引论:我们为您整理了13篇电力电子技术及其应用范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。
篇1
1.1 一般工业
工业生产中,一般都会使用到各种交流电动机,这些动力设备性能比较好,在,可以提供直流斩波电源,或者提供可控整流电源。但是提供的主体是电力电子装备。众所周知,交流电机变频调速技术是整个电气节能最关键之技术,相对于传统的大型机器而言,使用的是电力电子交流节能技术,将其作为电力驱动电源,可以节能电能达到30%。近年来,随着电力电子技术得以发展,使得交流电性能得以发挥出来,随着社会不断发展,交流调速技术得到广泛应用,逐渐占据市场。
1.2 在电力系统中的应用
当电力系统离开了电力电子技术之后,电力现代化建设将很难实现。电力系统建设发展中,得到了电力电子技术支撑,现代化建设目的得以实现。高压输电是基于发电厂借助变压器,将发电机发出的电压将其升压之后再输出的一种全新方式。高压直流输电端位置以及受电端位置,一般都是使用晶闸管变流装置,这可以避免了大容量以及长距离输送导致电力系统出现损耗问题出现,为输电系统使用奠定技术基础,从而为良好输电提供保障。在配电网系统中,电力电子装置还可以被使用于电能质量控制,例如,使用于闪变、瞬间停电以及电压跌落等等电能质量控制中,更好的保障供电质量。
1.3 交通运输
电子电力技术交通中被广泛使用,DC/DC变换技术被大量使用于地铁、动车以及无轨电车中。在使用中,可以更好的控制无极变速,提升控制质量。在使用中,最常表现在于电气机车中的直流机车选择了整流装置将其作为供电设备。但是,交流机车如果采用了变频装置进行供电,那么需要借助电力电子装置做好电力驱动和和电力控制。例如:直流斩波器被广泛使用于轨道车辆中,常见的磁悬浮列车中电力电子技术使用,这是一项技术要求较好,关键之技术使用案例。其中借助电动汽车将其作为蓄电池,提供能源,需要做好电力驱动控制工作。那么使用蓄电池进行充电,不能离开电源。因此,航海、航空也离不开电子技术。
2 电力电子技术未来的发展
观看技术发展进程中看出,半导体器件使用推动了电子技术得以快速发展。当前晶闸管等电力半导体器件有着重要的角色,尤其是在电力电子技术使用过程中。进入的到79年代之后,半控型晶闸管使用开始有新的改变。之前从低压的小电流逐渐向高压大电流方向发展,而且还研究出大量的电子产品。这些产品被成为电子器件,随着电子技术不断发展,这些产品被广泛使用。因此,被称为第一代电力电子器件,随着电力电子技术不断发展,该技术使用范围不断扩大,将其使用于电子技术理论研究和半导体制造使用,使得工艺水平逐渐提高。我国随后研究出了GTR、GTO、功率MOSFE等等电子器件,这些器件都是全控制型的电子器件,被成为第二代电力电子器件。近年来,随着技术水平不断发展,研究出了绝缘栅双极晶体管(IGBT)为代表的第三代电力电子器件,逐渐向响应快、高频率方向发展,这是一个质的飞跃,在我国国民经济发展中具有重要作用,它推动了我国经济不断发展,使得我国电子自动化进程迈进一部。进入90年代之后,电子电力器件发展更快速,逐渐朝复杂化、模块化、智能化、功率集成的方向发展,以此形成了电力电子技术的理论研究、器件开发研制、应用的高新技术领域等,在国际上形成了新的技术热门。目前世界上许多大公司已开发出IPM智能化功率模块,日本三菱、东芝及美国的国际整流器公司已有成熟的产品推出。我国国产的电力半导体器件研究水平相对于西方国家,我国的电力电子技术水平相对较低,我国应该不断创新技术,不断进行研究,提升科研水平,更好的保障经济建设。我国电力半导体器件如果没有跟上社会发展步伐,将会影响我国经济发展水平。因此,我国的电力半导体产业发展任务艰巨。在未来发展中,应该进一步研究使用新材料,提升器件功率以及温度范围,之间降低器件价格,使得器件被使用的范围更广。系统实现集成化,当获得更好的集成化之后,才更好保障系统可靠性和安全性。
3 结束语
综上所述,电力电子技术是一门信息、智力、知识密集型的技术,对该技术掌握对提升我国经济可持续发展有重要作用。从当前的发展前景上看,将半导体器件作为核心技术的电力电子行业,在我国政策支撑下,科研工作深度加深,相信在不久的将来,该技术发展水平会得以提升,更加推动我国经济发展。
参考文献
[1]赵阳,谢少军.高性能传导EMI噪声分离网络及其在电力电子电磁兼容中的应用[J].南京航空航天大学学报,2010(1) .
[2]王成山,高菲.电力电子装置典型模型的适应性分析[D] .中国电机工程学会电力系统自动化专业委员会三届一次会议暨2011年学术交流会议.2011.
篇2
引言
在现在电气自动化的发展中,数字技术被运用得较为广泛,现在信息化发展中,电气自动化产业有较高科技含量,它和人们生活有密切联系,对社会发展的贡献与重要性得到人们的认同和重视。对于现在的社会状态,电气自动化有较好的发展前景,并且在信息工程和电力系统领域获得运用,探讨数字技术应用在电气自动化中并进行创新关系到多个方面,大体上有数字系统研发、分析、设计和管理等。在电气自动化中深入利用数字技术时,会极大改善人们的生活。
1、数字技术的发展历史与涵义概述
将数字技术应用于电力电气自动化中,能够对电力电气的发展起促进作用。电力电气自动化的发展离不开数字技术的应用。现如今,数字技术被广泛地运用于多个领域中,例如在电子数字中的计算机、数控技术、各类电子产品、数字仪表、通讯设备等方面,同时数字技术在装备中也得到应用,此外在国民经济其他各部门中也涉及到了数字技术的应用。数字技术应用如此广泛,那么何为数字技术呢?数字技术又称数码技术、计算机数字技术等,通过数字技术的名称我们不难看出数字技术是一种与电子计算机是密不可分的科学技术,众所周知,电子计算机只能识别二进制数字“0”和“1”,因此数字技术必然要通过一定的设备将各种信息转化成二进制数字“0”和“1”,由于在此转化过程中还需要计算机对信息进行压缩、编码、还原等处理,所以又将其称为数码技术、计算机数字技术。21世纪我们生活在一个信息时代,一个数字化的时代,计算机无处不在,它融入到我们生活的每一个细节中,计算机的发展一直在发生着日新月异的变化,计算机被更多人所掌握操作方法,它变得越来越高级,越来越智能,为人们带来了更大的便利,人和人以媒体为介质,我们的生活、学习、工作都不能与互联网脱节,无论在任何地点我们都可以感受到数字技术,作为一个社会人我们在享受着数字化时代为我们带来的便利的同时,也应该对数字技术的发展历史有所了解。数字技术在我国的迅猛发展不过是近几年的事,计算机快速地步入许多具体设备中得以应用和操作,它改变了社会大环境,带来了机遇和挑战。很多行业都在数字技术中得以发展,电力电气自动化就是其中的一个典型的代表。纵观数字技术的发展历程,我们可以看出数字技术在电力电气自动化中的应用必然能够对企业的信息化进程起到推动作用,使得企业的自主设计开发能力得以提高。
