在线客服

概率论和统计学实用13篇

引论:我们为您整理了13篇概率论和统计学范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

概率论和统计学

篇1

一、概率论和数理统计中应用数学建模的实例

要想使数学可以应用到我们的日常生活中,并且能够解决日常生活中的实际问题,就要创建数学模型。在现实中有着许多数学建模的例子,比如:

我们学校有6500名学生,但是每到下午打水的人就非常多,导致水房水管不够用,经常会出现排队很长的现象。基于此问题,学校应该在原有的水管上面添加多少水管才能有效的解决此问题?

分析:首先我们可以先了解学校中水房现有的水管有多少个,然后再调查学生在打水过程中占用水管的时间(比如1%),经过分析我们可以了解到学生在打水时候使用水管都是独立的,基于此我们就可以运用中心极限定理。在此基础上还有一种情况,就是学生使用水管和不使用水管的机率,使用水管的概率是0.01。学生使用水管可以是一个独立的实验,那么这个问题就可以是n=6500的n重伯努利实验。假设使用水管的学生人数为X,那么X-B(6500,0.1),就可以通过建立一个数学模型使用德莫佛-拉普拉斯中心极限定理来解决这个问题。[1]

上述问题是一个概率性的问题,下文讲述一个数理统计的例子。

数理统计学的实质是通过科学有效的方式进行收集和分析数据。科学有效的数据指的是数据中有着多种信息,并且对分析有重要作用,此数据精准、可靠。数理统计的核心主要是统计推断。比如:

我们学校中有一个鱼塘,鱼塘中鱼的数量是N,想要计算鱼塘中鱼的数量不可能将鱼都捞起来,这是不现实的,所以只能通过抽样来进行估算。首先可以捞起来一部分鱼并对其做上记号,然后将其放入鱼塘中。然后再捞鱼,如果捞起来的鱼身上有记号,那么就要估算鱼塘中鱼的数量。

首先我们可以运用频率估量这个方式来进行,通过观察和尝试来建立数学模型,以此来解决这个问题。在这个过程中我们可以了解到观察是一个有目的的活动,对搜集材料起到了重要的作用,尝试是在观察的基础上自主构建的解题目标,通过实际行动来判断自己的目标是否正确。所以在数学建模中,观察和尝试也是必不可少的。

二、概率论和数理统计中应用数学建模的体会

将数学建模应用到概率论和数理统计中,可以有效的帮助我们解决实际的问题,并且在概率论和数理统计中应用数据建模也是可行的。概率论和数理统计有着实用性和随机处理问题的特点,它的理论内容知识也被运用到社会中各行各业中,比如降雨概率、体育彩票等一系列的问题。在概率论和数据统计中应用数学建模,不仅可以使我们了解到概率论和数理统计的内容背景及实际意义,还能使抽象化的概率论和数理统计知识实际化,提高我们概率论和数理统计学习的效率。

在概率论和数理统计中应用数学建模思想,使概率统计学的知识得到了充分的应用,还能够培养学生创新能力,有效的提高了学生的学习效率。通过数学建模的应用过程,学生不仅可以在传统教学模式的基础上学到理论知识,还能够利用概率统计学知识来解决生活中的实际问题,使概率和数理统计教学目的达到理想的效果。

三、结束语

篇2

一、在教学中注重培养学生学习的兴趣

《高等教育心理学》提到,学习兴趣是学生心理上的一种学习需要,而学习需要是学习动机的主要因素,学习动机则是学生进行学习的内驱力。数学作为文化基础课,多数学生认为数学课抽象、枯燥无味,无新鲜感且无应用价值。激发起学生学习的兴趣,这样的教学会有高的教学质量。因此在概率论的教学过程中,要始终注意培养学生学习的兴趣,使学生既学到必要的知识,又享受到一定的学习乐趣,达到提高教学质量的目的。各门课程的特点不同,培养学生学习兴趣的途径和方法也不尽相同,但是深入钻研教材,根据教材的内容和特点,挖出潜在的有利于培养学生学习兴趣的积极因素并加以充分利用,这一点是共同的,是当前提高教学质量的一个重要方面,可能还是提高教学质量的“治本”的方面。由于《概率论与数理统计》所研究的问题渗透到我们生活的方方面面,每一个理论都有其直观背景。因此,在教学中,应该致力于从多方面入手,去激发学生的兴趣,使学生在体会每个基本概念、定理和公式的产生过程中,掌握概率论与数理统计解题的思想和方法。具体方法有:

1.安排实验活动

数学教育家弗赖登塔尔提出,与其说让学生学习数学不如让学生学习“数学化”,学习数学不能仅满足于记住结论,更要注重数学知识的发生过程。针对概率论与数理统计这门课的特点,在教学中适当地安排实验活动让学生通过实验发现某种偶然性后面所隐藏的必然性,从直观背景中了解某些理论产生的过程。如在讲授几何概率时,可以让学生做一下著名的蒲丰实验;在讲授随机事件的独立性时,可以让学生做一下著名的德梅尔掷骰子实验等。安排实验化的教学活动,既可以帮助学生理解基本概念,掌握概率论解决问题的方法,又能大大激发学生学习这门课的兴趣,有利于培养学生的探索精神,提高学习效率。

2.采用疑问式教学法

疑问式教学是指通过提出疑问、分析疑问、解决疑问而进行教学的方法,该方法有利于养成学员积极思考、新颖好奇、敢于批判、勇于超越等良好的心理品质,也是激发学生兴趣的有效手段。在教学中要全面实施这一方法要善于设疑,“读书无疑者,须教有疑”。好的疑问能激发兴趣,促进思考,而不好的疑问不仅不能引发兴趣,可能适得其反。善于设疑就是设置问题要自然、恰到好处,不能故作技巧。

3.组建课外兴趣小组

培养学生的综合素质和创新能力,仅靠课内教学是不可能完全实现的。在教学中,要紧紧围绕教学目标,把课内教学和课外活动作为一个整体来考虑,进行优化设计,形成合力。为此,有必要组建由教师引导,学生自主成立的概率论与数理统计课外兴趣小组。小组活动的宗旨,是利用课余时间,通过定期组织活动,激发人家的学习兴趣,探讨热点、难点问题,加深对理论知识的学习和理解,拓宽知识面,锻炼思考问题和研究问题的能力。组织课外兴趣小组这种方法对于提高学习效果,提高学员综合素质和创新能力有显著成效。

二、教学中要突出一个“活”字

1.教学案例要“活”,注重学科实际

概率论与数理统计是一门有着广泛应用的数学学科,因此在教学中我们应准确把握这门课与学生所学专业的结合点,突出其应用性。在概率论与数理统计的教学中,很多高校教师是文理课概率论与数理统计课程都带,这就涉及到课程实例的选择问题。在教学中应结合学生的专业知识,调整教学实例。对文理科的实例分别对待,因为它们涉及到一些专业术语的问题。在讲授过程中,将统计理论与实际问题相结合,培养学生用所学的知识去解决具体实际

问题的能力及理论联系实际的作风,从而使学生进一步深化理解统计中的基本概念和基本原理。

2.改变灌注式教学,发展互动式教学

传统的教学方式是知识传授型的,教师是教学的主体,只重视教的过程,忽视了教学是教与学互动的过程。教师在课堂上满堂灌、注入式的教学方法不能充分调动学生学习的主动性,没有立足于培养学生的学习能力和不同学生的个性发展。现代教学方法主要是挖掘学生的学习潜能,以最大限度地发挥和发展学生的聪明才智为追求目标。以教师的系统讲解为主是目前教师多采用的教学方法,它虽能使学生在单位时间内迅速系统地掌握较多的数学基础知识和技能,但整个过程由教师直接控制着,学生实际上处于一种被动接受教师所提供知识的地位,学生学习的主动性、创造性极易受到忽视或限制。因此,在高校教学中,教学方法应突出一个“活”字,根据不同的内容选择不同的教学方法,采取多法并用的教学模式。教师在深入理解教材和了解学生的基础上,用“启发”形式写出自学提纲,以课外作业的形式布置下去。在上课时,或是请学生们讨论本节的知识要点,或是请学生讲解本节的内容,最后由教师进行有针对性的指导,全面进行教与学的评价。这种方法的主导思想是突出教学过程中师生的双边活动,提高学生的自学能力,从而变以前被动接受为积极主动参与整个教学过程,培养了学生分析、辩论、理论联系实际、与他人合作等综合能力。总之,在概率论与数理统计教学中,教师“施教之功,贵在引导”,即引导学生去发现生活中的随机现象所隐藏的规律性,掌握概率论与数理统计研究问题的方法。

三、注重现代化信息技术的教学应用

教学效果不仅取决于教材的质量、教师的学术水平,在很大程度上,也取决于教师所运用的教学手段。要真正建立起先进、科学的创新教学模式,必须通过系统优化教学设计,针对不同的教学内容,采取各种有效的教学方法,这就必须借助于现代化信息技术。现代化信息技术对教学的意义表现在:

1.动画演示。多媒体具有色彩斑斓的二维动画显示,能演示一般课堂教学难以表达的内容。例如,借助于计算机,可对概率论与数理统计中的一些随机现象进行模拟。对诸如分布的性质、分布之间的关系可用图形的方式进行演示。

2.高效性。多媒体教学使教学内容以崭新的而貌呈现在学生的面前,使学生易于接受和理解,再加上计算机本身的功能,能设计出形象的画和舒服的学习气氛,使学生在轻松活泼的氛围中获得丰富的知识。在概率论与数

理统计的教学中,利用对某些试验进行模拟、演示随机现象的统计规律性,能有效地调动学生的听觉和视觉。改变传统的口授、板书传授知识的方式,使题目中静止的内容运动起来,使学生能充分地观察到运动的全貌、增强了学生的观察和分析能力、提高了教学质量。

3.自由性。在教学实践中,不仅仅是教师要用计算机,同时还要鼓励学生尽可能使用计算机来处理数据,进行模拟活动。多媒体教学不仅可在规定的时间内教学外,还可给学生自由选择学习的时间和内容并使枯燥无味的习题变得有趣、有利于知识的巩固,更深刻地体会统计的思想和概率的意义。

四、重视“辩误”的教学方法

许多学生由于对概念缺乏理解,因而在解题时常会出现许多共同的一些常规的错误。在教学中,教师应当组织一些有典型意义的错误题解,从而学生在对比分析中正确理解概率统计中的概念,掌握正确的解题方法。比如有许多学生认为,不同的随机变量,它们的分布函数一定不同;同分布的随机变量一定相等;两个一维正态变量合在一起就一定是一个一维正态随机变量;若ε与η不相互独立,则ε2与η2就一定不相互独立等等,就是对概念缺乏正确而全面的理解。教师应该结合恰当的例子加以说明,使学生纠正这些错误观念。“辨误”教学能给学生留下深刻的印象引导学生从正反两方面而吸取经验教训,加深对概念的理解,从而更好的理解这一学科领域。

参考文献

[1]杨金英.在概率论与数理统计教学中应突出实用性和趣味性[J].呼伦贝尔学院学报,2002,10,(4).

