国碳排放总量也在持续增长,环境承载能力已经达到上限,经济发展面临瓶颈,如何协调二氧化碳减排与经济发展这对矛盾是我国面临的主要问题。2009年我国就宣布在2020年单位国内生产总值的二氧化碳排放量要比2005年下降40%~45%,并将“加快推进资源节约和环境保护”纳入到国家经济发展战略上。2013年上海、深圳等七省市的碳交易试点陆续成立,现已进入到了配额发放与排放权交易阶段,经过一年多试点,在推动节能减排和带动低碳环保产业发展等方面取得了显著成效,但也存在诸如企业参与度不高、碳交易机制不完善、市场交易量小、流动性不均衡等问题。通过部门间减排成本测算构建碳交易模型,对完善我国碳交易机制、推进碳交易政策制定、测算实现2020年减排目标所需要付出的成本具有重要的理论和实践价值。
碳交易机制设计就是通过设定减排目标,按照分配的碳排放许可,企业在碳交易市场进行配额交易并形成交易价格。很多学者在减排成本测算、减排成本曲线拟合及碳排放权初始分配机制方面做了研究。减排成本有微观和宏观层面的定义。微观层面是指减少单位排放而需要增加的技术资金投入,主要用能源优化模型和MARKAL-MACRO模型等进行测算。如我国学者陈文颖等[1]通过建立MARKAL-MACRO模型测算了减排边际成本。吴力波等[2]构建了中国多区域动态一般均衡模型,模拟分析了省市边际减排成本曲线。但范英等[3]认为宏观减排成本(各生产单元通过各种手段进行节能减排时所导致的经济增长的损失)更能准确地反映不同行业和地区的经济联系。方向性距离函数由于能够识别出环境污染等坏产出不同于好产出的负外部性,被用来估算污染物等坏产出的影子价格[4]。如Fare等[5]测算了美国发电厂二氧化硫减排价格,发现影子价格呈增高趋势。涂正革[6]基于方向性环境生产前沿函数估算了我国各地区工业二氧化硫影子价格。刘明磊等[7]运用DEA产出距离函数测算了我国各省市二氧化碳减排成本。陈诗一[5]采用参数和非参数方法估计了我国不同工业行业二氧化碳平均影子价格。秦少俊等[8]构建了火电行业方向性生产前沿面函数,拟合出减排成本曲线。魏楚[9]基于参数化的方向距离函数,分析了我国城市二氧化碳边际减排成本。可采用二次曲线、对数函数、指数函数和幂函数 [10] [11] [12] 等对减排成本曲线进行拟合。很多学者都认同减排成本随着减排量的增加呈现单增的凸函数性质。我国学者陈文颖等[1]、李陶等[13]和崔连标等[14]、夏炎等[15]就分别使用二次函数、对数函数、指数函数刻画了边际减排成本曲线。在不完全竞争市场中,排污权的初始分配会影响排污权交易的效率,李凯杰等[16]对初始排放权分配机制的研究进行了归纳。碳排放初始分配主要有免费分配、有偿分配和混合分配三种形式。目前,使用比较多的是免费分配方式,如我国学者李寿德等[17]构建了多目标决策模型研究初始排污权免费分配问题。吴征帆等[18]提出了排污权免费分配结构设计框架。谢传胜等[19]对不同火电厂的碳排放权进行了免费分配。
综上,减排成本的测算主要是按照地区、城市或者某一具体行业展开的,针对行业间减排成本测算的相对较少,各地区生产技术结构相同的假设也不符合实际情况;按照地区进行的减排成本测算使各地区对碳交易机制和规则的制定不尽相同,不利于碳交易市场的建设和完善;基于历史排放数据的分配模式在实践中对碳交易市场的影响程度如何的研究也不多见。
基于此,本文以行业间减排成本研究为视角,把相同行业数据放在一起构造生产前沿面,提高了测算的准确性;采用方向性距离函数测算减排成本,将不同行业的减排强度和减排成本拟合出整个工业行业的减排成本曲线,使用坐标平移等方法测算不同部门的减排成本曲线;按照我国碳交易试点排放权分配办法,将初始碳排放权的配额模拟分配给工业各部门,以2020年的减排目标为约束,构建碳交易模型,讨论碳交易市场对行业间减排成本和交易价格的影响,这对在实践中完善碳交易机制具有一定的指导意义。