2、数字技术在电气自动化中的应用优势
2.1、可操作性和控制性
数字技术的基础是计算机技术,它拥有很高的操作性和控制性的特点,可操作性指的是,只需写进相应的操作指令,计算机的程序就会按照指令的先后顺序开始执行,利用传输装置把指令传给电气设备,电气设备在指令的作用下就会有序的运行,所以说,数字技术在电力电气设备上拥有可操作性和控制性的特点,除此之外,数字技术本身能进行条理分析,自动的对信息条数、精确度进行校对,削减损耗的成本,并且还确保了安全。除此之外,数字化平台的公开性进一步规范了操作代码,有利于提高程序的可控性,因为在对电气设备进行控制时,必须按照要求输入正确的设置密码和相应的操作指令,所以对于那些没有得到许可的用户,是无法对电气系统进行操作的。这就是为什么我们会经常在电气设备上看到有问题请咨询程序管理员之类标签的原因。
2.2、性价比高
和其他技术相比,电力电气技术拥有专业的特殊性和危险性的特点,所以在实际的工作管理中,我们一定要准确的测定和计算对控制所达到的精确度和安全方面的性能,以保证工作人员的人身及财产安全,随着计算机技术和通信技术的不断发展和进步,数字技术逐渐得以完善和创新。电力公司可以利用先进的数字技术和设备对公司所采用的科学方法和管理方法进行检查和控制。不仅如此,数字技术具有较高的通信能力,不仅能供应充足的信息资源,拥有很高的智能化功能,而且还利于企业节省人力、物力,避免了时间上的浪费,提高了工作效率,削减了公司投资和管理的成本。
2.3、可靠性
数字技术是一项最近兴起的高科技产品,它是以计算机和互联网技术作为基础和前提的,当前在应用数字技术时,通常会和智能化紧密联系,数字技术不仅减少了对以前设备的使用程度,而且还使电力电气自动化控制系统的操作变的简单化、高准确度和高效率,特别是在光纤技术的基础上,数字技术进一步得到完善,譬如,把数字技术应用在电力锅炉仪表上带来了很多好处,操作人员无需去现场就可以通过网络和仪表数字来实现对设备控制和操作的目的,不仅如此,仪表上所显示的数据都具有非常高的可信度,从有关公司和部门的统计数据可以看出,目前在电力电气化中应用数字技术越来越受到人们的重视,而且它还为公司发展现代化管理指明了方向。所以数字技术拥有高可靠性的特征。
3、数字技术应用在电气自动化过程中的创新与发展
随计算机越来越普遍的应用在电力电气自动化行业中,使数字技术获得飞速发展,将数字技术应用在其中,是电力电气自动化控制系统变得方便化、迅速化以及实用化的独一方法,自从把数字技术应用在电力电气上之后,它的工作效率明显得到改善。所以数字技术在电力电气行业中具有很大的空间以供发展,需要不断的在工作实践中剖析和探究,使应用在电力电气运作系统中的数字技术更完善、更先进、更高效。
3.1、运用程序操作确保数字处理准确性
电气自动化运行中,有关指令输出前,工作人员要把检测好的数据输到电脑中,并进行一定干预,科学的设备设施,对运行系统实施改进与完善,最后对其各项功能做出测试,使系统达到设定要求。随着社会发展和进步,更加开放与完善的管理已经成为电气自动化的发展方向,这样可以完成和网络技术的融合,从而提高综合性能,实现实时监控和管理目的。做好风险管理,对其进行良好控制,有助于解决模块的相互干扰问题,更有助于流程科学化,从而更充分地表现出数字技术优点,实现数字处理的准确目的。
3.2、利用智能终端进行远程操作
电气自动化中,最好的介质是光纤,可以选择智能终端和间隔层某些功能,达到数据采集、传输与控制目的,进而有效运用数字技术的系统化和智能化。选择该操作模式,较适合利用拥有双功能的终端,一个功能是保护;另一个功能是偏重于两种功能的配合,并不断增强系统稳定性。在较好解决接口标准化问题后,电子自动化就能获得较高效率运行。随着操作系统不断完善给数字技术管理与自动控制提供了较好性能的接口。程序接口逐步标准化与统一化,满足大多数用户选择不同软硬件来交换与传输数据,较大程度上完善系统通讯功能,达到智能化技术的要求。
3.3、GOOSE虚端子
该虚端子理念的诞生与应用,是数字技术应用在电气自动化中在设计和装置方面的进步,主要表现在以下三个方面:(1)该虚端子能改善二次回路,不但使工程调试更方便理解,而且在运用中更加简单;(2)电子自动化中,在智能终端与测控装置实施信息交换过程中,该虚端子技术就会表现出其优点。这项技术能对所有线路与开关做出有效控制,并且有开启跳合闸功能,可以合理保护遥控装置,还能有效利用闭锁间隔层;(3)该虚端子能利用高效终端系统的设置,准确对非电量信息进行控制,比以往二次回路更简洁。
3.4、采用光纤连接
利用智能终端自动对数据进行采集和控制的特点,让光纤设备和智能终端相互协调,其中一个的作用是保护电力中断、信号传递和远程监控,另外那个的作用则是给跳闸提供了两层保护,进一步提升了数字化技术在电力电气自动化中的智能度与可信度。除此之外,数字化程序接口的规范化是电力电气自动化能正常运行的基础和前提,从而针对个人计算机平台的自动化问题找到了解决办法,有助于公司的事件相关电位系统与制造执行系统两者间的连接,把TCP/IP 标准设置为通讯标准。
3.5、加大程序化操作
数字技术的可操作性直接关系着电气自动化的可靠性。所以,在对指令进行调度时,应事先严肃而认真的对票据进行核查,之后再将没有错误的票据输入到电脑中,在进行实际操作界面时,应严格查看闸刀、开关等重要部位是否完善,通过这样的方式,可以逐渐健全系统的应用功能,更有利于电力电气自动化实现信息化和开放化。
结束语
随着科技的进步,数字技术得到了飞速发展,而数字技术的应用领域也在不断扩大。当前,数字技术与电力电气自动化相结合在市场发展中已经逐渐成为一种不可阻挡的趋势,这与计算机操作可以为企业带来更大的便利,降低生产成本,提高收益等优点是密切相关的,且相对于其他传统操作而言计算机操作明显更加稳定便捷,这也是数字技术能在电力电气自动化中应用情况良好的一大原因。总体上讲,电力技术正朝着数字化方向发展,数字化技术应用在电力电气自动化中的范围越来越大,逐渐被更多企业所接受,但在此应用过程中也伴随着一些问题,功能技术水平还需要日臻完善。
参考文献
[1]张福旺.电气自动化中数字技术的应用及创新[J].科技致富向导,2013,12:120.