篇3

一、大类招生背景下软件在概率论与数理统计课程教学中应用需求分析

概率论与数理统计课程教学改革随着大学从专业招生到大类招生的转变,课程教学诸多改革逐步展开,为了激发同学们的学习兴趣,克服概率论与数理统计抽象难懂的特点,借助软件进行数学实验课的引入显得尤为突出。关于数学实验课的教学不少专家进行了研究[1],早在本世纪初,西安邮电大学李昌兴、史克岗[2](2003)在总结西安邮电学院多年的数学实验和建模教学的基本内容上探索出了较好的数学实验课的教学方法,近年来随着统计软件的发展和推广,相信软件的加入会对数学课程的教学增加新的活力和创新性的方法;朱旭[3](2004)在文献中也探讨了如何通过开展数学实验教学来加强学生科学素质培养,如何通内容体系和教学方式的改革、通过在数学实验的教学实践中充分发挥课程的育人作用培养提高学生的科学素质;赵礼峰[4](2011)研究了数学实验课程在实际中对大学生素质培养的一系列重要作用;张序萍、韩晓峰、吕亚男[5](2011)研究了煤炭院校大学数学实验教学体系的构建,谈到了概率论与数理统计等课程实验教学的组织实施。《概率论与数理统计》作为重要公共课程数学类的课程之一,是全国研究生入学课程的考试课程之一,也是今后工科类、经济类、医学类等领域的重要基础课程,如何借助统计软件加深对概率论与数理统计教学概念、方法的认识,引导更加科学的教学方法就要借助较好的教学工具才能激发学生的学习兴趣,培养学生的学习热情,进而养成好的学习习惯,这就为能力的培养奠定基础。

现在流行的软件非常多,比如商用软件统计软件SAS、SPSS、Stata,还有开源软件R、Python,通用数学软件matlab等,商用软件进行统计分析效果好,但是对学生来说负担太重并不可取,我们想借助国际上比较流行的两款开源软件R、Python,结合具体的内容比如如何引导学生编程来实现圆周率的计算,圆周率最早由我国古代数学家祖冲之求出较为精确的数值,后来西方数学家也计算出圆周率,那么我们就想引导学生自己通过这两款软件编程实现圆周率的近似计算,同时也对近似概率加深了理解。

二、以基于R、Python芍秩砑编程实现圆周率的计算为例引导学生进行兴趣学习

1.基于Python软件的圆周率编程计算分析。Python是1989年由荷兰人Guido van Rossum研发的一种面向对象的解释型计算机程序设计语言,早在1991年就有公开发行版问世。其语法既简洁又清晰,它的库非常丰富和强大。它能够把用其他语言制作的各种模块轻松地联结在一起。Python的官网地址:https:///,Python可以从其官方网站获取各种资源,且大多数都是免费的,有利于学生们的安装及下载。(1)圆周率计算机软件近似计算的建模分析。在学生学习随机事件和随机数的基础之上,给学生强调我们计算机产生的随机数和物理方法得到的随机数还是有一些不同,但通过仿真模拟可以达到所要求的精度,所以我们可以通过伪随机数进行仿真模拟实验。设X、Y独立并且都在(0,1)区间上服从均匀分布,首先我们定义示性变量I:I=1,X+Y≤10,其他,则E(I)=P(X+Y≤1)。根据几何概率论所学概念我们知道随机点落在四分之一圆内的概率即为P(X+Y≤1)=π/4,而概率我们可以用大量重复事件的频率来近似代替,进而计算出圆周率的近似值,随实验次数的增多可以达到要求的精度。(2)圆周率计算机软件近似计算的Python编程分析。Python有3.5版和2.7版,本程序可用2.7.11版本完成,进入python官方网站可以下载Python的2.7.11版进行免费安装,调用python的numpy、random、pandas等模块后就可以运行如下的程序得到近似的计算值,精度要求可通过改变模拟次数达到,如果模拟次数是千万次级的运行比较快但精度稍差,如果模拟次数是亿次级或更高的得到的精度就比较高,但是运行的时间比较慢,实践教学中希望教师引导学生各种情况都尝试一下,激发他们的学习兴趣。程序中充分利用了Python提供的求和函数sum,并且程序非常简洁,程序如下:[1]import numpy [2]import pandas [3]import random [4]from random import random [5]n=10**8 [6]pi=sum(1 if random()**2+random()**2

2.基于R软件的圆周率编程计算分析。(1)R语言产生发展简介。R语言产生于1980年前后,在统计领域使用广泛,R语言是源于S语言,两者有着千丝万缕的联系。AT&T贝尔实验室开发了S用来进行数据探索、统计分析和作图。后来Robert Gentleman和Ross Ihaka(新西兰奥克兰大学)及其他志愿人员一起开发了一个R语言系统,由“R core team”进行研发。由于R语言的开源性和广泛的兼容性使得R在国际学术及研究机构快速流行起来,官方网址是:https:///,可以从R官方网站获取各种资源,大多数都是免费的,有利于学生们的安装及下载,下面我们就基于R软件的圆周率编程计算分析进行探讨。即首先用计算机可以计算出落在四分之一圆内的模拟点数,它与所有落在正方形内的点数之比,当模拟次数非常多时,即近似为π/4,模拟频率的四倍就是π近似的计算值。(2)圆周率计算机软件近似计算的建模分析。(3)圆周率计算机软件近似计算的R程序模拟500次的近似结果是3.112(程序略)。

通过实际的计算机编程模拟学生会对概率中的相关概念比如:随机事件、概率与频率的关系、大数定律与中心极限定理、如何把所学知识糅合在一起,而且有了更深刻的理解,为将来解决实际问题打下好的基础。

三、软件在概率论与数理统计课程教学中应用注意的问题及结论

1.应用软件帮助学生理解难点,突出教师的主导与学生主体相结合,不论是单开数学实验课还是在教学中穿插引用,教学手段上都离不开突出软件的吸引力,使学生学习更加有兴趣、更加易于激发学生创新能力。

2.现在流行的软件都有比较好的界面、可视化功能更加强大,更易于抽象问题形象化;但也要注意基础完整理论体系的学习仍然非常重要,不能过分依赖软件,运用软件要和实际结合,比如进行实际数据的统计分析,不能简单地运用软件求出数值结果,要结合实际意义去进行解释;引导学生发掘自我的创造性。

3.无论是验证式教学还是探索式教学,都要选择选择合适的软件,我们推荐的两款软件都可以非常方便地下载安装,如果是慰式课程就要认真设计好组织考核,好的组织考核形式也是督促同学们学好基础知识的重要方法。

总之,通过这些方法培养学生的求知欲,带着问题通过自己编程独立地解决实际问题;大类招生下,由于没有分具体的专业,大一学年是刚入学的大学生必须抓住的重点学年,尤其是大学的教学和管理体制和中学差异非常大,引导学生自主独立地去学习、去解决困难更值得提倡,这也使概率论与数理统计的教学更加易于理解、更加利于接受,从而使教学效果全面提高。

参考文献:

[1]徐向红,孙旭阳,丁雪梅.基于SPSS软件进行统计实验的农医类概率论与数理统计课程教学模式的改革与实践[J].黑龙江畜牧兽医,2015,(07):234-6.

[2]李昌兴,史克岗.“数学实验”和“数学建模”课程教学改革的实践与研究[J].工程数学学报,2003,(08):107-10.

篇4

(一)方法的突破

统计学研究对象的拓展。引入概率论后统计学研究对象的拓展表现在外延与内涵两方面。外延上,导源赌博问题研究的概率论以随机性现象为主要研究对象,它的应用将统计学思想方法带到自然科学领域,甚至用于研究人类心理活动、思维现象,拓展了原来始于社会经济现象研究的统计学的研究对象。另外,联姻前统计学对现象的描述、分析只能止于其确定性方面,有概率论新工具后,其不确定性方面也能描述分析,拓展了作为统计学对象的社会经济现象的数量信息内涵。研究对象的拓展,使得在此基础上统计学成了一门具有通用性的定量分析工具。

统计学研究方法的进阶。概率论联姻“统计”的突出意义表现在方法上—由描述走向推断。“描述统计”(包括数据的收集、整理、显示和分析)主要是通过图表形式对所收集的数据进行加工处理和显示,进而综合、概括和分析得出反映客观现象规律的数量特征;“推断统计”则是在对样本数据进行描述的基础上对统计总体的未知数量特征作出以概率形式表达的推断。联姻之前的古典统计学主要就是初级的“描述统计”(简单的计量、分组、图表、推算等),现代统计学则以“推断统计”为其核心内容。这里“描述”与“推断”的划分一方面反映统计方法发展的两个阶段,另外也反映应用统计方法探索客观事物数量规律的不同过程。“描述”是基础,“推断”是主要内容。

推断统计的现实性意义。统计学从描述发展到推断,反映统计学发展的巨大成就,也是统计学成熟的重要标志。一方面,它是重要的认识工具。正是由于有了“推断”,科学借助统计这一定量分析工具取得了巨大成就。象著名的基因论就借助推断统计方法而得。

(二)思想的腾飞

矩:统计学早期便有“平均”即一般代表值的思想,认识事物数量方面的一般性。引入概率论后,“平均”引申到“期望”,描述随机变量的集中趋势。与“平均”相对应,有对数据偏离“一般”程度的描述即“变异”,认识事物数量方面的差异。引入概率论后其内涵扩充到对随机变量离散程度的描述。“矩”源于力学研究,均数、方差同重心和转动力矩之间的类似促使统计上用“矩”来描述数据特征。其概念涵盖前述的几个参数,并扩充到多阶、多维随机变量特征的描述。“矩”体现了统计“求同察异”的思想,即在了解差异的同时认识事物的同质性。

估计:估计是据样本数据对总体参数所作出的“猜想”’其实质是一种类比,将对已知事物的认识拓广到更大范围。实际上有一个假定即样本、总体的同质性(同分布)。由于样本的随机性使得估计带有不确定性,便给出“区间”来对其描述。

检验:检验即先对总体特征作出一种假设,然后根据样本信息对这一假设的支持程度作出描述(假设正确性的判断),主要运用反证法、小概率原则等思想。检验与估计构成统计推断内容的两面,鉴于思维上推与证的不同而分别提出。

拟合:拟合就是对现象之间的联系、发展规律、变化趋势给予定量描述,是对事物间关系表现的一种抽象。也就是以一定的模型来反映现象及现象间的联系的发展变化,表现出联系的显性方面而抽象掉非显性方面。

相关:相关是客观事物普遍联系的哲学思想在统计上的具体化。统计所研究的对象之间往往表现出相随共变或相随共现的情况,相关便是对现象间这种联系的数量表现的描述、分析。通过对比关联现象变化的方向与程度,来研究它们之间是否有联系、联系的紧密程度和形式。

惯性:哲学上,客观现象都是有规律的辩证发展运动过程。任何运动都具有惯性,这种惯性表现为系统的动态性即记忆性。它反映现象未来行为与过去的行为有关这样一种动态思想,是“动态相关”,也是预测的思想基础,反映现象本身及现象之间关系发展、变化的规律性。

二、概率论引入统计学的启发

概率论引入统计学,使统计学思想方法有了质的飞跃,并成为统计学坚实的理论基础。这也给我们启发:统计学必须与时俱进,顺应时代而发展,不断完善方法体系,与其它定量分析工具、计算技术及其应用领域科学结合融会。

研究对象泛化:统计学是定量分析工具,首先便表现在对所研究的对象(社会经济现象、自然现象、精神思维等)的定量描述上(对象信息数据化),然后再做定量分析。最初统计学只能局限于现象数量信息做确定性的数量描述、分析,引入概率论之后,对研究对象便可以做随机性描述、分析。而实际工作中有时还必须对定性的、模糊的、混沌的甚至突变的等研究对象做定量的描述与分析,概率论便会有所局限,必须引入新的工具。比如引入模糊数学,对模糊性现象做定量描述分析;引入灰色理论,形成灰色统计思想等等。

电子技术发展:科技特别是计算机技术的发展使数据处理的手段得到提升,并对统计提出了新挑战。电脑、网络的出现一方面使统计学的研究对象(总体)成了一个结构复杂的系统,另一方面对数据的分析处理变成了算法。同时在我们面对的数量信息超大量化后,统计的“收集、分析数据”的任务、统计推断意义也就必然发生变化,等等。这一切都要求统计必须与计算机及其它科学联姻,如人工智能、神经网络理论等。

应用领域扩张:现代统计学是一多层次多门类的学科,几乎所有的科研都要借助这一定量分析工具。应用领域的不同,对这一工具的要求必然不尽相同。比如生物统计、保险统计与统计地理学在基础性方法一致的基础上各有与其相联系的实质性科学的特点。现代统计方法(包括概率论的成长、壮大)很大程度上来自一些实质性科研活动,这也就要求我们坚持以概率论等数理工具为基础的前提下紧密联系应用领域的实质性科学。