1.部门间排放权交易模型
1.1减排成本测算
宏观减排成本在距离函数中体现为减少一单位非期望产出对期望产出的影响。本文采用方向性距离函数处理含有非期望产出的单元效率测算,即根据各个单元目前投入产出数据的最优生产前沿面计算各个单元离这个面的距离。
假定生产单元共有K个,第k地区经济产值用y_k表示,二氧化碳排放量用b_k 表示,X_k=(x_k^E,x_k^L,,x_k^CS)代表第k地区能源消耗量、劳动投入及资本投入组成的投入向量。根据fare[4]的研究,产出集定义为:
上面的约束分别为测算的第i个单元的期望产出要小于生产前沿面的最优产出,非期望产出和投入要素则要大于生产前沿面的最少排放和投入,λ表示强度列向量,根据文献[4]的相关研究,我们需要假设产出为非规模递增,即λ的和要小于等于1。
要计算减排成本,必须求出方向性距离函数分别对好坏产出的导数,而这可以通过求出好坏产出限制条件所对应的拉格朗日乘子来计算,分别用f(.)和g(.)表示。Fare指出要估算非期望产出影子价格的绝对值,最直接的方法是假设好产出的价格p等于1元,那么第k个单元的影子价格其实就等于两个拉格朗日乘子之比。即
由此可以看出:碳交易价格p ?和行业i的实际减排量(A_i ) ?都与该行业的初始分配无关,与减排比例存在正相关关系,但是不同的减排额度分配会影响该行业的减排成本和社会总成本。
2.数据处理与结果分析
2.1 数据处理
本文的数据来源于2004~2012年《中国统计年鉴》和《中国工业统计年鉴》。文中涉及到的行业为39个工业部门。在投入向量中,把规模以上工业分行业固定资产净值年平均余额作为资本投入;以工业部门规模以上企业全部从业人员年终人数作为劳动投入;以能源消耗总量代替能源投入。在产出向量中,以相应行业工业总产值作为期望产出,把各种能源消耗(燃烧排放、电力和热力排放)采用排放因子法核算成二氧化碳排放量作为非期望产出。固定资本投入和工业总产值做了以2003年为基准的可比价调整。
免费分配有两种模式:一是基于历史排放进行分配,二是依据现实产量水平或排放量来分配。考虑到数据可得性和基于历史排放分配模式更容易被政府付诸实施,本文将行业间排放额分配方法设定为基于2009~2011年三年排放量免费分配的初始分配机制。假设至2020年工业总产值每年按8%的速度增长,将二氧化碳排放量预测至2020年,得到各个行业在2020年的碳排放强度。将2009~2011年各行业平均排放量作为权重系数,在计算出2020年需要的减排量之后,将减排配额分配给各个行业,计算出的减排配额约占各行业在2020年估计排放量的6%到10%。
2.2 碳排放强度与减排成本
依据减排成本核算模型,利用Lingo9.0求出2012~2020年间各行业的减排成本,核算出二氧化碳和减排成本研究跨度期间的平均值(见表1),测算的减排成本变动范围与陈诗一核算的结果比较接近。拟合出碳排放强度(自然对数值)和减排成本的曲线如图1所示,点的大小是根据方向性距离函数计算出的减排潜力,代表该生产单元达到生产前沿面时可以减少的排放比例。
从表1和图1可以看出:(1)减排成本随着排放强度的降低呈现了上升趋势,上升速度随着排放强度的减小而增加,呈现单增的凸函数性质;(2)减排潜力大的点多数来自排放强度高的数据点,其能源利用效率有很大的改善空间;(3)碳排放强度较高的如电力、热力的生产和供应业、石油加工、炼焦及核燃料加工业等行业,其排放强度均在3吨/万元以上,但每吨的减排成本都不足千元,而碳排放强度较低的如文教体育用品制造业、仪器仪表及文化、办公用机械等行业,其排放强度均在0.8吨/万元以下,但减排成本较高,在2-10万元之间,表明其减排空间要远远低于高能耗的行业。
2.3 碳交易下减排所需的成本
通过统计软件Eviews对减排成本曲线进行拟合,得到我国工业部门减排成本曲线:
P值均在0.05以下,在95%的置信区间拟合结果比较理想。利用碳交易模型,计算碳排放强度降低40%时的减排量与总成本,结果表明:(1)我国要实现2020年的减排目标,需要继续减排15.3亿吨二氧化碳,付出的社会总成本为2266亿元,约占当年估算工业总产值的0.16%,这个结论与崔连标的研究结果接近。碳交易价格为296元/吨,高于目前上海市实际38元/吨的价格,主要原因可能是目前的碳排放强度比2020年设定的标准高,另外论文使用的是宏观减排成本,可能要大于微观减排成本;(2)在行业间减排责任分配上,主要减排行业为电力、热力的生产和供应业、石油加工、炼焦及核燃料加工业、黑色金属冶炼及压延加工业、煤炭开采和洗选业,这几个行业均承担着千万吨以上的减排责任,其减排量分别为71668.64、59859.06、12468.03、4786.69万吨,减排成本相对较低,他们作为减排主力能够实现社会减排成本的最优化。但仪器仪表及文化、办公用机械、通用设备制造业、皮革、毛皮、羽毛(绒)及其制品业、印刷业和记录媒介的复制等行业的排放量比较低,分别为0.04、0.12、0.18、10.25万吨,减排成本较高,为了降低减排成本,他们会倾向于在碳交易市场上购买排放权配额;(3)减排45%时需要付出8593亿元减排成本,交易价格为580元/吨,较40%时有非常显著的增长;而减排35%时只需要付出877亿元减排成本,交易价格为184元/吨。
3.结论与建议
本文利用方向性距离函数测算边际减排成本,拟合出整个工业行业的减排成本曲线,使用坐标平移等方法测算不同部门的减排成本曲线;将初始碳排放权配额模拟分配给工业各部门,根据碳交易模型,探讨了碳交易市场对行业间减排成本和交易价格的影响。得出的结论如下:
(1)随着减排量的增加,减排成本呈现单增的凸函数性质;(2)工业部门间排放强度和减排成本差异较大。排放强度较高的如电力、热力的生产和供应业、燃气生产和供应业等行业,其减排成本较低,而排放强度较低的如纺织服装、鞋、帽制造业、通信设备、计算机及其他电子设备等行业,其减排成本较高;(3)要实现2020年减排40%的目标,工业部门需要再减排15.3亿吨二氧化碳,付出的社会总成本为2266亿元,交易价格为296元/吨。实现降低45%的减排目标,要比减排40%时多消耗近三倍的减排成本。
本文仅仅研究了基于历史免费分配模式下的碳交易模型,今后将对其他分配模式下的碳交易模型做进一步的探讨。
4.参考文献
陈文颖,高鹏飞,何建坤.未来二氧化碳减排对中国经济的影响[J].清华大学学报(自然科学版),2004,44(6):744-747.
吴力波,钱浩祺,汤维祺.基于动态边际减排成本模拟的碳排放权交易与碳税选择机制[J].经济研究,2014(9):48-61,148.
范英,张晓兵,朱磊.基于多目标规划的中国二氧化碳减排的宏观经济成本估计[J].气候变化研究进展,2010(3):130-135.
陈诗一.工业二氧化碳的影子价格:参数化与非参数化方法[J].世界经济,2010(10):93-111.
Fare R, Gross Kopf S. Characteristics of a Polluting Technology:Theory and Practice[J]Journal of Econometrics Current Developments in Productivity and Efficiency Measurement,2005,126(2):469―490.
涂正革.工业二氧化硫排放的影子价格:一个新的分析框架[J].经济学(季刊),2009(10):259―282.
刘明磊,朱磊,范英.我国省级碳排放绩效评价及边际减排成本估计:基于非参数距离函数方法[J].中国软科学,2011(3):106-114.
秦少俊,张文奎,尹海涛.上海市火电企业二氧化碳减排成本估算―基于产出距离函数方法[J].工程管理学报,2011(6):704-708.