篇3
电气工程;电子电子技术;应用
0引言
高速发展的社会经济是源于科学技术的进步,科学引领着社会发展脚步的进程,在各个领域中,电子技术科技都在以其强大的应用能力得到社会的重视,尤其是电气工程,电气工程能够发展至今,离不开电力电子技术的支持,本文对电力电子技术进行深入研究并对其在电气工程中的应用情况作出分析。
1电力电子技术的概述及发展
1.1电子电力技术概述
电子电力技术有三个领域,分别为电子、电力与控制,它是利用电子技术控制电能变化。技术特点是强电力被弱电子控制。该技术目前被广泛应用于各大领域,对于国防与能源、工业和农业甚至交通方面都有极大的贡献,在电气工程中对于电子电力技术的应用也在不断深入,对于提高发电机和电动机对于电能的利用、生产及转换等方面电能效率发挥着巨大的作用,还可以提高生产率、节约能源。电力系统的稳定与安全是工作中重点关注因素,电子电力技术可以对稳定性和安全性进行增强,使理想中灵活可控的电力系统工作模式成为现实[1]。
1.2电子电力技术发展
电子电力技术的发展包括器件制造的发展与应用电路对于电子电路的发展,这两个方面共同构成了电子电力技术的发展轨迹。电子电力技术由最初的半控型部件逐渐发展为全控型,随着不断进步最终发展到复合型,在这一过程中,电子电力技术的驱动与控制、防护电路与功率部件完成了一体化,形成先进的功率集成化电力,尽管目前技术水平还无法使功率达到最高,但是电子电力技术仍有超大的发展空间,科技的进步指日可待。
2电力电子技术的应用意义
2.1适合系统操作
电子电力技术的操作与传统电气技术相比,有更加方便的优势,传统操作空间相对狭窄造成操作十分困难,对于工作进程起到了阻碍,影响工作效率,电子电力技术的出现使工作人员的效率得到了显著提高,简单的操作方式与开阔的空间减小了工作压力的同时也避免了过多的操作失误,电气的运行故障也不再频繁出现。
2.2性能较好
因其极具科学性的技术构造使电子电力技术的性能十分稳定与良好,它的优越性造就了业界良好口碑,在电气工程乃至社会各领域都得到广泛应用于认可,为适应社会的发展使电气工程的进步得到推动,电子电力科技在其中的应用的必不可少的。
3电子电力技术在电气工程中的应用
3.1静止无功补偿装置
这个装置可以通过无功补偿冲击性负荷达到稳定电网的效果,因功率加大使多数电网变化频繁,此项装置对电能质量提供了保证,晶匣管控制电抗器、静止同步补偿器、晶匣管投切电容器与可控串联补偿装置共同构成了静止无功补偿装置。其中晶匣管由一个电抗器与两个反向并联晶匣管串联组成,电抗器电流的大小可以通过晶匣管而得到控制,晶匣管能够改变触发延迟角进而控制电流。这样就可以连续调节电抗器的基波无功功率,晶匣管可以通过控制支路使三相交流调压电流得到控制与联接。晶匣管投切电容器结构为单相,电网投入到电容器时会出现冲击电流,小电感可以抑制冲击电流,无机磨损、平滑投切、响应快速与高效的综合补偿等都是晶匣管投切容器的优点。静止同步补偿器能够实现动态无功补偿,装置为它的电力半导体的桥式变流器。其优点为调节速度快,运行范围广等。其中的PWM技术与多重化对含量低的电流谐波进行补偿。工作原理是并联自换相桥式电流与电网的方式吸收或发出无功电流通过输出电压调节实现动态无功补偿。可控串联补偿装置,由晶匣管控制电控器,电控器与电容器的联接方式为并联,晶匣管改变电抗器的电流是通过调节导通角实现的,使补偿装置基频等效电抗变化,可控串联补偿装置能够对参数进行补偿,还能够改善系统阻尼的状况,可以通过对环境进行控制的方式,有效抑制低频振荡,提高系统的暂态与静态的稳定性[2]。
3.2有源电力滤波器
其原理是检测补偿对象,获得等分量谐波电流,通过产生一个与谐波相等但极性相反的电流分量对谐波电流进行抵消,使电网电流无谐波电流只剩基波电流,理论基础为瞬时无功功率这一理论,有源电力滤波器的优点是多样化的补偿功能和非常快的动态响应速度,这种优点使电网阻抗影响减小,因此研究谐波电流抑制发现前景十分可观。有源电力滤波由两部分构成,为别为指令电流运算电路和补偿电流发生电路,其中指令电流运算电路可以检测补偿电流,从检测结果中得到无功电流与电网中谐波电流的等分量,检测结果还可以在发生电路中通过电流产生实际的补偿[3]。
3.3高压直流输电技术
高压直流输电技术,它的功能主要是通过在换流器的工作下使输出的交流电变成转化后的直流电,并且将直流电输送给受电端,受电端将直流电逆变,结果形成交流电以供用户接受使用,高压直流输电的优点是线路造价低于输送功率大,并且很容易控制,对于距离长,容量大的高压电能够发挥其优势,而且成本与损耗都较小,稳定性却很强。
4结束语
要深入的了解电子电力技术才能确保其在电气工程中的应用效果,目前电子电力技术的应用领域还仅在机电能力与电力系统两大方面,还需对其进行不断探索,使电子电力技术在电气工程中发挥更多优势,得到更多的应用为社会的发展做出贡献。
作者:胡欣然 张海涛 刘洋 单位:安徽理工大学
参考文献:
篇4
2电力电子技术的优势剖析
在电气工程中应用电力电子技术,其优势较为突出,主要表现在以下几点:其一,推动电气工程发展。电力电子技术在不断发展和创新过程中,应用范围不断扩大,在整合资源的同时,可以有效降低电气工程的人力、物力和财力投入,在缩短电气系统运行周期同时,创造更大的经济效益和社会效益。其二,应用操作便捷。随着社会经济的持续增长,电能需求不断增长,各个行业领域生产规模不断扩大,不可避免地会产生电能供应矛盾。电力系统覆盖面较广,内部结构复杂,各个环节联系较为密切,任何一个环节出现故障,都可能影响到电力系统安全稳定运行,不利于社会生产生活正常用电。而在电气工程中应用电力电子技术,在优化操作流程的同时,为电气系统营造安全稳定运行环境,切实提升电气工程运行水平。其三,提升电气工程性能。在电气系统运行中,通过电力电子技术的应用,综合分析影响电气系统运行因素,与其他技术之间的协调控制,发现问题后第一时间上报和解决。通过电力电子技术应用,优化系统设计,在降低电气工程运行故障概率的同时,提升整体运行效率。因此,在电气工程中应充分发挥电力电子技术的优势,对现有电气工程结构优化和完善,改善电气工程运行性能,为电气工程稳定运行奠定基础。
3电气工程中电力电子技术应用路径
3.1软开关控制装置
在电气工程施工过程中,施工技术水平滞后,由于不合理的施工技术和设备应用,严重影响到电气工程运行性能。通过系统开关装置的应用,可以有效降低电容,减少变压器元件占据的空间面积,但是高频开关转换会在一定程度上增加电能损耗,影响电能生产效率。在这个过程中,可能产生电磁干扰,影响到电气系统稳定运行。通过软开关控制装置的应用,可以最大程度地降低系统开关装置电能损耗,避免噪声干扰。如果采用串联方式将多个电路联系在一起,则可以有效提升电力系统性能,有助于软开关装置更大范围应用。
3.2静止无功补偿装置