篇5

《概率论与数理统计》是研究随机现象的统计规律性的一门学科。随着时代的发展,《概率论与数理统计》的方法已经普遍应用于许多领域。大至一个国家,小至一个企业或者个人,统计和概率在生活中的应用是广泛而有意义的。例如,政府机关通过了解现行税法如何影响各种收入水平的人们、预测税法变化对人们的影响等来决定税收政策;根据需要,统计学家正确安排实验,通过在动物和人身上做实验以检验新药的功效、证明新药的安全性,分析试验结果,进而把新药推向市场;从生产线生产出来的产品并不都是一样的,运用统计方法可以检验产品的差异是由随机误差引起的(不可避免的),还是生产过程中的某些地方出错(可以改进的);其它,如抬天气预报、人口控制、个人消费、投资理财等等。总之,《概率论与数理统计》内容丰富、应用广泛,是高等院校许多专业本科生、研究生的一门重要课程。本文总结了作者在教学中的一些经验,希望能为如何上好《概率论与数理统计》有所帮助。

1 《概率论和数理统计》的发展

概率论和数理统计的概念和一些简单的方法,特别是联系于赌博和人口统计的概型和方法,可能出现比较早。但是,它们之所以得到发展且逐步形成一门严谨的学科,还是和社会生产力的发展有密切关系。

17世纪,资本主义上升的初期,关闭的封建社会经济逐渐被航海商业经济所取代。航海商业是冒风险的事业,大量投资是否有利可图的问题;怎样估计出现各种不幸事故与自然灾害的可能性问题;“概率统计”从某种意义上来说,正是从研究这一类问题开始的。航海商业的发展,开始了为掠夺殖民地的战争而大量征兵征税,发展了人口统计学;制造枪炮,开始了导弹学的研究;天文学的观测和力学的分析,开始了对观测误差的研究,所有这些都为“概率统计”的发展开辟了道路。当代科学发展的一个特点是统计学的方法日益渗透到各个领域,并且形成了一些新的学科,如工业统计学、经济统计学、生物统计学、医学统计学、计量统计学、心理统计学等等,而统计学的指导思想和精髓还是概率论与数理统计。概率论与数理统计学教育应该顺应时代的发展,在注重概率统计思想教育的基础上,加强培养应用能力。

概率论与数理统计是用数理统计的原理和方法研究随机事件的统计规律的科学,是两个密切联系的学科[1]。它的内容主要包括:随机变量的分布及总体数字特征、总体参数的点估计和区间估计、总体参数的假设检验、非参数检验、相关与回归、试验设计等等,这些内容决定了它的特点:所研究的事物具有随机性、大量的随机现象中透露出某种必然性、概率统计原理的逻辑性与连贯性、有时很难确定解决问题的最恰当的方法等等。如果不讲解理论而只注重应用,很容易发生不符合使用条件、错用方法的情况。所以,许多人学了多遍概率统计学,却仍不得要领,几乎一用就错。

2 教师如何讲好《概率论与数理统计》课

(1)要做好上课的充分准备。要上好每一节课,就要全面考虑上课的各个环节,做好充分的准备。这主要包括:一是熟悉教材内容、选择适当的教学方法。由于《概率论与数理统计》课程的内容具有连贯性、逻辑性,因此要全面熟练掌握教材内容,注意教材内容的前后联系,授课时才能做到游刃有余。例如,学习中心极限定理时,就要讲清楚定理的使用条件,还可以过举例子来说明定理的实际意义,接下来就可以由此推导出一些相关的定理。在学习了区间估计的方法之后,结合图形来说明:置信度是(1-a)的置信区间不唯一。在此,可以引出:哪种情况下的置信区间估计的精度高的问题;在学习了两个正态总体均值差的假设检验之后,可以提出新问题:给出一组高血压病人服用某药前后的血压值,如何检验此药是否有效的问题,这引出另一种检验方法――配对t检验。二是了解学生情况。由于《概率论与数理统计》课程的重要性,很多专业都开设了这门课。但是各个专业的学生的学习能力不同,理科生的思维反应能力一般要快些,而文科生一般要稍微逊色一些。要根据学生能力进行因材施教,确定适当的教学目标、教学方法,并适时调节教学内容。对于基础不太好的学生,上课时就不能讲授太多理论,要多举例子帮助学生理解。对于理论性较强和难度较大的内容,要重点讲述与统计方法原理密切相关的必备知识,省略不必要的证明。另外,多媒体教学具有色彩丰富,能化静为动,化抽象为直观,不受时间、客观和微观的限制等特点,多媒体教学手段具有很多传统教学手段所无法比拟的优越性,能大大增强教学效果,深化学生的空间观念。因此,需要使用多媒体的时候还要提前做好课件,不能“照本念经”。

(2)要建立良好的师生关系。人类的教育活动是在师生关系中展开和完成的,师生关系对教育、教学效果有着直接的影响。良好的师生关系是成功组织教育、教学活动的必要前提[2]。学生与教师相处融洽,学习的积极性就高,学习效率也会提高。在教学过程中,有很多学生能主动接触教师,这其中有很多积极的因素,例如,对这门课感兴趣、想学好这门课等等,教师更需要有意识的多与学生交流,消除学生的畏惧心理,主动与学生建立民主、平等的师生关系,这将有利于进一步做好教学工作。当学生把教师作为由衷敬佩的良师益友时,学生也就愿意付出时间与精力来学习这门课了。

(3)“兴趣是最好的老师”。在教学过程中,很多著名教育家提倡兴趣原则。因为任何人都无法全心全意地从事自己不感兴趣的工作。所以,在教学过程中,教师要激发学生的学习兴趣,让学生对待学习的态度由被动变为主动。赫尔巴特就说过:没有学习兴趣,教学无疑是空洞乏味的。讲课不能引起学生感兴趣,就不能说教师在全心全意执教,因为这是一种空谈。

我们知道内在动机、有关的情感和态度、认知动机、喜爱、好奇心等都属于兴趣。作为教师,要掌握各种激发学生学习兴趣的方法,在课堂上与学生互动,让学生参与到教学过程中。博金提出了许多在课堂情境中抓住和保持兴趣的方法[3]。比如,让学生模仿新的技能,为学生提供切身性的背景知识,用游戏和活动提高课的新颖性,提高学生在课堂上的归属感,提高学生对任务的认同,等等方法。例如,在学习概率的定义时,有一个很经典的游戏:抛硬币。按古典型的概率定义来说,出现正面或反面的概率都是1/2,但是从统计型的概率定义看来,又不完全是这样的。这个不仅是学生,而且也是很多没有进行过高等数学学习的老师的困惑。从统计型和古典型,不同的角度来看,结果是不完全相同的,但是统计型的概率是趋向古典型概率的结论的,这就与课堂教学中的样本因素有关。在本节教学时,就可以让学生自己做实验试一试。通过观察实验结果,思考造成结果各不相同的原因,进而深刻理解概率的两个定义的意义。如果不举例子,仅仅讲授两个概率的定义,一定是枯燥无味的。

(4)注重实践教学,强调应用。根据改革人才培养模式的要求,“掌握理论、强化应用、突出能力”[4]是大学人才培养的目标。因此,在教学过程中,一定要理论联系实际,学以致用,提高学生解决实际问题的能力。创设良好的适合学生的问题情境是培养学生应用意识不可缺少的一个策略,应该贯穿于整个教学的始终,让学生在问题情境中去思考用什么知识去解决问题。实践中发现,教材中提供的有些情境对学生来说比较陌生,就会降低解决问题的能力。我们采取的策略就是课前让学生去收集有关信息,使学生由陌生变得熟悉。收集信息也是了解、熟悉问题的过程,通过实践、亲自动手去做,学生学习的兴趣就浓了,对知识的理解就容易了。同时,收集信息的过程,拓宽了学生的知识面,同时也激发了学生学好这门课的勇气和信心,能帮助学生领悟知识的应用过程,这不仅实现了知识与能力的融会贯通,又提高了学生的整体素质,增强了学生的应用意识。

另外,为了课堂教学的组织,教师在组织教学时,往往选取的样本比较小。样本越小,所发现的规律变异越大,样本越大,规律的变异越小。那么怎么办呢?这就需要我们想办法,需要创造课内大量测试的实验操作,或者是课外的大量的试验,有条件的学校可以借助计算机模拟测验。

“实践与综合应用”教学中,教师要关注学生的表现,通过恰当的评价,激励学生的学习情感,提高学生解决问题能力和增强应用数学的意识。在评价中,应看他们在学习过程中的行为表现,一看情感、态度,二看学习方式,考察学生是否积极主动地参与教学学习活动,是否乐意与同伴进行交流和合作等。同时注重对学生解决问题能力的评价。一看解决问题的策略水平;二看解决问题的策略形成的独立性,特别关注学生创造性表现,如独特的发现,独特的理解与新颖的解决问题策略或方案等。

(5)要重视并上好第一节课。“良好的开始是成功的一半”。所以,要上好《概率论与数理统计》这门课,就要上好第一节课。

第一节课是老师和学生的首次见面,不仅教师的外貌、衣着等外表形象,而且,教师在第一节课上的举止言谈等教态、教风都会给学生留下深刻的第一印象。在社会交往和工作实践中,重视“第一印象”是人们识别陌生人的普遍行为规律。第一印象是人与人第一次交往时留下的印象,这在心理学上称为Primacy Effect(首因效应)。它是指最初接触到的信息所形成的印象对我们以后的行为活动和评价的影响。多年来的教学发现,留给学生的第一印象极为重要,留下好的印象,有助于教师今后的教学的开展[5]。为了给学生留下良好的第一印象,作为教师,一定要做到:准时上下课,仪表整洁,举止得体,沟通融洽;同时,一定要备课充分,讲好第一节课。一般来说,第一节课,教师要引经据典,重点讲述这门课的起源、历史、重要作用、实际意义、未来发展等等。《概率论与数理统计》这门课就有许多独到的应用之处。

3 结语

教学与科研都是高校教师的重要工作。如何做好教学工作也是一门学问,需要在教学过程中不断摸索、研究。教育有法,但无定法,上好一门课需要师生的共同努力。教师作为知识的传授者,还对学生起到教育、监督、引导的作用。要上好《概率论与数理统计》这门课,需要教师熟悉教材、了解学生,做好上课的充分准备,与学生建立良好的师生关系,在教学中激发学生的学习兴趣,注重实践教学,努力上好每一节课。

参考文献

[1] 颜素容,崔红新.概率统计基础[M].2版.北京:国防工业出版社,2013.

[2] 于苗.新型师生关系准确定位要论[J].东北财经大学学报,2008(4):95-97.