魏楚.中国城市CO2边际减排成本及其影响因素[J].世界经济,2014(7):115-141.
Jennifer M,SergeyP,John R. Marginal Abatement Cost and Marginal Welfare Costs for Greenhouse Gas Emissions Reductions: Results from the EPPA Model[R].Massachusetts Institute of Technology,Joint Program on the Science and Policyof Global Change,Report 164,2008.
NordhausW.D.The Cost of Slowing Climate Change:A Survey[J].Energy Journal,1991(12):37-65.
CriquilP,Mima S,ViguierL.Marginal Abatement Costs of CO2 Emission Reductions,Geographical Flexibility and Concrete Ceilings: An Assessment Using the POLES Model[J].Energy Policy,1999(27):585-601.
李陶,陈林菊,范英.基于非线性规划的我国省区碳强度减排配额研究[J].管理评论,2010(6):54-60.
崔连标,范英,朱磊、毕清华,张毅.碳排放交易对实现我国“十二五”减排目标的成本节约效应研究[J].中国管理科学,2013(2):37-46.
夏炎,范英.基于减排成本曲线演化的碳减排策略研究[J].中国软科学,2012(3):12-22.
李凯杰,曲如晓.碳排放交易体系初始排放权分配机制的研究进展[J].经济学动态,2012(6):130-138.
篇13
文献标识码:A
文章编号:1673-5919(2012)03-0053-03
控制和减少温室气体的排放,发展低碳经济,是全世界控制气候变化的战略选择。而在应对气候变化中,林业具有特殊作用。发展低碳经济,不仅要重视节能减排,还要重视碳汇的作用。因此,要发展低碳经济,就要求在最大限度减少碳排放的同时,必须重视发挥林业的碳汇作用[1]。
1 林业是发展低碳经济的有效途径
林业是减排二氧化碳的重要手段。部分研究认为,林业减排是减排二氧化碳的重要手段。首先,通过抑制毁林、森林退化可以减少碳排放;其次,通过林产品替代其他原材料以及化石能源,可以减少生产其他原材料过程中产生的二氧化碳,可以减少燃烧化石能源过程中释放的二氧化碳[2]。
1.1 毁林、森林退化与碳排放
近年来,大部分的毁林活动都是由人类直接引发的,大片的林地转变成非林地,主要活动包括大面积商业采伐以及扩建居住区、农用地开垦、发展牧业、砍伐森林开采矿藏、修建水坝、道路、水库等[3]。
在毁林过程中,部分木材被加工成了木制品,由于部分木制品是长期使用的,因此,可以长期保持碳贮存,但是,原本的森林中贮存了大量的森林生物量,由于毁林,这些森林生物量中的碳迅速的排放到大气中,另外,森林土壤中含有大量的土壤有机碳,毁林引起的土地利用变化也引起了这部分碳的大量释放。因此,毁林是二氧化碳排放的重要源头。
毁林已经成为能源部门之后的第二大来源,根据 IPCC 的估计,从19世纪中期到20世纪初,全世界由于毁林引起的碳排放一直在增加,19世纪中期,碳排放是年均3亿t,在20世纪50年代初是年均10亿t,本世纪初,则是年均23亿t,大概占全球温室气体源排放总量的17%。因此,IPCC认为,减少毁林是短期内减排二氧化碳的重要手段。
1.2 林木产品、林木生物质能源与碳减排
①大部分研究认为,应将林产品碳储量纳入国家温室气体清单报告,主要理由是林产品是一个碳库,伐后林产品是其中一个重要构成部分[4]。