社会经济持续增长下,社会生产力水平显著提升,对于电能需求度不断增长,静止无功补偿装置的应用,可以为电网运行稳定性和安全性提供坚实保障,将功率变化控制在合理范围内。静止无功补偿装置具有较强的抗干扰性能,对冲击性负荷无功补偿,提升电力系统运行效率,为电力输送系统稳定运行提供保障。与此同时,静止无功补偿装置的应用,有助于提升电力系统的运行性能和功率因数,最大程度地降低电力系统功率损害,减少不良干扰,保证电网输电压安全稳定性。当前静止无功补偿装置包括晶闸管投切电容器、静止同步补偿器、晶闸管控制电抗器和可控串联补偿装置等。静止同步补偿器与电网并联在一起,输出电压调节来吸收无功电流,满足无功补偿需要。晶闸管投切电容器自身具有无机磨损和快速响应的优势,具有良好的无功补偿效果,最大程度地降低对电网的冲击电流。可控串联补偿装置的应用,电容器和电控器并联在一起,调节电抗器电流,可以有效提升补偿装置基频等效电抗特性。
3.3有源电力滤波器
有源电力滤波器的应用,适用于动态抑制谐波需要,将电力装置划分为补偿电流发生电路和指令电流检测电路两部分。根据相应指令电流检测电路,可以将谐波电流分量和基波分量电流分离开,发挥反极性作用来抵消负载电力,电网最后仅存基波电流。与此同时,源电力谐波器是由PWM逆变器构成的,尽管结构较为复杂,但是具有多样补偿和动态相应特点,改善电网组抗力和功率补偿不良影响,最大程度地抑制谐波电流的出现。
3.4高压直流输电技术
高压直流输电技术是借助电子换流器来转变输出电流,转换为直流电,将直流电传输到各个受电端,并借助电子换流器转化为交流电,输送到千家万户。在高压直流输电过程中,传输功率高于直流电,传输过程中具有较强的稳定性和安全性,对于输电线路的要求不高,受到相关工作者的高度关注和重视。需要注意的是,高压直流输电技术输电过程在保证线路安全稳定运行的同时,最大程度地降低电能损耗,满足不同额定频率电网联结需要。从当前电气工程中高压直流输电技术的应用情况来看,多为直流联络线。
3.5电路保护装置
篇5
1 电力电子器件以及变频技术的发展
电力电子技术通常有四个方面分别是:功率半导体器件;IC技术;功率转换技术;自动控制技术,而电力电子技术是实现这些技术基础。普通晶闸管是最早投入使用的电力电子器件,是奠定电力电子器件的基础。变频技术最早是在上世纪70年代出现的,技术的产生一开始是为了实现交流电机的无极调速,但是随着研究的深入,很多研究学者对脉宽调制变压变频调速进行了深入的研究。直到八十年代,PWM模式的优化逐渐成为了研究的重点方向,并且也取得了较好的成果。电力电子器件从最初的控制晶闸管、双极功率晶体管、SIT等逐渐的向HVIGBT进行转变,使得变频技术得到了发展。随后产生的VVVF变频器的操作不并不难,而且也能够达到硬度上的标准,并逐渐的得到重视,但是其在最大输出转矩、静态调速等方面还有着很大的不足。矢量控制法的出现极大的改善了这些问题,但是在现实应用中由于电动机参数和系统特性有关,矢量转换的效果并不理想。直接转矩控制是由德国的Dcpen.教授研究的,操作理念先进,结构简单,获得了广泛的应用。
2 变频技术在家电中的应用
(1)电冰箱,因为电冰箱需要长时间运行状态,当压缩机完成变频制冷后,可以将运行速度控制到低速状态,这样就可以有效的降低压缩机引起的噪声现象,而且也非常的利于节能。
(2)空调器,变频技术最大好处就是扩大了空调器中压缩机的工作范围,压缩器的运行不再是冷、暖操作断续状态,因此大大提升了电力资源的利用率。当前空调器上的变频调速已经可以实现无刷直流电机运行,相比于以往的电机变频,其节能效果进一步提升。为了进一步的提高空调的功能转换效率,日本的研发者已经开始采用PWM+PAM的方法取代原来单一PWM的操作方法。其控制的方法是,当速率较低的时候采用U/f恒定控制,如果转速超过了临界值,则调节到最大值从而增加逆变器的输入直流电压值,所以就必须先调整直流斩波器的导通占空比,从而使变频器转速随输出电压的增大而增加,通常这个区域被叫做PAM区。进行这样的操作和技术后,使得变频器的综合效率、输入功率因素等相比于以往的控制进一步增加。
变频技术的应用给家电带来很大的便利,可以说是对家电领域的一次技术革新。而且随着变频技术与其他学科的交叉越来越深入,其对于太阳能发电系统、新型能源拓扑、滤波技术等也会越来越大。
3 变频技术的核心问题和解决对策
3.1 谐波调控
要实现对电子设备谐波的控制,首先的措施就是通过谐波补偿将输入电流转换成正弦波。其次是运用单位功率对交流器内部进行改造,在提高功率因数的同时控制谐波。多重化技术对大容量变流器的谐波有着很好的消除作用,通过叠加方波的方法减少次数不高的谐波,保持阶梯波在正弦附近,随着重数增加让波形更加接近于正弦波。PWM技术则应用于更高功率的因数变流器上,输入电流几乎等同于正弦波,并由PWM来控制整流桥的各个电子器件,因此输入电流几乎等同于正弦波,经由正弦PWM控制着整流桥上的各器件。如此,则高次谐波成为输入电流中唯一的谐波,而这些谐波更加的方便于滤除。PWM逆变器通常采用整流器,好处是电流频率和输入电压保持不变,而输出电压则并不确定,在运行时可以达到四象限,完成双向传输能量。
3.2 电磁干扰的抑制策略
解决电磁干扰的主要办法是尽量减少开关器件开合时产生的过大电流以及电压上升率,当前应用最为广泛也是最有效的两种方法是零电流开关和零电压开关电路。其中具体的实现办法为:首先可以改变开关器件上的串联电感,这样就能有效的削弱电流开关器件到导通时的电流上升率,并让器件丧失了电压、电流重叠区,从而达到减少开关损耗、抑制电磁干扰的目的。同样也可以在开关器件上并联电容的方法来实现,这样的方式能够削弱器件关闭时的抑制电压上升率(du/dt),同样也会避免其出现电压、电流重叠区,减小开关损耗。目前变频技术中存在的软开关技术:部分谐振PWM,为了让效率更加的接近硬开关,必须避免器件电流有效值的升高。因此在一个开关周期内,电路谐振仅存在于器件开关和断开的时候,所以称之为部分谐振。无损耗缓冲电路是串联电感或者并联电容在进行电能释放的过程中并不经过开关或者电阻,因此也被称为无损耗缓冲电路,一般不会采用反并联二极管。在电机控制中主开关器件多采用IGBT、IGBT关断时有尾部电流,对关断损耗很有影响,因此通常采用零电流时间较长的ZCS。
4结语
电力电子器件和变频技术不仅在家电领域,在输送泵、风机类、工业锅炉等都有着广泛的运用,我们介绍了电力电子器件和变频技术的发展和应用,并在此技术上分析了变频技术中的难点,提出了相关问题目前的解决办法,为其应用提供了参考。
参考文献:
篇6
一、电气自动化技术简介
电气自动化技术这一概念提出已经有了很长一段时间了,人们为了实施这一概念,并将其深化,做出了不少的努力和贡献,在这几十年的过程当中有了不少的研究成果,从机械化控制到计算机控制,从计算机控制再到微电子技术,直到今日业内人士所畅谈和期待的人工智能,可以看出,电气自动化技术自提出以来,一直处于发展状态。进入21世纪以后,电气自动化技术得到了飞速的发展,实现了与计算机技术的充分结合,其在电力企业当中的运用范围也更加的广泛,能够自行解决较为复杂、高端的电气设备运作问题,对电气设备实现了高效化的自动控制,并逐步面向智能化方向发展。如今的电气自动化技术集通信、数据采集、管理与控制等功能为一体,将复杂庞大的电气系统统归到几台自动化设备的管理之下,解决了人工管理强度高、难度大、工作条件差等问题。超强的运算程序几乎可以对电气系统的细微问题进行预测,包括一些感应系统、警报系统的使用,都可以不断的提升电力企业的运行效率。