篇6

在计量经济学实际教学中发现,许多同学对统计学中基本概念掌握得很好,依然无法理解计量经济学的内容。主要的原因是已有的计量经济学教材缺乏引导学生从概率论和统计学过渡到计量经济学的相关知识衔接。由于学生在学习这两门课的过程中,缺失了知识点的过渡和迁移,常常用孤立和割裂的视角来看待计量经济学的内容,这无疑提高了学生学习计量经济学的困难程度。学生不知道将已有的数学知识与计量经济学相互结合,形成完整的逻辑体系。针对上述问题,本文将论述从概率论和统计学过渡到计量经济学过程中出现的知识点相互割裂的主要问题,阐述造成学生理解困难的原因,并提出相应的改进方法。

一、从概率论与统计学过渡到计量经济学出现的教学问题

虽然大多数学生在学习计量经济学之前,已经学过计量经济学的基础课程——概率论与数理统计。但学生在计量经济学学习的过程中,面临的巨大挑战是如何将已有的概率论和数理统计的知识和计量经济学中的知识点相串联。造成这一问题的原因主要有:第一,许多计量经济学中的重要知识点,在概率统计中只是简略的介绍,甚至一带而过,并未引起学生的重视。第二,许多计量经济学的教材常常忽视概率论与数理统计的知识点,这可能是由于在欧美的计量经济学课程,并不要求学生前期修过概率论和数理统计。所以中国在引进的国外的计量经济学教材后,也没有在课程上复习概率论和数理统计的相关知识。为了具体说明教学中遇到的问题,本文以本科计量经济学教学大纲中最主要的教学内容:经典线性回归的最佳线性无偏性质和违反基本假设造成的后果两个重要的知识章节作为案例说明。

(一)经典线性回归估计的最佳线性无偏性

经典线性回归估计的最佳线性无偏性是小样本理论下的普通线性回归的最重要的性质,大多数本科计量经济学教材最前面的2-3章都是介绍这一内容,例如国内最常用的教材李子奈的教材《计量经济学》[4]和国外的伍德里奇的教材《计量经济学导论:现代观点》[5]等。学生对这一内容的理解程度也将直接影响到计量经济学的后续学习。然而对于学完概率论与数理统计的同学来说,虽然他们学过随机变量的数字特征,包括期望和方差,还有n阶原点距以及n阶中心距的内容。但他们在概率论与数理统计的课程中并没有接触过无偏性和有效性的概念,事实上,就计量经济学的本质来说。无偏性就是用一阶中心距来计算,有效性则用二阶中心矩来衡量。而这两个概念在在概率论与数理统计的课程中都已经学过,但如果在计量经济学的教学中不特别加以说明,学生很难意识到两者之间的联系。学生难以理解的另一个原因在于,在数理统计课程中,关于中心矩的介绍很简略,许多学生可能并没有意识到其在计量经济学中的重要性,而计量经济学教材中往往忽视对概率统计的中心矩的介绍,导致学生采取一种割裂的视角,无法建立一个统一的思维框架。

在计量经济学的教学中,常常遇见许多同学难以理解为什么要用最优线性无偏性来衡量最小二乘法的优劣?因为大多数计量经济学教材往往直接介绍最小二乘法种种优良性质,在同学们不熟悉无偏性和有效性与中心矩之间关系的前提下,直接引入这两个概念往往显得突兀,学生在学完了线性最小二乘法的最优线性无偏性之后,仍然会产生为什么要用这两个指标来衡量的疑问。更合理的方法是,可以在介绍最小二乘法的内容之前,先介绍均方误差的概念来引入无偏性和最小方差两个概念,这与数理统计中如何衡量参数估计的性质等内容部分是一脉相承的,学生如果学过了数理统计学,就很容易理解均方误差的概念。关于这种过渡知识的介绍,已有计量经济学教材在这方面做了很好的改进,例如陈强著的计量经济学教材[6~7],與许多其他的计量经济学教材不同,他并不是在计量经济学教材中直接介绍最小二乘法具有最优线性无偏性的性质。而是在还没有引入最小二乘法之前,先介绍了如何评价参数估计的优劣,即介绍均方误差的方法,均方误差可以进一步分解成方差和偏差平方之和。偏差平方等于零就是无偏性的证明,方差最小就是有效性的证明,这种分解方法可以直观的表示为什么线性回归的最小二乘法估计会得到最佳线性无偏的优良性质。因为这种对参数估计优劣的评价是通用于所有的参数估计,而不仅仅是对最小二乘法。同学在理解了评价参数估计的方法之后,就不会再对最小二乘法最优线性无偏性的证明过程感到难以理解了,这有助于同学们理解如何从数理统计过渡到计量经济学的相关知识。

(二)违反基本假设对最优线性无偏性的影响

当违反普通最小二乘法的基本假设时,其最优线性无偏性会如何受到影响?许多同学常常依靠背诵的方法记住违反了每一条假设产生的后果,正如已有研究中所指出的[8]。这会导致学生混淆违反不同基本假设与产生后果之间的关系。古典线性回归模型是基于以下四条假设而得出的最优线性无偏的优良性质,第一,线性假定;第二,严格的外生性;第三,不存在严格多重共线性;第四,球形扰动项。事实上,在对于无偏性的证明当中,并没有用到第三条和第四条假定。第一条假定可以通过设定线性方程的形式来保证实现,一般我们可以假设其满足。所以,影响无偏性最重要的假定是第二条严格外生性。第二条假设也是最容易违反的,而且直观上并不能看出是否违反了第二条假设,也很难使用计量的统计方法来检测第二条假设是否被违反。事实上我们所有关于线性回归方程内生性的讨论,都是基于违反的严格外生性的假定而展开的。只有违反第二条假设,最终的估计才是有偏的,而违反第三条和第四条假设,并不会对估计结果的无偏性产生影响。在教学中发现,许多同学最容易犯的一个错误,就是他们常常认为违反多重共线性或者球形扰动项的假设都会影响无偏性的估计。以至于他们认为所有变量之间不可以存在任何相关性,或者认为不可以存在异方差和自相关,否则他们认为会导致估计结果有偏,这都是错误的观念。究其原因,还是因为没有理解在推导无偏性中所使用的概率论与数理统计学的相关知识。这里所需要期望的概念,同学们在数理统计中已经学过,但是另一个重要的知识点——迭代期望定律,在本科生概率论和数理统计课程中一般并不会介绍,如果在推导普通最小二乘回归的无偏性之前,先介绍迭代期望定理,则可以让同学们很容易理解整个推导过程,从而理解得到无偏性所需要的假设,并可以推导出违反不同假设对最优线性无偏产生的影响。二、统计学和计量经济学相结合的教学改进方案

上述介绍的从概率论和数理统计学过渡到计量经济学教学过程中出现的问题及原因,这些是高校计量经济学教学过程中常出现的现象。结合教学实践和相关教学研究,笔者提出以下改进的方法和建议。

总体而言,在计量经济学的教学过程当中,推荐多采用互动式的教学方法,对于一些非常新的概念和知识点,先让同学分组讨论,由此可以了解他们的概率论和数理统计的基础,并且让同学们尝试应用概率论和数理统计的相关知识推导出计量经济学的结论,在此基础上。教师可以知道学生已有的知识储备和知识缺口,同时能够很好的将计量经济学的新知识和他们的知识储备相连接,帮助学生从概率论和数理统计的知识点过渡到计量经济学的知识点,建立一个整体的知识框架,在具体实践中可以采用以下方法。

(一)计量经济学教材的选择

在计量经济学教材的选择方面,最好选用计量经济学教材在介绍最小二乘法内容之前,先复习概率论和数理统计的相关知识。虽然有些教材将这部分知识放到了附录部分,但是在实际教学过程中,往往忽略对这一部分基础知识的介绍。所以更合适的方法是先介绍完概率论和数理统计的基础知识,比如,最重要的知识点包括条件概率、条件分布、数字特征,迭代期望定理,随机变量的性质、假设检验、统计推断、大数定理和中心极限定理、随机过程等。让同学们在学习计量经济学之前能够回忆起已经学过的概率论和数理统计基础知识。尤其对学生后期进一步学习最小二乘法的性质的数学推导过程和性质非常有帮助。

(二)课堂教学的改进方案

在课堂教学方面可以采用“学生分组讨论+教师讲解+课后习题演练”三者相结合的方法,传统的教学方式往往重视教师的讲解和课后的习题演练。而忽视学生的分组讨论,虽然学生分组讨论在学生较多的时候很难开展,尤其是在总学时有限的情况下。但是,如果在课堂上给出五分钟,让同学们能够自行讨论,并反馈他们对于计量经济学推导过程的理解,将有助于老师掌握学生真实的基础知识,尤其在不知道他们掌握了哪些概率论和数理统计的基础知识的前提下,一味的介绍计量经济学的相关知识,往往无法在他们已有知识库和新的知识之间建立很好的链接。造成学生在理解计量经济学的推导过程中采用孤立的视角,无法跟他们之前的概率论和数理统计的知识点形成有效的联系,最终无法建立更加统一的知识框架和体系。

(三)教学大纲的优化方案

对于本科阶段计量经济学的教学,现有的教材在不同教学知识点的安排上并不十分合理。应该根据学生掌握的概率论和数理统计的基础情况,提出更合理的计量经济学的教学大纲。比如,从目前国内比较流行的计量经济学教材来看,往往会花很多笔墨来介绍小样本理论的普通最小二乘法的推导过程和相关性质,尤其是在违反了不同假设之后所导致的不同后果。许多教材都会介绍当扰动项存在异方差和自相关时,会产生什么样的后果,并提出多种不同的解决方法。但在计量经济学的实际应用当中,这两种违反假设产生的后果并不十分严重,在使用计量软件进行回归处理的方法非常简单。这与实际教学中所花费的学时不相符。另外,在计量经济学的理论教学中,往往会花很多时间来介绍多重共线性对于回归结果产生的影响,但在实际应用当中,我们并不经常讨论多重共线性的问题,除非是存在着非常严重的多重共线性,因为当建立回归的模型时,我们就会考虑变量之间的多重共线性问题,尽量避免使用多重共线性很严重的变量。而不是通过后期的测量多重共线性的方法来删除相关变量,因为如果该变量纳入到回归方程中,一般情况下我们首先应考虑其理论意义,而不是为了降低多重共线性将其删除,如果删除一个相关的变量,则有可能会因为删除一个重要的控制变量,导致最终的回归结果产生偏误,最终反而得不偿失。

篇7

1 概率论与数理统计的定义和特征

概率论与数理统计是研究随机现象数据规律的一门课程,主要告诉人们如何有效地收集、整理和分析数据,对所观察的问题做出推断、预测,并能为未来提供合理决策和建议。在开设课程中,公安专业中一般需要半个学期,主要内容包括: 概率论的基本概念、随机变量及其概率分布、数字特征、参数估计和假设检验、回归分析等。

概率论与数理统计学科产生于17世纪,在20世纪得到了迅速的发展,成为了人类的重大科技成就之一。因此,概率与数理统计作为一门应用很强的学科,应具有其本身的特征,主要体现如下。

第一,概率论与数理统计的研究对象是随机现象。

依据事件的发生的可能性,人们把自然现象发成必然现象、不可能现象、随机现象。而概率论与数理统计的研究对象正是随机现象。随机现象是指,在一定的条件下,并不总是出现同一个结果的现象。从这个定义上看,随机现象的结果数应该是大于等于2个的,而到底出现哪一个,人们是不能提前得知的。

第二,概率论与数理统计是对数据的处理,具有较强的客观性。

数据是概率论与数理统计研究的原始材料。一切事物都是有质和量两个方面的,并且质和量紧密联系共同定义客观的事物。没有无质的量,也没有无量的质,质与量相伴相生。然而,在认识事物时,质与量却可以分开,对某一事物的研究,可以先单独研究数量,通过对数量的研究进而研究质。因此,对事物量的研究是人们认识事物的重要一方面。通过研究数据作为一个出发点,进而研究整个事物,是目前人们使用的最主要的研究方法之一。

第三,概率论与数理统计作为方法论,是属于归纳法的。

概率论与数理统计是根据实验和调查,得到大量的个体,并对这些个体进行研究,然后加以总结,得出总体规律的。比如说,我们要证明等腰三角形的两底角相等,运用概率与数理统计的方法,就是我们要做出来许许多多,各式各样的等腰三角形,量一量底角,看有是否相等。然后根据这些有限的等腰三角形的两底角是否相等的情况,来推而广之所有的等腰三角形的两底角的情况。这就算概率论与数理统计的研究方法。

2 概率论与数理统计方法在公安工作中的应用

概率论与数理统计作为一种定量的分析手段,并不是要教会学生怎么求均值,求方差,而是要交给学生是一种思维的方式,解决问题的方式。

现结合公安实际工作来看下概率与数理统计思想是如何应用的。

例1 警力分配。根据一段时期内某个地点发生违法犯罪案件数量,来配备该地区的警务人员。

如下图,给出了某市四个区域在一年中每月任意4天发生案件数总和。

如上图所示,甲地和丁地将是重点防御区域,可以加大警力。

例2 以案发现场留下的脚印长度测算犯罪嫌疑人身高。侦查人员可以根据收集到的罪犯脚印长度,并按照公式:身高=脚印长度×6.88,估算出罪犯的身高。上述公式的得到就是应用了数理统计学中的二维随机变量的数学期望理论。

例3 依据罪犯留下的某一数字信息,排查嫌疑人。在犯罪现场勘查过程中,测得现场人左步长的若干数据,现又密取到某一嫌疑人左步长的若干数据,一般情况下,这两组数据不完全一样,那这个差距是如何造成的呢?[1]是偶然原因造成,还是根本就不是同一个人呢?能不能根据这两组不同的数据做出判断,即排除该嫌疑人,或者将该嫌疑人作为重点疑犯。这个时候就可以用概率轮与数理统计中的假设检验来解决这个问题。举例如下:

在某一案件犯罪现场测得左步步长的15个数据,分别为:77,76,75.5,74,75.5,74.5,73,79,79.5,79,78,77,77,77,76.5 (单位:厘米)。密取了嫌疑人左步长15个数据为:83.5,79.5,77.5,79.5,78,83.5,81,76.5,79.5,80,80.5,82,83,83,80.6 (单位:厘米)。

现场左步长与嫌疑人的左步长是否有显著差异?