通过以下手段,可以减缓林产品中贮存的碳向大气中排放:大量使用林产品,提高木材利用率,扩大林产品碳储量,延长木质林产品使用寿命等。另外,也可以采用其他有效的手段来减缓碳的排放,降低林产品的碳排放速率,如合理填埋处置废弃木产品等方式,这样,甚至可以让部分废弃木产品实现长期固碳。在森林生态系统和大气之间的碳平衡方面,林产品的异地储碳发挥了很大的作用。
②贾治邦认为,大量使用工业产品产生了大量的碳排放,如果用林业产品代替工业产品,如减少能源密集型材料的使用,大量使用的耐用木质林产品就可以减少碳排放。秦建华等也从碳循环的角度分析了林产品固碳的重要性,林产品减少了因生产钢材等原材料所产生的二氧化碳排放,又延长了本身所固定的二氧化碳[5]。
③以林产品替代化石能源,也可以减少因化石能源的燃烧产生的二氧化碳排放。例如,木材可以作为燃料,木材加工和森林采伐过程中也会有很多的木质剩余物,这些都可以收集起来用以替代化石燃料,从而减少碳的排放;另外,林木生物质能源也可以替代化石燃料,减少碳的排放。
根据IPCC 的预计,2000—2050 年,全球用生物质能源代替的化石能源可达20~73GtC[6]。相震认为,虽然通过分解作用,部分林产品中所含的碳最终重新排放到大气中,但因为林业资源可以再生,在再生过程中,可以吸收二氧化碳,而生产工业产品时,由于需要燃烧化石燃料,由此排放大量的二氧化碳,所以,使用林产品最终降低了工业产品在生产过程中,石化燃料燃烧产生的净碳排放[7]。林产品通过以下两个方面降低碳排放量:一是异地碳储燃料,二是碳替代。这两方面可以保持、增加林产品碳贮存并可以长期固定二氧化碳,因此,起到了间接减排二氧化碳的作用。
从以上分析可知,林业是碳源,因此在直接减排上将起到重大作用;林业可以起到碳贮存与碳替代的作用,可以间接减排二氧化碳。因此,林业是减排二氧化碳的重要手段。
有些研究认为林业在直接减排二氧化碳方面的作用不大。这是基于较长的时间跨度来考察的,认为林业并不是二氧化碳减排的最重要手段,工业减排是发展低碳经济的长久之计;但是从短时间尺度来考察,又由于CDM项目的实施,林业是目前中国碳减排的一个重要的不可或缺的手段。
2 森林碳汇在发展低碳经济中发挥的作用巨大
绝大部分的研究认为,林业是增加碳汇的主要手段。谢高地认为,中国的国民经济体系和人类生活水平都是以大量化石能源消耗和大量二氧化碳排放为基础。虽然不同地区、不同行业单位GDP碳排放量有所差别,但都必须依赖碳排放以求发展。这种依赖是长期发展形成的,是不可避免的,我国现有的技术体系还没有突破性的进展,在这之前要突破这种高度依赖性非常困难,实行减排政策势必会影响现有经济体系的正常运行,降低人们的生活水平,也会产生相应的经济发展成本[8]。谢本山也认为,中国还处于城镇化和工业发展的阶段,需要大量的资金和先进的技术才能使这种以化石能源为主要能源的局面有所改变,而且需要很长的周期,目前的条件下,想要实现总体低碳仍然存在较大的困难。与工业减排相比,通过林业固碳,成本低、投资少、综合收益大,在经济上更具有可行性,在现实上也更具备选择性[9]。
从碳循环的角度上讲,陶波,葛全胜,李克让,邵雪梅等认为,地球上主要有大气碳库、海洋碳库、陆地生态系统碳库和岩石圈碳库四大碳库,其中,在研究碳循环时,可以将岩石圈碳库当做静止不动的,主要原因是,尽管岩石圈碳库是最大的碳库,但碳在其中周转一次需要百万年以上,周转时间极长。海洋碳库的周转周期也比较长,平均为千年尺度,是除岩石碳库以外最大的碳库,因此二者对于大气碳库的影响都比较小。陆地生态系统碳库主要由植被和土壤两个分碳库组成,内部组成很复杂,是受人类活动影响最大的碳库[10]。
从全球不同植被类型的碳蓄积情况来看,森林地区是陆地生态系统的碳蓄积的主要发生地。森林生态系统在碳循环过程中起着十分重要的作用,森林生态系统蓄积了陆地大概80%的碳,森林土地也贮藏了大概40%的碳,由此可见,林业是增加碳汇的主要手段。