二、电气自动化技术在电力企业当中的运用
电气自动化技术在电力企业当中的运用范围比较广泛,诸如电力工程、电气控制系统、火力发电系统等都是电气自动化技术可以涉及到的地方。下文,笔者就将从这三个方面对电气自动化技术的应用进行分析。
(一)电力工程
在电力工程当中,电气自动化技术主要被运用于变电站和配电自动化技术与电网调度自动化技术当中。其于变电站和配电自动化技术中作用主要是:自动控制变电站电压调节、控制配电系统电气配置与调度,检测二者实时动态,预防故障发生, 它的最大优势在于降低变电站与配电系统的人工管理压力。其于电网调度自动化技术中的作用则是:管理电网线路、监控电网电压与电流量。其优势则在于:提升电网系统的安全性能,优化国家电网,评估和预测电网运作状态,防止故障的发生。其中分散监控系统更是充分的运用了局域网的优势条件,提升了单元电网的控制和管理力度。
(二)电气自动化控制系统
电气自动化控制系统主要是以电气自动化技术搭建起来的电气设备控制平台。该平台的优势在于:精准控制、定位控制、效率高,反馈速度快。电气自动化控制系统一般以计算机技术和计算机监控系统、运算技术为主要载体,实现对电气设备的数字化监控。一方面,它通过传感器反馈电气设备运行数据和状况,另一方面则利用计算机系统和技术对数据进行整理和分析,通过遗传算法,辨别电气设备是否存在故障,而后再通过指令输出实现对电气设备的定时、点位控制。
(三)火力发电系统
火力发电系统的输出与输入的三个对象分别是机、炉、电,传统的火力发电,机、炉、电是分类、分区进行操作和管理的,管理效率极低,而且易出现故障。但是通过运用电气自动化管理技术以后,机、炉、电既可以可实现分区运行,又可以进行统一管理。这是火力发电系统一种的新的运作模式和管理模式,其生产管理成本要远远的低于传统火力发电系统。
三、如何优化电气自动化技术的运用
当前电气自动化技术所缺乏的就其优化的主要方向和主要内容,结合其运用的实况,笔者认为,电气自动化技术优化运用主要可从以下三个方向进行:
(一)创新模块化与系列化的监控系统
综合化是目前电气自动化技术基础上监控系统最为突出的特点,综合化的监控系统能够对电气工程与设备实现全面覆盖监控,却对少了对特殊位置和重要位置的特殊性监控,存在一部分监控死角。因此,未来需要继续创新模块化与系列化监控系统,针对不同类型的发电系统实施监控管理,要求监控系统不仅能够对全局实现控制,还能够对小的模块和特殊区域进行有效监控,给与电气工程和电气设备更为有效的保护。
(三)继续创新高频电气自动化技术
高频电气自动化技术具有管理效率高、生产效率好等优势,且市场发展前景巨大。如今单一频率的电气自动化技术已经在逐步的退出历史舞台,各类智能化技术和其它新型技术的发明和创新正在逐步入侵自动化技术舞台,只有不断的提升电气自动化技术的融合性、包容性,不断的汲取其它科技的优势,才能为电力企业提供坚实的科技基础。继续创新高频电气自动化技术是历史发展的潮流,是企业生存的需要。
(三)不断创新电气自动化产品
利用电气自动化技术所创新的产品,能够为电力企业打开一个新的市场,除了自身对电气产品的需求之外,很多大型的电力客户同样也需要具有对口性的电力产品,这是电力企业未来发展的效益之道。企业应当利用现有的电气自动化技术创新电气产品,不论是服务性的,还是实物性的,这在电气市场都是一条还没有人走过的道路。
四、电气自动化技术在电力行业中的未来发展前景
电气自动化技术虽然已经在努力降低企业生产与运作对人力的依赖,但是它始终都需要人工去反复不断地的检查和设置,如果要实现全自动化,智能化是必要的。
(一)仿真系统
仿真系统是近几年领域内科学家们炒得火热的话题,各国的科学家都开始了对仿真系统、负荷动态监测系统的研究。仿真系统的特点在于:一比一模仿对象运行状态,便于人们更直观的对系统运行进行观察,提出全方位的保障办法。仿真系统的介入可以提升电气自动化技术的时效性,为领导决策提供可靠的依据。因而,未来电气自动化技术会在这一方面全力发展。
(二)人工智能技术
人工智能技术是自动化技术的一个提升,它不仅具备了自动化技术的所有优势,而且还与人类的简单思维模式相仿,能够代替人工自行操作,通过中枢系统传导动作执行,指挥机器人进行操作,这类系统的最大特点在于:与人的思维方式和简单思维水平相仿。它与电气自动化技术的结合将进一步提升电气系统的自动化水平,保障系统操作的稳定性、可靠性和准确性。
(三)国际标准应用
在以往的运用案例当中,人们已经可以看出智能电子设备的优势所在。但是从市面上的产品来看,我国的智能化、自动化电力产品还没有比较确切的标准,产品市场显得有些混乱。今后,国家会针对行业产品的发展情况,制定和出台相关的产品标准,国际标准则是我国政策制定不可缺少的参考内容之一,国家会进一步拉近国内产品与技术和国际标准之间的差距。
结束语:
电气自动化技术还处在生长发育阶段,未来,还将有更为广阔的发展前景和发展空间。今后,科学家们还会进一步增加对这项技术的研究,不断的使之与电力企业生产运作需求相磨合。
参考文献:
篇7
0 引言
随着信息技术及计算机技术的不断发展,自动化、数字化技术开始逐步应用在电力系统建设中,自动化的系统如何进行设计,也就是电气自动化技术的设计是其中非常重要的技术环节,是电力系统自动化技术改造中和建设中需要解决的一个课题。正是基于此,本文主要对电气自动化的系统设计的研究方向、以及电器自动化的应用等几个方面进行探讨,并希望通过对此的研究来提高电网的安全运行水平。
1 电力系统自动化技术
1.1 电网调度自动化
现代的电网自动化调度系统是以计算机为核心的控制系统,包括实时信息收集和显示系统,以及供实时计算、分析、控制用的软件系统。信息收集和显示系统具有数据采集、屏幕显示、安全检测、运行工况计算分析和实时控制的功能。在发电厂和变电站的收集信息部分称为远动端,位于调度中心的部分称为调度端。软件系统由静态状态估计、自动发电控制、最优潮流、自动电压与无功控制、负荷预测、最优机组开停计划、安全监视与安全分析、紧急控制和电路恢复等程序组成。
1.2 变电站自动化
电力系统中变电站与输配电线路是联系发电厂与电力用户的主要环节。变电站自动化的目的是取代人工监视和电话人工操作,提高工作效率,扩大对变电站的监控功能,提高变电站的安全运行水平。变电站自动化的内容就是对站内运行的电气设备进行全方位的监视和有效控制,其特点是全微机化的装置替代各种常规电磁式设备;二次设备数字化、网络化、集成化,尽量采用计算机电缆或光纤代替电力信号电缆;操作监视实现计算机屏幕化;运行管理、记录统计实现自动化。变电站自动化除了满足变电站运行操作任务外还作为电网调度自动化不可分割的重要组成部分,是电力生产现代化的一个重要环节。发电厂分散控制系(DCS)一般采用分层分布式结构,由过程控制单元(PCU)、运行员工作站(OS)、工程师工作站(ES)和冗余的高速数据通讯网络(以太网)组成。
2 电力系统自动化的研究方向
2.1 智能保护与变电站综合自动化