取a=0.001

X≈76.6

Y≈80..5

|U|≈12.342

查统计表可得:U0.001=3.3

|U|>U0.001

所以,我们有99.9%的概率认为现场测得的步长与嫌疑人的步长不是同一个人的,因此,可将此嫌疑人排除。

例4 犯罪机理的研究。通过一元线性回归方法可以研究文化程度与犯罪率之间的关系。举例如下:

研究人们的文化水平与犯罪率之间的关系,随机抽选1000人作调查,得到数据如下:

通过统计软件很快得到y与x的关系:

Y = 4.42 ―0.319x

这个方程表明犯罪率(Y)与人们受教育年限(x)之间成负相关关系。式中4.42是表示人们受教育年限为零时犯罪率为4.42%,式中一0.319是表示人们受教育年限每增加1年时,犯罪率的平均减少值为0.3188%,也就是10000人中将减少30个人左右[1]。

通过上述例子,能够真切的感觉到,概率论与数理统计的方法虽不能够提供最正确的结论,但它能够使人们在可能出现多种结果的情况下,做出某种判断,而这种判断将你出错的可能性控制在最小的范围内。在公安工作中应用概率论与数理统计方法地方还有很多:比如依据指纹特征进行指纹识别;依据语言规律进行语言识别和语音识别;依据罪犯信息特征(如罪犯性别、年龄、职业等)的统计分析,发现犯罪规律;依据交通流量的统计,查找交通拥堵,进行道路改良或制定政策;依据消防火警和火灾的统计,发现分布规律,预测和防止火灾等等。

3 概率论与数理统计的学习与公安院校教育的关系

第一,概率论与数理统计的学习是公安专业很多课程学习的基础。

犯罪情报学、公安信息系统应用、计算机犯罪侦查、公安统计等课程跟概率与数理统计内容都有很大关系,数理统计作为这些课程的基础,有助于学生理解和学习公安专业的课程。

在新的学科门类中,公安技术学是在工学门类下的。概率与数理统计是工学学科必修的一门课程,也是支撑公安技术学专业课程的基础课。

第二,概率论与数理统计的学习有助于学生完成本科毕业论文。

在文章写作过程中,定性分析和定量分析是较为重要的研究方法,尤其是定量分析越来越受到人们的青睐。而概率论与数理统计方法正是定量分析的一部分。若学生在本科学习阶段,学会一两种简单的概率论与数理统计方法,比如回归分析、方差分析等的方法,有助于他们对问题的分析,以及毕业论文的完成。

第三,概率论与数理统计学习可以提高公务员考试成绩,有助于学生的就业。

学生的就业一直是学校、家长、学生关心的重点。在警察院校,毕业之后能去做警察,应该是一个学警最直接、最渴望的出路。要想成为警察现今最主要的途径就是考公务员,而在公务员考试试题中,涉及概率、统计的试题是相对较难的部分。若学生学过这些知识,那么这部分难点将不再是问题。

参考文献:

篇8

一、起源介绍

概率论产生于17世纪,传说有一个江湖骑士在赌博中遇到“点的问题”,即:“假设两个赌徒相约赌若干局,谁先胜3局就算赢,全部赌本就归谁。但是当甲胜了2局,乙胜了1局的时候,由于某种原因,赌博终止了,问:赌本应该如何分才合理?乙认为:甲再胜一局就赢了,而自己再胜两局也赢了,所以赌本应该按2∶1分。甲认为:即使乙下一局胜了,两人也是平分秋色,各自收回赌注,然而自己还有一半的可能获赢,故认为赌注应该按3∶1分。这两种分法似乎都有道理。这位骑士将这问题请教帕斯卡,帕斯卡则将这个问题连同解法写信给费马,两人经过讨论取得一致的看法:甲的分法是对的。分赌本问题促使何兰数学家惠根斯完成了《论赌博中的计算》,这是关于概率论的第一本书。

统计学起源于中世纪,那时欧洲流行黑死病,死亡的人不少,英国学者葛朗特几十年来对死亡与出生情况资料加以整理。而1662年葛朗特发表的著作《关于死亡公报的自然和政治观察》,标志着这门学科的诞生。同时,数理统计学起源于天文和测地学中的误差分析问题,由于测量工具精确度不高,于是通过多次量测获取更精确的估计值。

通过这样介绍,让学生明白这门课来源于经济、生活问题,所以这门功课和经济与生活密切相关,从而激发学生学习这门课的兴趣和积极性。

二、研究内容

在讲解这部分内容时,先下定义:概率论与数理统计是研究随机现象及其统计规律性。进一步解释什么是随机现象:事前不能预知结果。

为了进一步理解随机现象,举例说明。

例.下列现象中哪些是随机现象?

A.在一个标准大气压下,水在100℃时沸腾;

B.掷一颗骰子,其出现向上的点数;

C.新生婴儿体重。

总结随机现象的特点:出现的结果是多个可能结果中的一个,“每次结果都是不可预知的”;但“所有可能的结果是已知的”。

举一大家熟悉的话,体会概率论与数理统计的应用。

例:“天有不测风云”和“天气可以预报”有无矛盾?

最后介绍一下本课程各章节的内容,参考书目。

三、学习意义

概率论与数理统计与生活实践密切相关,它可以应用到很多科学技术领域中。例如,电子产品寿命分析、生产产品质量检验、设置公交车路线、公用自行车站点、各种保险、种群增长问题、生物统计学。

举几个和日常生活相关的例子激发学生的好奇心与学习兴趣:

例1.考虑有两个小孩的家庭:(1)若已知某一家有男孩,(2)若已知某家第一个是男孩,问两种情况下这家有两个男孩的可能性是不是一样?

例2.某工厂有机器300台,设每天每台机器出现故障的概率为0.02,求一天内没有机器出现故障的概率。

学习这门课可以锻炼人的思维方式,培养发现、分析和解决问题的能力,为以后的专业课学习打下基础。

概率论与数理统计的绪论课是整个教学的第一课,绪论教学对学生有“先入为主”的影响,使学生对这门课的学习内容、整本教材的结构有快速的认识,绪论可以激发学生的学习兴趣,绪论课的好坏直接影响到学生对这门功课的学习。

参考文献:

篇9

对于《随机过程》课程教学方面的研究,陈建华[1]结合教学现状,提出教学内容及教学方法改革探索的基本内容。薛冬梅[2]针对《随机过程》课程概念多、理论性强、抽象等特点,提出加强《随机过程》课程建设的建议,对课程教学进行实践研究。吴俊杰[3]通过编写工程研究生《随机过程》教材,谈了自己的相关体会。吕芳[4]结合洛阳师范学院统计科学系《应用随机过程》的教学实践,从教师的学术水平、学生的学习、教学工具的使用等方面结合个人的教学经验提出一些措施和意见。陈家清[5]针对《随机过程》的教学,研究教学方法与教学措施的改革,提出以人为本的教学理念,优化课程教学方法。

随机过程是一连串随机事件动态关系的定量描述。人们总是通过事物表面的偶然性描述出其必然的内在规律并以概率的形式来描述这些规律[4]。它与其他数学课程如《实变函数论》、《泛函分析》及《测度论》等有密切联系,同时在统计学、金融学和经济学等领域中有广泛应用。因此,在讲解与其他课程有关联的相关知识时,应充分体现《随机过程》课程的实践这性和应用性,结合本学科的学术前沿与发展动向,拓宽学生的视野[6]。

高等院校统计学、经济统计、应用统计和金融工程及其相关专业将《随机过程》设置为专业主干课程,同时也是数学与应用数学、信息与计算科学等专业的选修课。《随机过程》的理论和方法在自然科学、工程技术、工农业生产、军事科学、金融和经济等众多领域内发挥着重要作用。《随机过程》课程具有概念多、理论性强、抽象难以理解、应用性强和应用难于上手等特点,使得统计学及其相关专业学生难于掌握该门课程的基本知识和基本技能[5],应用起来更难。为使不同专业的学生对《随机过程》有更好的理解和掌握,在教学设计和教学内容方面应该大胆进行教学实践,提高教学效率,让学生更好地领悟随机过程的思想精髓,让其在应用中更好地发挥作用。

一、人才培养方案中《随机过程》课程地位

吉首大学数学与统计学院数学与统计学院现有数学与应用数学、信息与计算科学、统计学(精算方向)、经济统计学、应用统计学、金融工程6个本科专业,拥有数学及统计学两个一级学科硕士点,可招收基础数学、计算数学、应用数学、运筹学与控制论、概率论与数理统计、经济统计、应用统计等10个二级学科硕士研究生[7]。统计学一级学科硕士点将《随机过程》设置为专业基础课,统计学、应用统计和经济统计在人才培养方案中将《随机过程》设为专业主干课;金融工程开设《金融随机分析》,作为该专业主干课;数学与应用数学将其设为专业选修课。信息与计算科学虽然没有开设《随机过程》,但在实施中作为选修课。

随机过程的重点是研究现实世界中的随机现象,将是《多元统计分析》、《时间序列分析》、《回归分析》和《统计预测与决策》等后续专业课的基础。各高等院校将《随机过程》设置为专业基础或必修课,是比较合理的。金融工程包括创新型金融工具与金融手段的设计、开发与实施,以及对金融问题给予创造性的解决[8]。该专业需要应用随机过程解决金融中的实验问题,其侧重点与统计学专业有所不同。因此其教学重点是随机分析及其方法的应用。该院的其随机分析作为其专业主干课,如能先修《随机过程》或《应用随机过程》,对于该专业的发展将会更有利。查询高校人才培养方案,数学和统计学专业均开设该课程,各高等院校对随机过程及相关分析方法越来越重视。

二、课程所需基础

随机过程以初等概率论为基础,同时又是概率论的自然延伸。它的基本理论和方法不仅是数学和统计学专业所必须具备的技能,而且是工程技术、电子信息及经济管理领域的应用与研究所需要的基本手段[2],该课程所需的基础是概率论的相关知识。但针对不同的专业及不同的学习要求,本课程如能有以下基础则学习更轻松:《测度论》、《实变函数与泛函分析》等。开设有这些课程的高校均将其设为《随机过程》的先修课程。学生如果想从事应用概率方面的研究,就必须加强测度论与分析学相关内容的学习。对于只是想了解并应用随机过程基本方法的学生来说,就只要学习概率论就能进行该课程的学习。因此不同专业的学生,该课程所需基础是有差异的,课程开设的时间也不一样。对于统计学专业的学生,应该让学生学习完概率论和测度论后开设此门课程。该课程可以设置《概率论》、《测度论》之后,《时间序列分析》之前。对于数学与应用数学、信息与计算科学和金融工程专业在学生学习完概率论与数理统计后就能开设该门课程,并在其他专业课中对其进行应用,更好地开拓随机过程的应用领域。

三、不同专业对随机过程课程教学内容和要求有差异

《随机过程》作为高等院校统计学专业必修课,将在金融和经济中发挥着重要作用。根据本课程在统计学及相关专业中的地位和作用,应该将其设置为专业必修课。《随机过程》要重视基本理论教学,对于统计学专业建议用测度论的语言对其教学,重视其理论推导。但此教学难度较大,要求学生数学功底好,已经系统学习《高等代数》、《数学分析》、《实变函数》、《泛函分析》和《测度论》等课程。按该方案设计,该课程的学习将重视培养学生理论推导能力,为今后学习打下坚实的理论基础。该方案要求学生数学基础较好,喜欢数学理论推导,各高校要根据学生基础进行灵活设置。