聂道平等在《全球碳循环与森林关系的研究》中指明,在自然状态下,森林通过光合作用吸收二氧化碳,固定于林木生物量中,同时以根生物量和枯落物碎屑形式补充土壤的碳量[11]。在同化二氧化碳的同时,通过林木呼吸和枯落物分解,又将二氧化碳排放到大气中,同时,由于木质部分也会在一定的时间后腐烂或被烧掉,因此,其中固定的碳最终也会以二氧化碳的形式回到大气中。所以,从很长的时间尺度(约100年)来看,森林对大气二氧化碳浓度变化的作用,其影响是很小的。但是由于单位森林面积中的碳储量很大,林下土壤中的碳储量更大,所以从短时间尺度来看,主要是由人类干扰产生的森林变化就有可能引起大气二氧化碳浓度大的波动。
根据国家发改委2007年的估算,从1980—2005年,中国造林活动累计净吸收二氧化碳30.6
亿t,森林管理累计净吸收二氧化碳16.2亿t。李育材
研究表明, 2004 年中国森林净吸收二氧化碳约5
亿t,相当于当年工业排放的二氧化碳量的8%。 还有方精云等专家认为,在1981—2000年间,中国的陆地植被主要以森林为主体,森林碳汇大约抵消了中国同期工业二氧化碳排放量的14.6%~16.1%。由此可见,林业在吸收二氧化碳方面具有举足轻重的作用。
3 发展森林碳汇的难点
通过以上分析可以看出,通过林业减排与增加碳汇是切实可行的,减少二氧化碳的排放量、增加大气中二氧化碳的排放空间是发展低碳经济关键所在。然而,森林碳汇在发展低碳经济中也受到相关规定的限制。
在《联合国气候变化框架公约》及《京都议定书》中,都有关于“清洁发展机制(CDM)”和碳贸易市场的叙述,其中明确规定开发森林碳汇项目及进行碳贸易须要符合以下规则:
①在《京都议定书》中明确规定,开发森林碳汇的土地,必须是从项目基准年开始,过去五十年内没有森林,《京都议定书》也规定,如果是再造林项目,所用的土地必须是从1989年12月31日至项目开发那一年不是森林,但是在此之前可以有森林[12]。
②进行交易的碳信用额必须是新产生的,不可以是现存的碳汇量。
③自身可以完成减排指标的,不可以利用清洁发展机制;可以使用清洁发展机制的国家,与其合作的发展中国家的企业,也需要将符合规定的碳减排量申报,并获得联合国相关部门认可后,才能出售给发达国家的企业。
④减少毁林和优化森林管理产生的森林碳汇并没有纳入清洁发展机制;另外,只有造林再造林项目产生的森林碳汇被纳入到清洁发展机制,森林碳汇项目的种类很单一,而且有关的申报、认证等程序非常复杂。
通过以上分析,可以得出以下结论,林业对于发展低碳经济具有不可替代的作用。尽管也受到很多方面的制约,但其未来的快速发展趋势是必然的。因此必须加强森林经营、提高森林质量,促进碳吸收和固碳;保护森林控制森林火灾和病虫害,减少林地的征占用,减少碳排放;大力发展经济林特别是木本粮油包括生物质能源林;使用木质林产品,延长其使用寿命,最大限度的固定二氧化碳;保护湿地和林地土壤,减少碳排放。
参考文献:
[1] 张秋根.林业低碳经济探讨[J].气候变化与低碳经济,林业经济,2010(3):36-38.
[2] 王春峰.低碳经济下的林业选择[J].世界环境,2008(2):37-39.
[3] 林德荣,李智勇.减少毁林和森林退化引起的排放:一个综述视角的分析[J].世界林业研究,2010(2):1-4.
[4]文冰.基于低碳经济的林分质量改造分析[A].低碳经济与林业发展论—中国林业学术论坛·第6辑 , 2009:179-186.
[5]贾治邦.全面发展林业,助推低碳经济发展[J].高端论坛2010(3):18-19.
[6] 魏远竹.产业结构调整与林业经济增长方式转变[J]北京林业大学学报,2001(1):72-75.
[7]相震.碳减排问题刍议[J].环境科技,2009(2):1-10.
[8]谢高地.碳汇价值的形成与和平价[J].自然资源学报,2011,26(1):1-10.
[9]谢本山.森林碳汇在低碳经济中的作用[J].现代农业科技2010(23):205-206.