在智能化发展突飞猛进的今天,在很多的高等学府都开设了人工智能化电气专业以及很多的科研机构也对其开展了全面的研究工作,譬如,故障的诊断、设计的优化、智能控制等领域都在使用人工智能化。在设计电气设备类的工作是一个极为复杂性的工作,不单单要会专业的电气、电路等专业的知识内容,还要将设计中的知识运用在里面。最为传统化的方式,最早是采用了简易的实验方式方法和具有经验的老师傅用手工方式来完成的,从某种意义上来说很难达到最优的效果。随着我们智能化发展以及计算机领域的发展,设计的方式也在有简单的手工操作到电脑辅助设计(AUTO CAD),从很大的程度上节约了时间和研发周期人工智能化的出现,使得电脑设计(CAD)系统也在不断的更新,整体产品无论从研发、设计到成品都等到了全面的提高。人工智能技术采用优化设计的方式方法主要有遗传算法和专家系统。遗传算法是一种比较先进的优化算法,对于产品的优化设计是很适合的。为此对于此类设计往往都是采用这样的方式方法或加以改进。
2.2 变电站自动化技术的应用
可以说,变电站的自动化的实现又是依托计算机技术的发展实现的,要实现电力生产的现代化,一个不可缺少的、重要的环节就是实现变电站的自动化。变电站依赖计算机技术实现自动化,在实现的过程中计算机也得到了充分利用,二次设备也随之实现集成化、网络化、数字化,完全是采用计算机电缆或光纤代替电力信号电缆。变电站实现自动化,实现计算机屏幕化以及运行管理和记录统计实现自动化,另外两个组成部分是操纵以及监视,变电站的整体自动化才得以实现,正是如此多的组成部分实现了计算机的自动化管理。为了联系发电厂与电力用户,变电站以及与之相关的输配电线路必不可少。变电站自动化的实现,不仅组成电网调度自动化的一个重要组成部分,更是为了满足变电站的运行操作任务。
3 现代电力电子技术在电力系统中的应用
现如今,计算机技术已经成为全球最普及的信息技术,计算机编程软件技术不断的进步,已经带动了人们经济生活的水平。人类的大脑是最为发达的机器,计算机所有的编程都是效仿人类的电脑,对其信息进行采集、分析、处理、反馈等,所以计算机程序以效仿人类大脑为主要目的来实现我们自动化发展。对于电气自动化的整个控制流程都是通过自动化设备来完成整个生产、分配等过程,这样就从很大的程度上降低了人间费,并且提高了工作效率。
3.1 电力系统自动化实时仿真系统的应用
该仿真系统在可提供大量实验数据的前提下,还可多种电力系统的暂态及稳态实验同步进行,还能用以协助科研人员测试新装置,且多种控制装置都能与其构成闭环系统,从而为灵活输电系统及研究智能保护的控制策略提供了一流的实验条件。电力系统数字模拟实时仿真系统的引进,方便了对电力系统负荷动态特性监测、电力系统实时仿真建模等方面进行深入研究,从而建成具备混合实时仿真
3.2综合自动化技术与智能保护的应用
现在国内的自动化技术水平已达到发达国家的技术水平,许多方面已处于国际领先水平,将国内外最新的人工智能、网络通信、微机新技术、自适应理论、综合自动控制理论等应用于电气自动化保护装置中,对电力系统自动化保护的新原理进行了研究,可以大大提高电力系统的安全水平,使得新型保护装置具有智能控制的特点。
4 电气自动化技术在电力系统中的应用
4.1 计算机技术在电力系统自动化应用
计算机控制技术在电力系统中起到了至关重要的作用。这是由于随着计算机技术的飞速发展,电力系统中用电等重要环节以及输电、发电、配电、变电环节都需要计算机技术的支撑,这样就会使得电力系统自动化技术同时得到了快速地发展。
4.2智能电网技术的应用
信息管理系统作为计算机技术中应用最为广泛的技术之一,电力系统自动化技术与计算机技术结合所形成针对整个全局进行智能控制的技术,也就是智能电网技术,是一个最具典型性的技术,涵盖了配电、输变电和用户以及调度、发电的各个环节。其中变电站自动化系统、稳定控制系统等被广泛应用到计算机技术的系统中,同时一样的还有诸如调度柔流输电以及自动化系统等。目前这种数字化电网建设,一定程度上可以说是智能电网的雏形,实际上也为我国建设智能电网做着准备工作。智能电网中较为典型的有智能电网的通信技术,同时在建设的过程中需要很多依托计算机的技术,需要具备实时性、双向性、可靠性的特征,需要先进的现代网络通信技术的应用,而且该系统也是完全依托计算机技术而存在的,同时具有信息管理系统计算机控制技术在电力系统中起到了至关重要的作用。这是由于随着计算机技术的飞速发展,电力系统中用电等重要环节以及输电、发电、配电、变电环节都需要计算机技术的支撑,这样就会使得电力系统自动化技术同时得到了快速地发展。
5 电力系统电气自动化技术的检查方法
电力系统电气自动化技术的检查方法有系统分析法、排除法、电源检查法和信号追踪法。
6 结语
伴随着微电子信息技术和电力电子技术的飞速发展,电力拖动的控制业已走出了工厂,现代生产自动化系统当中所承担流水线工作的全部控制设备在传统的电子拖动(电力传动)控制下显得很吃力。因此,运用电子技术及自动化技术,提高电力系统电气自动化技术的不断发展和变化。
参 考 文 献
篇8
1火力发电里使用电气自动化技术的优点
把电气自动化技术使用到火力发电中,这对火力发电厂的产业机构升级和环境保护层面具有着十分重大的意义。最重要的是火力发电中应用电气自动化技术,不但可以增加原料的燃烧率,并且还可以加大发电效率。这主要是由于电气自动化技术可以降低人为的误差,降低对人力的依赖,进一步提高电力生产的效率;其次,运用电子自动化技术可以有效的降低生产成本。现阶段的大部分火力发电厂所应用的原材料中,大多数仍然采用的是煤、石油、铝矿石等高耗能燃料,如果不依靠先进的自动化生产技术作为辅助,就会由此导致燃料的燃烧不充分,进而会导致能耗的增加。若是把电气自动化技术作为控制系统进行使用,就会使原材料充分燃烧,节省燃料的消耗,进一步降低了成本;最后,可以促进发电企业等有关技术的不断发展更新[2]。火力发电厂在采用电气自动化技术之后,会明显增加企业的生产效率,必然反向推动企业的产业结构的不断升级,这样就能促进各生产企业加快电气自动化技术的改进,增加经济效益,形成较大的社会效应。
2加快电气自动化技术在火力发电里的使用
2.1增加电气整体的通信管理
为了全面控制火力发电的整个流程和整合应用,那么积极处理好热工工艺连锁问题,就显得尤为重要。先阶段使用比较广泛的是分散控制系统,该系统的重点是依据开发进程的全自动化和电厂热控系统自动化控制为主要的自控系统,DCS控制系统具有功能广泛、较高的可靠性、集中式的显示、控制灵活的优势,正是该系统具有如此广泛的应用的原因,保证电厂热控系统能够极大的满足现阶段的火力发电的最基本的要求。本文将内部通讯网络和DCS管制系统有效地联系在一起实行不一样水平的融合,产生立体全方位的使用模块管制系统,在融合时系统功效里对不一样功效模块的功能结构进行详细配置,进一步保障热控系统每个功效的发挥。
2.2不断创新监控系统保护手段
以先进的控制技术为根本,联合发电机组的真实运行状况,构建一个完整的自动化监控系统,实现对建筑系统里面的电气装置用电的管制,提高电气装置的能源的使用率。
2.3建立通用网络构造
在电气自动化技术的使用进程里,通用网络构造的建立有着非常关键的功效。经过构建根本的网络构造,来达到管制人员对自动化装备的管理,实现管理系统、计算机监控系统和电气设备控制装置的信息传输的通畅性,更一步提高电气自动化技术的广泛使用,增加火力发电厂现代化技术能力的增高。