对于数学与应用数学和信息与计算科学专业来说,本专业的学生已经学习《高等代数》、《数学分析》《实变函数》《泛函分析》和《概率论与数理统计》等课程,已经具备学习《随机过程》的数学基础,为了适应我校重基础,宽口径的教学目标,供有兴趣的学生进行修读,将其设置为选择修课是比较合理的,以便让有兴趣从事金融、经济、通信工程和其他专业的学生打好基础,这对他们将来的发展是非常有利的。该课程可设置为第四学年的选修课。

对于应用性较强的金融工程专业来说,在其应用中需要应用随机分析的基本理论和方法,在该专业中应该加强随机分析的学习。因此在专业设置中所设置的课程重点应该是《金融随机分析》,但此课程难度大,抽象难懂。为了让学生把握教学内容,建议在该课程前先设《随机过程》,为学习《金融随机分析》做好知识准备,有利于学习掌握随机分析的基本原理和方法,并对其进行灵活应用。

四、随机过程教学改革和建议

1.金融工程专业设置改革。

根据该专业学时与学分的安排情况,本专业可以分别设置《随机过程》和《金融随机分析》两门课程,教学重点不一样。目前在经济和金融中很多地方需要应用《随机过程》的相关理论和思想,因此该专业需要加强本课程的学习。该专业的《随机过程》的教学重点是随机过程基本概念、泊松过程、马尔可夫过程、维纳过程和高斯过程等具体的一些随机过程,而随机分析和数理金融部分是《金融随机分析》教学重点。

2.各专业其学分、时间各异。

对于统计学专业来说,《随机过程》是其专业主干课设置为4学分,72学时。可以在修完《概率论》进行开设。若开设《测度论》和《实变函数》,应该将其设为《随机过程》的先修课程,设置在第五或第六学期。该专业建议其重视基本理论和方法讲授。

数学与应用数学和信息与计算科学这两个专业,该课程是选修课,学分为3学分,54学时。建议将其设置在第六或第七学期,让学生拓宽知识面,强调其应用性。金融工程专业可以将该课程设置为专业必修课或专业主干课,建议开设成两门课程:《随机过程》和《金融随机分析》,各3学分,54学时。《随机过程》作为《金融随机分析》的先修课程,重点是随机过程概念和基本理论,随机分析及应用基础,数理金融相关内容。

3.进一步提高该课程的应用能力,增加实验性环节。

改变传统授课以讲授为主,按照教材进行填鸭式的讲解。根据现代化的教学原则,该课程结合案例进行教授,将理论知识融入各实例中,应用多媒体设备进行设计,将复杂的理论转化为相关案例。一方面提高学生的学习兴趣,另一方面化解难点,提高教学效率。

在实际教学中,建议加入实践性环节,选定部分内容作为实验题目,构建融知识传授、能力培养、素质教育为一体的教学模式[2]。建议结合《时间序列分析》的相关实验,增加实验性环节。

通过该课程的教学实践与研究,结合该院人才培养方案,分析《随机过程》课程的重要性,结合不同专业的教学实际,为提高该课程的教学质量,培养学生的学习兴趣,提出部分教学建议。希望通过该新开课程的建设,加强教研结合,能建设成一支由多人组成、学术能力强、教学水平高超,并致力于将教学与改革结合、教研互促的教师梯队[1]。在此基础上,申请校级精品课程,促进该院统计学专业主干课程教学能力的逐步提高。

参考文献:

[1]陈建华.李海燕.张榆锋.施心陵.《随机过程》精品课程建设与教学改革探索[J].中国科技信息,2010,18:283-284.

[2]薛冬梅.《随机过程》教学改革研究与实践初探[J].吉林化工学院学报.2010,27(6):54-56.

[3]吴俊杰,潘麟生.编写工科研究生《随机过程》教材的体会[J].1991,7(1-2):217-219.

[4]吕芳,王振辉.关于《应用随机过程》教学的思考[J].中国科教创新导刊.2009,30:50,52.

[5]陈家清.统计学专业《随机过程》课程教学改革研究[J].湖北第二师范学院学报,2013,30(8):106-108.

[6]钟启泉.新课程背景下学科教学的若干认识问题[J].教育发展研究,2008(24):7-11.

[7]管理员.学院简介[EB/OL].http:///Article/ShowArticle.asp?ArticleID=544,2014.6.28.

篇10

概率论与数理统计课程是一门承前启后的课程,不同于高中所学的简单概率,只需要排列组合的初等方法就能计算,大学中的概率论与数理统计课程是以微积分为基础,需要重新定义概念与运算规则,而且,经管类专业课程《统计学》又以《概率论与数理统计》为基础的,所以,概率论与数理统计课程的学习与微积分的学习好坏有关,又决定了后续课程《统计学》的学习效果。在教学中发现,这样重要的一门课程在学习效果上并不好,每年东方科技学院的期末考试不及格率仅次于高等数学的不及格率。很多学生也是怨声载道,大吐苦水,不知道该如何学好这门课程,明明都尽力去学了就是学不会。作为每年都让这门课程的一线教师,经过多年的教学实践发现主要存在以下几个问题:

1、概念理解不到位。概率论数理统计的课程分两部分:概率论以及数理统计。概率论是以微积分为基础,通过分布函数来定义概率,一般包含概率的定义与性质、分布函数、二元分布函数、数学期望与方差、大数定律与中心极限定理;数理统计一般包含:数理统计的基本概念、参数估计、假设检验、方差分析、回归分析。从内容上来看有点多,一般也不会全部讲解,受到课时偏少的影响,教师在概念解释上就讲的偏少,主要还是以解题为主,但是概念没有解释清楚的后果就是学生根本无法理解随机变量、分布函数、统计分布的内涵是什么。尽管在课堂上一再强调随机变量与高等数学的变量不一样,随机变量仅仅表示事件,不同的数字变量可以表示为相同的事件,分布函数是以随机变量进行定义的,其含义就是随机变量所定义事件的可能性-概率。但很多学生还是以高等数学的变量与函数来理解随机变量与分布函数,特别是随机变量函数的分布时候,就更无法理解,教师讲的口干舌燥,学生听的一脸茫然,那求知若渴却又无法理解的眼神让教师无可奈何,不得不再次重复讲解。

2、微积分基础不牢固。概率论与数理统计是以分布函数为主线串联的,但是分布函数的问题就牵涉到高等数学的微积分知识,特别是二元分布函数需要用到二元微积分,这对很多学生是苦不堪言,原因就在于前修课程微积分没有学好。由于高等数学的知识量大,课时又相对较少,独立学院学生的数学基础本身就很薄弱,教师在讲微积分知识时就尽量简单化,二重积分的知识就变简单很多,这就导致W生学习概率论的时候,再次面对二重积分就有天然的畏惧感,不熟悉的分布函数概念以及难懂的二重积分的计算,使得很多学生就放弃概率论的学习。对数理统计也是如此,数理统计的知识是以总体样本为基础,通过抽样来估计总体参数并对总体参数进行检验的过程,而且,统计的规律就是随着样本的增大,总体就服从正态分布,就是通过一定的方法来估计正态总体的两个参数并进行检验。这样的知识点按理来说不难,但是学生的表现来看,不尽如人意。这反映出学生对新事物的接受能力不适应,经过高考对知识点反复强调讲解的习惯,学生对大学课程没有反复练习的行为不适应,而且其他课程也多,又处于没有人监管的状态,主观上就放弃了对难点的探索精神。因为数学的学习不同于其它课程,除课堂教学外,还需要有一定的时间做预习预备与复习巩固的。

3、不注重实践操作。概率论与数理统计的学习只是讲解一些基本的概率统计原理,理论上不需要过多详细讲解,而应该把重点放在学生的实践操作能力上。特别是数理统计方面的知识点如参数估计、假设检验、回归分析等这些知识,让学生指导基本的原理即可,学会在实际中会用到这些知识才是重中之重,理论与实践的结合,才会更直观的让学生明白理论的意义所在。经管类学生所需的统计知识在以后要用到的地方挺多的,工作上一些简单的excel表格就是有求和求平均,如果考上经管类研究生,那么学术上还需要学习《计量经济学》,得会用统计学的知识进行实证分析,统计软件如SPSS做模型分析,并对结果进行经济解释,进而来撰写相关的学术论文。因此,针对经管类学生的特殊性,教师应该在实际操作上下一番功夫。

三、概率论与数理统计课程教学的改进措施

针对概率论与数理统计课程一些教学的问题,提出一些改进措施。

1、重视概念的解释。教师在主观意识上应该认识到解释概念的重要性。受到应试教育的影响,教师在教学上轻概念重解题的思维一直没有改变,认为数学就是能够让学生解出题目来就是好效果,殊不知,这样的教学只能培养一批会机械计算的学生工人,根本无法培养学生的综合素质。况且,解释概念比解题重要的多,概念解释清楚了,学生就容易理解做题的含义,反而能促进解题的进展,磨刀不误砍柴工。学生应该注意甄别新旧知识的区别,建构主义认为,前面的知识学习会对后面知识的学习带来影响。很多学生在大学前已经习惯了数学当中的数字计算,数字变量的概念,对概率论当中的随机变量以及分布函数还是以原有思维进行思考,这样,就很难走出误区。教师即时在课堂上反复强调数字变量以及随机变量的不同,但如果学生的主观没有意识到,就很难达到效果。所以,对于新旧概念的区别,教师要详细解释,学生也应该主动认识。

2、加强微积分的练习。如果不会微积分,那么概率论与数理统计的学习也就无从谈起。微积分的学习是在高等数学中很重要的一个知识点,那么师生就应该在高等数学中把这个知识学好。如果还是未能学好,就应该采取开设选修课的方式,给予微积分基础不好的学生来补习,当然这个在实际操作当中有一定的难度,选修课是学生自愿选择的,那些微积分本来就不好的就不会去选修该课程,教师可以规定高等数学不及格的学生必须强制的选修微积分,至于会不会引起学生的反感而导致学生的逆反厌学情绪,这个得需要做一定的调查才行;此外可行的就是成立学习小组,让那些成绩优秀的学生来帮助后进学生,采取帮扶的方式来提高微积分的成绩。还有就是教师可以建立qq群、微信群等网络平台,通过网络答疑解惑的方式来解决对数学学习有难度的学生。

3、注重统计软件操作。数理统计方面的知识在后续课程如《统计学》、《计量经济学》用的很多,这些课程的目的是培养学生掌握基本统计软件的用法。因此,在讲解数理统计的时候,教师就可以穿插一些基本软件方面的知识,把理论用到实际操作上,就能让学生更加明白理论的含义,当然,这里要注意的是,由于课时不够,正式课堂上可能无法讲解太多。教师应该采取课后作业的形式进行,布置一些跟尽管专业有关的习题,如分析教育水平对收入的影响这类简单可行的统计练习,并把做题的批改当成平时成绩的一部分,以监督学生完成课后习题。

四、结束语

经管专业的特殊性,使得概率论与数理统计课程的学习显得较为重要,对后续课程有很大的影响,教师与学生应该充分意识到概率论当中一些概念的重要性,加强微积分的练习,在统计方面尽可能的讲解软件使用的知识,来提高概率论与数理统计的教学效果。

参考文献:

篇11

早在2500年以前,儒家代表人物孔子把教育内容分为德行、言语、政事、文学四科,其中以德行为根本。而德育方法由不同层次的方法构成的,特别是方法论层次上的德育方法,如因材施教法。既然不同的学生自身的特点不同,那么在教学中就应采用不同的教育,我们所提出的分层次教学思想,就源于孔子的因材施教。

近年来,随着教育改革的深入,本科教育从精英化向大众化进行转变,高等院校招生规模大幅度地增加,医科院校入校学生的数学基础和学习能力参差不齐。而大学生由于其专业对概率与数理统计知识的要求不同,其学习目标和态度不尽相同,这就使得大学生对该课 程的需求有了进一步的分化;同时由于不同学生的数学基础和对数学的兴趣爱好也不尽相同,对数学学习的重视程度和投入有很大差别。在长期的教学实践中我们深刻地体会到,为了在有限的课堂教学时间内尽可能地满足各层次学生学习的需要,满足各专业后续课程学习的前提下,最大程度地调动学生的学习积极性,必须推行分层次教学,提高数学教学的质量[1,2]。