2.4朱准确编制电气项目规划
依据电气自动化产业项目基本须要,根据项目特性整理项目资源规划,把项目须要的人力、财力、物力等资源表示出来。在电力自动化系统项目里,要把人工成本、材料成本、机械电气设备使用成本和现在场地安全保护费用整个考虑进去,慢慢明确项目里所形成的个项费用。依据项目的表示及项目策略,把整体的大项目划分为互相独立、联系的子项目,将有关的技术材料、相关人员的负责项目、工程数据、项目位置等原因均需要想到,建设项目负责人体系,把责任进行细分。
篇9
1 电气自动化技术的概述
电气自动化技术是科技进步的产物之一,主要是利用计算机等网络信息技术的一种自动化系统。将电气自动化系统运用到火力发电系统中,可以对火力发电系统进行实时监控和控制,不仅可以有效提高发电厂的生产效率,还可以保证电气控制的稳定性,保证系统的稳定运行。在火力发电系统中利用电气自动化系统设置监控设备,可以对整个系统运行的数据进行有效收集和监控,通过对数据的分析可以分析出系统的运行状况,一旦出现差错,可以通过系统中的自动报警装置自动发出警报,从而能够减少损失。另外,电气自动化系统还可以对一些特殊数据进行反馈,通过数据的反馈可以有效提高主站系统的管理水平,从而促进火力发电厂正常运行。
2 电气自动化技术在火力发电中的必要性
传统的火力发电厂的控制系统相对比较简单和独立,主要集中在机、炉的简单系统中,在整个电气系统的运行过程中,各个装置之间的信息不能共享,因此,导致电厂的运行过程中工作人员的工作负担较大,系统之间的信息无法直接传送,直接通过人为传送信息,这样就会延迟故障发现的时间,从而导致发电厂事故的发生。因此,在火力发电厂中应用电气自动化技术是非常必要的。首先,电气自动化技术的应用可以实现火力发电厂系统内的信息共享,在发电厂的运行过程中,信息之间共享可以对系统的运行参数及运行状态进行明确的监测与评价,从而提高系统的运行效率。其次,信息的共享可以对发电厂设备的运行状况进行实时监控,这样可以提前预警故障的发生,从而减少事故的发生,减少损失。
3 电气自动化技术的应用优势
随着我国信息技术的发展及普及,电气自动化技术的应用范围越来越广,将电气自动化技术运用到电力行业中,使得电力行业建立起了新的运行模式,具体表现在以下几个方面。
3.1 可以有效提高生产效率
社会经济的正常运转是离不开火力发电厂的电能输送的。尽管随着科技的发展,新技术不断出现,但是火力发电厂输送的电能却并未减少。早期火力发电厂的技术比较薄弱,输送电能还处于原始的状态,效率很低,生产电能时损耗的能源较大,浪费比较严重。但引进自动化的生产技术之后,电力生产的效率显著提高,损耗较低,产量也随时加大。
3.2 可以有效降低生产成本
石油和煤是火力发电的主要原料。如果生产电能时采取较低的生产技术则会导致资源的消耗过大,火力发电厂的生产成本也相应增加。然而电气自动化技术被引进后,能源资源都能得到充分的利用。节约了资源的同时也大大降低了电力生产的成本。
3.3 能够优化系统资源
电气自动化技术的应用能够将电力基础设备、操作人员等资源集中整合起来,从而实现人机共同操作,最终提升电能的产量。此外,电气自动化技术的应用还能及时发现电力系统运行中存在的各种故障,从而对故障及时处理,减少损失。
4 电气自动化技术在火力发电厂中的具体应用
4.1 电气自动化的系统配置在火力发电厂中具有重要作用
电气自动化的系统配置主要包括I/O集中监控、远程I/O控制以及总线控制系统。其中,I/O集中监控主要是针对发电厂现场的各个设备,对于每个电器设备的馈线确定一个固定的I/O接口,然后通过电缆连接各个接口,这样整个电气设备的运行就会被监测和控制,因此能够实时监测到发电各种故障,进而能够减少事故的发生,降低设备的造价,从而降低电力企业的发电成本。远程I/O控制主要指的是通过网络系统能够远距离的实现对设备的控制操作,最大的优势是可以不需要操作人员直接接触设备就能够完成操作,从而能够节约大量的人力资源,减轻工作人员的工作强度等。另外,总线控制系统主要是依赖通信技术、控制技术以及计算机技术的配合来完成的,总线控制系统的应用可以进行分散管理,进而能够及时发现问题,实现分散管理和控制。
4.2 电气自动化技术在设备保护中的运用
电气自动化技术对于发电厂设备的保护具有一定的作用,首先电气自动化技术的应用可以实现继电保护,通过将继电器和计算机的链接,从而建立自动化的控制模式,起到调控火力发电厂继电的运行工作,保护回路。其次,电气自动化技术的应用可以对装置起到保护作用,例如,锅炉的安全门、危机保安器等。在操作的时候,通过自动化的技g可以将上述的装置协调起来,所有的保护设备都可以根据其指令进行操作运行,减少外在因素的干扰。另外,电气自动化技术的应用可以起到防雷保护的作用,只要在其运行模式中加入保护控制系统,就可以通过防雷器来提升设备的抗雷击能力,减少不必要地损失。
参考文献
[1]韩财旺.电气自动化技术在火力发电中的创新与应用[J].河南科技,2015(18):107-108.
[2]吴思祺.探究火力发电中电气自动化技术的应用以及创新[J].科技资讯,2015(13):43-44.
篇10
1 自动监控技术在电气工程中的应用
1.1 远程性监控技术
在电气工程中,使用适合条件的远程监控可以提升电气工业的运行模式,节约生产及使用成本,例如电缆成本、耗材成本、人工费等。通过远程监控还可以使得我们在监控电气工程设备上没有了地域上的限制,大大减少了工作人员的工作量,提升我们的工作效率。但是在正常应用过程中,会因为地形的复杂、传输信号距离过远等因素,导致信号接收状态并不理想,很大程度上会降低远程监控所实现的部分功能。
1.2 监控技术的集中及现场应用
监控技术的集中应用能够在电气工程中应用的最主要因素是因为它本身设计比较容易,操作简单,安装使用之后可以节省一部分购买机械设备的资金,并且更方便进行日常维护。
在电力系统之中使用最为广泛的是现场总线监控技术,它使用的是一种串行的通信线路,可以对在生产过程中的基础设施进行统一的进行远距离控制。这种方式的监控方法,可以对不同的电气工程进行有针对性的监控,而且各个设施之间没有相互影响和干涉,都是通过网络信号进行与总监控室进行直接的联系,具有较强的灵活性和独立性能。通过监控技术手段在电力系统中的应用,不仅可以降低生产使用成本,还能够增加系统运行的安全性和可靠性。
2 电气自动化技术的发展
2.1 变换器电路从低频向高频方向发展
变换器电路是电力系统中的主要构成成分之一,其发展变化过程与电力电子技术的发展变化紧密相连,可以说,电子元器件的更新换代速度直接影响着电气自动化的发展速度。
在以前使用晶闸管时,电力系统中的直流电路运行模式无法避免的出现交流变频情况出现,随着电子元器件的发展迅猛,PWM交换器逐步替换了普通的晶闸管,这使得电力行业解决了电动机在低频工作状态下出现的额转矩脉动现象,另外电动机的有效功率也得到了显著地提升。可是,使用PWM交换器带来了较大的振动噪音。直到美国威斯康星大学研发出直流环逆变器,它可以实现电气元器件功能的灵活转变,不仅能够在零电流下进行转化,又完全消除了开关损耗。这个研发成果的使用,有效的降低了电力系统运行成本,提升了逆变器的集成化程度,还使得电气自动化技术得到了很大的提升。