1 概率论与数理统计分层次教学研究的背景

自1995年国家教委立项研究“面向21世纪非数学类专业数学课程教学内容与课程体系改革”以来,对于数学教育在大学教育中应有的作用,国内数学教育界逐渐认识到,我国高等院校的规模水平、专业设置、地区差异、师资力量、生源优劣都相去甚远。而随着我国高等教育大众化趋势的步伐加快,这些差距到21世纪更加凸显,分层次教学法的提出必然是大学数学教学的规律。这也是我们在进行大学数学分层次教学研究时的一个基本出发点。我校在概率论与数理统计的教学实践中提出分层次教学,是在原有的师资力量和学生水平的条件下,通过分层次教学,充分满足各专业各水平不同层次学生的数学素质的要求,最大限度地挖掘学生的潜能,引导学生发挥其优势,使每个学生都能获得所需的概率统计知识,同时能够充分实现学校的教育功能和服务功能,达到教书、育人的和谐统一[3]。

2 概率论与数理统计分层次教学中考虑的问题

我校是一所医学院校,早期的概率统计教学常常采取“一刀切”、“齐步走”的教学方法,学大纲、教学实施计划、教学方法、考核要求,并未针对数学基础的不同采取不同方法,这造成基础好的学生“吃”不够,基础差的学生“吃”不了,课程结束后并未达到理想的教学效果。

概率论与数理统计有别于其他学科,理论性和应用性都很强,这就决定了教师在教学中的参与和学生的自主学习都必不可少。因此,课堂教学中一方面要以学生为主体,以学为中心,另一方面要发挥教师的主导作用,积极组织、引导学生,促进学生更好地学习。

高等教育具有大众化、多样化,本质上讲应该是个性化的。而素质教育的最大特点之一是要面向全体学生,挖掘每个学生的潜力,发挥每个学生的个性特长,提高全体学生的素质和能力[4]。但是由于扩招,新生素质呈下降趋势,即使在我校,在校学生由于受遗传、家庭、学校、社会环境等因素的影响,其水平差异、层次差异也很明显,即具有层次性。而分层次教学则承认学生的个体差异,在教学过程中针对不同层次学生的不同个性、不同的数学基础和学习能力以及不同专业设计不同层次的教学目标,根据不同的教学内容,运用不同的教学方法和教学手段,从而使学生在自己原有基础上进行合理地学习,在基础知识和应用能力方面得到充分发展,先后达到教学大纲的要求[5]。

3 概率论与数理统计分层次教学模式的实施

3.1 层次划分

3.1.1 按专业不同进行划分 根据各专业对概率统计知识的不同要求,采用不同的教学大纲,确定不同类别学生所必须掌握的知识点。目前我们面对生物医学工程专业开设《概率论与数理统计》,教材采用同济大学主编的《概率统计简明教程》,在教学过程中提出"强化理论,增加实例,适当应用"的教学指导思想,重在培养学生随机思维能力和提高统计素养,为今后解决一些涉及概率知识的医学工程随机模型打好基础;面向药学与生物技术专业开设《概率论与数理统计》,教材采用第二军医大学主编的《医药数理统计方法》,教学中提出“淡化理论,增加实例,强调应用”的教学指导思想,在该专业的教学中加强了统计知识的学习,重在统计方法的讲解上,通过教学使学生具有较强的随机数据分析和应用统计软件的能力;面对临床医学、预防医学、医学检验、医学影像、高原医学、核医学等专业我们开设《军事医学统计学》,教材由我校统计学教研室主编,教学过程中强调统计的“适用性”,重在要求学生军队卫生统计学的相关内容,理解医学统计学中的重要名词概念,能正确区分资料类型;而面对其余专业开设《概率论与数理统计》、《趣味概率论》选修课,旨在让更多的医学生了解概率论基础知识以及统计方法,为后续课程打好基础。

3.1.2 根据学生的数学基础进行划分 由于概率论与数理统计的学习与高等数学知识的掌握程度有显著关系,因而我们在教学过程中根据高等数学的成绩,按程度将同一专业学生划分为A,B,C三个层次。但由于目前受同一专业的课程安排情况、教室数量以及教师人数等条件的限制,我们只能要求教师在同一班次教学中采取相应的各种措施,在授课内容的重新组织和授课方式上多下功夫。

A层次:此类学生学习勤奋,喜欢数学,数学基础扎实,智商和情商均很高,爱动脑、勤动手,自学能力强,将概率论与数理统计看成一门“我要学”的课程,自我约束能力强,成绩优秀。

B层次:此类学生智商较高,对数学无所谓喜欢或不喜欢,将其看成一门“要我学”,只是需要被考核的课程来看,主动学习能力不够,数学基础知识不够扎实,成绩中等。

C层次:此类学生通常表现不喜欢数学,对概率论与数理统计学习的自信心不足,数学基础知识和逻辑思维能力较差,学习无自觉性,学习成绩差。

3.2 分层次教学

3.2.1 教学过程 根据各教学层次制定切实可行的教学大纲,严格按照教学大纲,制定教学计划、选用教材、实施分层次考核,根据分层次教学大纲,不断扩充教学内容,提高教学质量。同时,概率统计课程尽量被安排在相同的时间上课,这使得任课教师能够在课后及时交流进度、切磋教学中出现的问题,以便形成良好的风气和习惯。

为了提高学生的学习兴趣,在教学内容上要求直观、生动,尽量多的介绍概念的实际背景和方法的实际应用。

A层次:约占总人数的15%,根据本层次学生的特点,在完成本科教学的基础上,增加某些数学内容,使学生能更深入地掌握概率与统计理论知识,培养数理思维能力和逻辑推理能力。并根据不同知识点提出实际问题,引导学生思考,达到知识应用的拓展。

B层次:约占总人数的75%,针对该类学生,教师重点在于提高课堂教学质量,让学生牢固掌握课程标准中所要求掌握的知识。

C层次:约占总人数的10%,对此类经常无法跟上教学任务的学生,在课堂教学和批改作业后,我们安排辅导教师统一进行习题讲评,采取课后答疑、网上答疑相结合的方法,及时解决学生在学习上的困难。

每次课后均有作业让学生完成,以达到巩固和提高。作业分三个内容:一是基础类(C层次),主要是对基本概念的理解、方法的运用;二是综合类(B层次),含基础类和综合性作业;三是提高类(A层次),主要为综合性练习和实际应用问题的解决。

3.2.2 考核形式 由于学生分为3个不同层次,为达到更大程度挖掘优生潜力,激励中等生,鼓励差生,我们对该课程的成绩构成进行改革,其中卷面成绩占70%,30%为平时成绩。平时成绩由教师控制,根据作业完成、课堂回答问题等情况打分。

3.3 利用现代化信息技术分层次教学

随着现代化信息技术的发展,网络已成为现代化教学的一种手段。由于授课时数有限,很多学生不满足于课堂上与教师的面对面交流,而希望课后能与教师做更多的互动,以得到学习上的帮助。为此,我们从以下三个方面对分层次教学进行辅助:

3.3.1 开设专业学科网站 为搭建起教与学双方的桥梁,更好地让教师与学生进行沟通,我们于2002年在校园局域网开设了数学教学网站,包括《概率论与数理统计》课程的文字、图片、声音及视频等资料,为学生学习专业知识和建模提供平台,运行良好。所有的课程均上传于FTP以及本网站的教学专区,方便学生查阅、学习,并建有留言交流,帮助学生学习的反馈和老师及时掌握学生的学习情况。同时含专业软件,如Matlab7.0、Matlab2007、Lingo8.0、Lindo6.0和SPSS13.0, 完全满足教学需要,效果显著。学生可以通过网站了解该门课程的相关情况,包括:授课教师基本情况、课程标准、教学实施计划等。同时增加有关概率统计应用方面的网页链接,为学生深入学习该门课程搭建桥梁。

3.3.2 建立试题库 为考察学生对该课程的学习情况,对概念的理解、方法的应用程度,达到最终掌握概率与统计相关知识的目的,我们建立了质量较高的试题库。通过多年的教学实践,不断完善、调整,已经能够基本满足教考分离的考试模式。试题库中的试题数量大(授课学时50学时,试题库含1500道题),题型多样(含单选、多选、填空、判断、分析等题型),试题紧密围绕知识点展开,按难度系数从0.1到0.9划分为9个等级,可针对不同层次的学员进行考试命题。题库由专人负责管理和维护,试题库的设置保证考卷能客观、全面地考察学员的学习效果。对每次考试试卷均进行难度、可信度等分析。通过对多班次考试成绩分析,结果表明本课程考试的效果好,可信度较高。

3.3.3 建设网络课程 为了更好地帮助学生学习,我们于2008年建设《概率论与数理统计》网络课程。主要包含两大板块:课程配置和教学组织。课程配置中包含多媒体课件、电子教案、网络教材、视频;教学组织中包含网上作业、教师解答、学生通过自行组卷、老师批改等进行自主练习。通过网络课程可以让A类学生学得更深、更精,B类学生掌握基础知识更扎实,而对于在课堂上不能及时掌握知识的C类学生可以再次学习,更好掌握基本内容、基本方法。

4 概率论与数理统计分层次教学的自我评价

通过5年来的教学实践,本着"以学生为主体,教师为主导,以知识应用为目的"的教学思想,我校在本科生《概率论与数理统计》课程中施行分层次教学法已经初步收到了较好的效果。首先在分层次教学中,作为主导者,教师本身素质也得到了提高:同一个教学班次分3个层次,不同层次学生水平差异较大,这对教师的讲授能力提出挑战,需要针对本班次各层次制定教课的内容,并采用灵活多变的教学方式进行知识的讲解;其次,通过分层次教学,作为主体的学生,在教师的协助与督促下,学生的学习潜力得到开发,不同层次学生自主获取知识和应用知识的能力得到明显提高,数理思维能力和逻辑推导能力得到发展。近3年来我校共组织113队(本科生337人)参与全国大学生数学建模竞赛,获得全国一等奖13项,二等奖12项;重庆市一等奖47项,二等奖16项的优异成绩,位居重庆市高校前列,得到全国组委会、重庆市教委、重庆市赛区和学校领导的高度肯定。

我们认为通过《概率论与数理统计》课程分层次教学的进行,有利于学生个性化的发展,是一种值得推广的教学模式,也是一种适应社会改革与进步的举措,我们对加强大学数学课群的整体建设、规范化管理做了积极的探索和努力,为今后全面提高概率统计,以及大学数学的教学质量提供了科学的依据,奠定了坚实的基础。

【参考文献】

1 高等学校工科数学课程指导委员会(本科组).关于工科数学系列课程教学改革的建议:数学与教材研究.高等教育出版社,1995.

2 刘黎,等.分层次培养:理念与实践.辽宁教育研究,2004,5:48~50.

篇12

文章编号:1009-0118(2012)04-0101-01

一、统计学的性质与特征

根据《不列颠百科全书》的解释,统计学是收集、分析、表述和解释数据的科学。著名的《韦伯斯特大词典》指出,统计是一门收集、分析、解释和提供数据的科学。美国著名统计学家MarioF.Triola在其《初级统计学》里也写到:“统计指的是一组方法,用来设计实验、获得数据,然后在这些数据的基础上组织、概括、演示、分析、解释和得出结论”。综合来说,统计学就是收集、处理、分析、解释数据并从数据中得出结论的科学。其中数据收集主要是通过各种调查以获取数据,数据处理是将数据用图表等形式展示出来,数据分析是选择适当的统计方法研究数据,数据解释是对数据理论分析结果的说明,最后就是从数据分析中得出与实际结合的客观结论。

统计学的性质决定了其既重理论又重实践的特征。统计学有较强的理论性,统计理论分析所用的方法基本上属于数学的范畴,因此要学好统计学必须要求学生拥有较扎实的数学基础,同时对统计分析数据的解释大多也要结合所研究问题的专业理论;统计学同时又有较强的实践性,因为统计分析的基础是数据,而数据都是来源于对社会实践的调查所得,最重要的是统计分析的结论是要用来解决实际问题的。

二、高校统计学教学存在的主要问题

(一)培养计划设置不合理。统计学的理论基础主要来自于数学中的概率论,因此学生在学习统计学这门课程之前必须要求已经掌握基本的概率论知识,否则就会导致学生的知识体系产生跳级现象。这种情况不乏实例,有高校的培养计划里就出现过统计学与概率论两门课程基本同时进行(如安排在同一个学期),甚至先上概率论后上统计学,这种不合理的课程顺序设置给教师教学带来了很多痛苦和无奈。

(二)只重数理推导忽视专业理论分析。很多统计学教师自身是学数学出身的,因此在给学生教授统计学时非常热衷于数理统计理论和公式的推导,而对统计分析数据的解释及结论的得出寥寥数言即告完毕,学生感觉不像是在学习一门专业基础课程,反而感觉像是在学公共基础课——数学,这不仅会造成学生学习很吃力,而且会严重挫伤学生学习该门课程的积极性。

(三)过分强调应用和应试,忽视理论基础。这种现象和上述的刚好相反,很多经管类专业的统计学教师自身数理统计基础并不扎实,所以在教授统计学时往往会侧重应用和应试,比如只要求学生记住某个公式、怎样套公式等等,但从应试的角度考虑这种方法有一定的效果,但是从根本上讲违背了教学的初衷,学生虽然可能会考试及格但不一定真正掌握了统计学的知识,不利于其今后的长期成长。

(四)教材依赖性严重,不结合实际。这种问题不仅出现在统计学教学中,很多高校老师长期上某一门课程,但连续多年都使用同一本教材,不仅自身知识结构不断老化,而且无法及时将社会上的新兴现象与专业课程理论相结合。任何专业课程的理论知识体系都是随着社会实践的发展而不断更新和完善的,而且任何一本教材都不可能将该门学科的知识体系概括得完美无缺,因此依赖单一教材上课既不利于学生学习,也不利于教师自身素质的提高。

三、完善高校统计学教学的对策

(一)改革专业培养计划和课程设置。作为经管类专业基础课程,统计学的主要先行课程是概率论与数理统计,其他相关先行课程包括高等数学、线性代数、经济学、管理学等等,这些先行课程大部分要到大二上学期才结束,因此在设置专业培养计划时应考虑将统计学课程最早只能安排在大二下学期,或者靠后。同时,在统计学理论课结束后可相应安排一门统计软件分析之类的实验课程,以强化学生对统计知识的理解和应用。以笔者所在的广西工学院管理系为例,该系六个本科专业均在大二下学期开设有《统计与统计分析》和《统计与统计分析实验》两门课程,其中《统计与统计分析》一般排在前十周教学,而相应的实验课则排在后十周,这种连串的课程设置既有利于学生对统计学理论的理解和巩固,也有利于对统计分析方法应用的掌握,通过这种训练学生会把自己学到的统计学转化成一门实用技术,终身受益。

(二)完善教师的知识体系,全面培养学生的知识和能力。统计学的性质告诉我们,它是一门理论和实践结合非常紧密的学科,数理基础决定了对理论的掌握熟练程度,而专业理论是实践分析的依据,二者均不可偏废。作为统计学的专任教师,应在这两方面强化自身的基础。因此,文科专业出身的统计学教师可适当加强概率论等课程的深入研究,而纯粹数学出身的统计学教师应该强化对所教授专业主要理论的系统学习,只有这样学生才能得到全面的统计学教育。

(三)抛弃教材依赖,积极尝试案例教学。传统的教学方式过于依赖教材,而鉴于很多教师习惯使用同一本教材的弊端,一方面应建议教师尝试更换新的教材,另一方面应积极鼓励教师引入案例教学。案例教学是对社会实践的一种模拟,它非常有利于训练学生理论联系实际的思维,让学生在课堂上就能够接触到各种类型的实际问题,培养学生综合运用理论知识去解决实际问题的能力;同时,大多数案例问题的解决方案不是惟一的,具有挑战性和灵活性,这也有利于调动学生学习的积极性和主动性。

参考文献:

篇13

民办高校;概率论与数理统计;改革;案例教学法

民办高校是我国高等教育大众化进程中高等教育从单一性的办学形式向多样化的办学形式发展的产物,是高等教育领域中的一支生力军.由于起步晚、面对全新教育对象,民办高校从培养计划的制定到课程的设置都处于探索阶段.作为唯一研究随机现象统计规律性的一个数学分支,其理论和方法的应用几乎遍及各领域,又向各个基础学科、工程学科渗透,与其他学科相结合发展形成不少新学科,如生物统计、统计物理、医药数理统计等,它又是许多新的重要学科的基础,如信息论、控制论、可靠性理论和人工智能等.由于它的广泛应用性,概率论与数理统计课程是理工科及经管类专业教学体系中的重要部分,也是理学、工学、经济学硕士研究生入学考试的一门必考课.因陈旧的教学方法已经无法满足学科发展对该课程的要求,因此,对于本门课程的教学改革势在必行.结合我校校情本文对产生问题的原因进行了分析,并结合工作教学实践,提出了部分改革措施.

一、传统教学方法的缺陷

目前的教材及教师授课都存在重理论、轻应用的特点,缺少该课程本身的特色及特有的思想方法,使许多初学者产生了厌学情绪.产生这种现状的原因在很大程度上归咎传统教学方法的机械化.在传统的教学方法下,学生获取知识的主要途径就是老师灌输,学生被动接受.这种“填鸭式”的教学忽略了学生的主体地位,同样也没有发挥出概率论与数理统计这门学科的特点.

二、改革教学条件

(一)以专业为导向精选教材随着概率论与数理统计的教材改革开展得如火如荼,新的教材不断涌现,但真正适合的教材却屈指可数.在概率论与数理统计的教学中,应高度重视并加强统计的应用部分教学,突出其应用性.因此应以专业为导向精选教材,首先教材主要内容应包括概率论基础(概率空间、随机变量及其分布、随机变量的数字特征、大数定律与中心极限定理)、数理统计基础(统计量及其分布、统计估值、统计检验、方差分析、相关与回归分析)和统计实验设计等三大部分.其次,教材的选取应注重以下三点:第一是注重渗透统计思想,加强实际应用.所选例子和习题都应直接来自生产和生活实际,这不仅能加深对基本概念和基本方法的理解,同时也能提高学生学习的兴趣.第二是在习题编排方面,应注重选择难易结合,深浅对练的习题教材.第三是要切实实现专业课相互渗透,相互融合,在教学中大量引入应用实例,将统计思想运用于专业,使学生学习目标明确,同时也促进了学生对后继专业课程的学习.

(二)教学手段的改变在教学过程中要充分注意该门课程“应用型”的特点,也要充分应用多媒体等辅助手段,开发多媒体教学课件,利用各种媒体增加课堂教学的信量,丰富教学内容、提高课时利用率,增加实例演示,使课堂教学图文并茂,声像具备,使抽象问题更加直观.

三、改进教学方法

教学内容的改革与教学方法的改革是相辅相成的,没有教学方法的改革,教学内容的改革就很难取得实际效果.在教学过程中,我们“以学生为主体,以教师为主导,知识、素质和能力协调发展”的现代教育思想为指导,教学中突出学生的中心地位,注重对大学生逻辑思维能力、分析问题和解决问题能力的培养.精心设计教学法,比如教师讲重点、讲难点、讲思路、讲方法,采用启发式、激励式的教学法,让学生积极参与到课堂中去.可以适当组织一些课堂讨论,比如案例教学法.案例教学的目的是希望学生从实际问题出发,掌握理论知识,进一步运用到实践.为了达到这个目的,首要问题就是选择案例.这实际上是案例教学中最重要也是最困难的地方,主要取决于老师的选择.为了发挥案例的最大作用,在每个教学的环节应该慎重选择案例.比如说,处在概念的引入阶段时,案例发挥的作用应该是启发学生提出概念,并且理解概念的必要性与合理性,而且不能占据太多的时间.此时选择的案例一定要简单,具有代表意义,让学生直观上就能明白下面的概念要表达的含义.可以看这样一个引入最大似然估计概念的案例:一名学生和一个猎人去打猎,看到一只兔子跑过,听到一声枪响,兔子应声倒下,问:这一枪最有可能是哪个人放的.这是一个非常直观的问题,设置在课堂上既简单又能够说明事情.通过这个问题,学生的积极性都调动起来了,绝大多数同学都会回答这一枪一定是猎人放的.进一步,老师要引导学生揭示其中的原因,同学们会有不同的答案,都处在现象上面说明问题,最后老师可以根据学生的答案做总结:这一枪最可能是猎人放的.这里面有一个“小概率原理”,就是一个小概率事件在一次试验中是不可能发生的,假如这一枪是学生放的,说明学生一枪就击中兔子的概率是很大的,这显然是不合逻辑的,因此这一枪最有可能是猎人放的.进一步老师可以根据这个例子,引入最大似然估计的思想:在一次抽样中,取到了某个样本,说明这个样本出现的可能性最大,那么使得这个样本出现的可能性达到最大的参数值就是最大似然估.通过案例这种直观工具,加入学生的讨论,会让抽象的理论更加具体,使枯燥的课堂生动起来.同时要加强对习题课、辅导及批改作业等教学辅助手段的重视,注重科学适当的作业习题训练,已达到熟练掌握基本知识和提高运用技能的目的.对于考核,应建设概率论与数理统计试题库,以保证试题的标准和质量.另外概率与统计应该分开来考核,概率论部分基础知识多应该采用闭卷考试,而数理统计部分应用性强、公式多应该采用开放式的考核.

四、趣味导向,培养学习兴趣

兴趣是最好的老师.如果能激发学生学习的兴趣,就可以唤起他们学习的动机,从而主动学习.俗话说“良好的开端是成功的一半”,上好第一次课,对于培养学生学习概率统计的兴趣非常重要.通过提出疑问、分析疑问、解决疑问而进行教学不仅有利于养成学生积极思考、敢于批判等良好的心理品质,也是激发学生兴趣的有效手段.不过在教学中我们要注意,不能只是机械地为了疑问而疑问,要明确自己的目的所在.具体来说,所设疑问要从实际出发,能够激发起学生的共鸣,使他们踊跃参与进来,这样才能真正提高学习兴趣和教学效率.在学习统计量的概念一节时,给学生介绍了这样一个案例:二战期间,盟军坦克作战能力超过了德国,但盟军仍担心德国的新型坦克,而且盟军不知道德国一年能制造多少坦克.缺乏这个信息,盟军对胜利没有一点把握.于是,情报部门开始观察德国坦克制造厂,甚至派人去战场数德国坦克,但收获甚微.后来统计学家发现可以利用坦克上的序列号来进行推断.假设德国坦克编号1,2,…N(其中N为总生产数量).如果缴获5台坦克,编号分别是10,21,33,68和92.此时样本总数S是5,最大序列号M是92.经过测试演算,得出制造总量=(M-1)(S-1)S.运用这个公式,统计学家认为在1940年6月到1942年9月,德国每个月制造出246台坦克,比情报部门的数据1400台要低得多.战争结束后,盟军拿到了制造厂的生产报表,数据显示这三年德国每月生产245台坦克.学生通过这个例子发现原来统计学这么好玩还非常有用,就会开始对概率统计课程产生浓厚的兴趣.在引入基本概念时尽可能解释其直观背景和实际意义,并多举生活中常见的例子,也可以在课堂上利用计算机软件和数学软件进行一些简单的模拟试验,让学生直接观察并参与到试验中,从而改变学生对数学课呆板枯燥的认识,提高学生对概率论与数理统计学习的兴趣.社会日新月异,社会对于人才素质的要求也逐渐提高,学校教育的培养目标逐渐开始向培养复合型人才,培养实际应用型人才转化.传统的教学开始不能适应社会发展的需求,这就需要我们探索、研究新的课程教学,从而为国家输入更加强有力的血液.

【参考文献】

[1]齐名友著.世纪之交话数学[M].武汉:湖北教育出版社,2000.

[2]K.J.德夫林著,李文林等译.数学:新的黄金时代[M].上海:上海教育出版社,1997.