2.2 交流调速控制理论
利用对异步电动机定子电流矢量进行测量进而控制,从而达到控制异步电动机励磁、转矩两电流的目的,最终实现对异步电动机转矩的控制,这一控制过程称为矢量控制,也即交流调速控制。在该理论的支持下,对三相异步电动机的控制基本上相当于滞留电动机,可以使三相异步电动机具有等同于直流调速系统的静态性能和动态性能,很大幅度上提升了交流调速的竞争力,并最终可以提升电力系统的自动化水平程度。
2.3 智能保护与综合自动化技术
上世纪九十年代以来,电力系统自动化技术的研究一直很热门。我国电力领域的科研工作者也先后对电力系统智能保护与综合自动化技术进行了大量的开发与研究,并根据我国国情将最新的理论成果和实践技术应用到国内各电力系统的继电保护装置中。从而使新型保护装置进入了智能化时代,也极大地提高了电力系统的安全性和可靠性。截止2011年统计结果显示,我国自产产品已经实际应用于220kV及以下电压等级变电站的自动化中,而330kV及以上电压等级变电站也有不少选择试用。目前,我国研究工作人员针对我国电力系统研究开发的分层分布式综合自动化装置已经先后投入到我国大约两万余所 35kV~500kV各种电压等级的变电站中以及每年新建的千百所变电站中运行。
2.4 电气自动化的实时仿真系统
为了能够实时监测到电力系统的符合情况,科研人员对电力系统进行了仿真建模,通过建立的电力系统数字模拟实时仿真系统,可以在不同环境下对模拟电力系统的进行稳态和暂态实验,为科学研究提供大量的试验数据的同时,还能够与多种控制装置组成闭环回路,对整个电力系统装置进行监控。使用实时仿真系统还能够为电力系统提供智能保护和新型的输电系统研究提供实验条件。
2.5 电力系统配电网自动化技术
我国的电力系统由发电、输电和配电三部分组成,其中发电部分全部在发电厂运行过程中,输电部分包括高压输电和变电站部分,配电直接服务于各个电力用户。配电自动化技术是服务于城乡配电网改造的重要技术,主要利用电力电子技术、网络通信技术等与电力设备相结合,通过配电网来进行潮流计算之后,应用人工智能来进行负荷预测。
2.6 人工智能在电力系统中的应用
随着人工智能的发展越来越完善,研究人员也开始将神经网络、支持向量机、模糊逻辑和进化理论等应用到电力系统的故障诊断、设计规划、运行分析等方面,
从而使电力系统运行和控制逐步实现智能化成为可能。
结语
电力系统是一个国家的能源调度控制中心,其发展水平是衡量一个国家经济发展水平的重要标志。应用电气自动化技术对电力系统进行全面改造,是达到电力系统高效运行的捷径之一。同时,现在是计算机网络时代,电气自动化的应用能更好地满足时代的需求。我国的电力系统综合自动化技术起步较晚,与国外相比,在某些技术方面存在着一定的差距。所以,我们不仅要学习和借鉴国外的先进技术,同时注重自主研发适合我国国情的电气自动化系统,为我国电力系统发展做出贡献。
参考文献
篇11
为了满足人们对汽车的动力性、操作稳定性、安全性、舒适性、燃油经济性、对环境的友好性等各方面不断提高的要求,各种电子装置不断地被应用于汽车,使现代汽车成了一个广泛的电气系统,包含大量的电气设备。在汽车电气系统中,电力电子技术正起着越来越重要的作用。
一、汽车的电源系统
今天的汽车具有200多个电气设备,其平均功率在800W以上。最初汽车上电能是由与汽车发动机同轴(或其它传动结构带动)的发电机产生的,并供给14V(标称12V)标准蓄电池(组)和用电器。当发电机停止工作时,蓄电池可满足汽车启动和短期的用电要求。
随着汽车电气系统的不断增加,一辆中档汽车的供电系统需要负担50多个连接器,1500多个电路模块,2000多个终端,指示和照明灯就超过100多个,线缆长度近5km,耗电超过2.8KW,这就给供电系统的安全使用造成了极大的威胁,同时极大地限制了车用电器设备的配备使用和开发。所以现在的汽车采用了新的电源系统,这种系统有两种类型,一种是单一电压的42V系统,另一种是双电压的14/42V系统。两种电源系统的目的虽然一致,但出于实现难易程度不同,又各有自己的特点,前者为最终型,后者为过渡型。功率器件在改善系统效率和性能等方面起着关键作用,电力电子技术也被广泛应用到各个电气设备中,以提高功率,节约电能。
二、电力电子技术给汽车提供的功能
1.高亮度放电灯
高亮度放电灯(HID)已经开始在汽车中作为短焦距灯和雾灯使用。高亮度放电灯较之传统的卤素灯具有更高的发光效率、更高的可靠性、更长的寿命和更大的外观设计灵活性,并且具有功率大、纹波小、触发起动快、工作稳定可靠及抗干扰能力强等优点。HID灯的发光效率是卤灯的3倍,而寿命大约为2000h。HID运行时需要采用电力电子镇流器。初始时,需12k-30k的高压点燃电极之间的弧,而后需要大约85V的电压来维护电弧。
2.电动机的转速控制
电动机在汽车上的应用很多,比如向乘客舱供气的风机、对水箱(或冷凝器)进行强制风冷电动风扇等,它们常需要实现变速控制。例如向乘客舱供气的电动机,一般是具有鼠笼风扇的永磁直流电动机,其速度通常是通过改变与电动机绕组串联的电阻来进行控制的,这种方法导致了很大的功耗。目前,已研究出的大功率器件脉宽调制(PWM)技术在直流电动机调速上得到了广泛的应用。利用这些器件具有自关断能力,并有体积小、重量轻、开关速度快、损耗小、效率高等优点,使调速系统能实现高频化、模块化,且动、静特性指标大大提高。
3.防抱死制动系统(ABS)
汽车防抱死制动系统简称ABS,是指在制动过程中,可自动调节制动力大小,防止车轮抱死,以获得最佳制动性能包括最佳方向稳定性、正常转向能力和最小制动距离的装置。它是汽车制动系统的组成部分。在汽车上装用ABS可有效地减少交通事故,提高行车安全性。国外的ABS发展于20世纪初,目前ABS技术和工艺都非常成熟,己广泛应用于轿车和重型汽车中。目前ABS的发展方向为:(1)ABS和驱动控制装置的一体化;(2)ABS与电子全控式(或半控式)悬挂、电子控制四轮转向、电子控制液压转向、电子控制自动变速器等行驶系统和动力传动系统的组合装置;(3)ABS和自动制动器的一体化。
4.超声电动机
超声电动机(简称USM)是一种新颖的微型电机。它利用压电陶瓷的逆压电效应,把电能转化为机械能,并依靠摩擦力来驱动。由于超声电动机特殊的工作原理,它具有很多传统电磁电机无法比拟的优越性能,如低速大转矩、体积小重量轻功率密度大、响应速度快、微位移、不受电磁场的影响、掉电自保持、设计自由度大等。
超声电动机可以作为汽车窗户提升、座位定位和驾驶员头部保护装置的执行器。超声电动机要求电力电子电路进行驱动,因而电力电子电路的好坏会极大影响到超声电动机的性能。
5.发动机机电气门
现在电磁执行机构在汽车系统中具有越来越多的应用,这些执行机构较之其它类型的(例如液压的、风力)执行机构具有很多优势,更易利用微处理器进行更为精确的控制。应用电磁执行机构的发动机气门代替凸轮轴和凸轮气门,可以通过控制发动机进气门和排气门的开关来在一个由多种变量如速度、负载、高度和温度确定的大范围内,实现优化发动机性能和提高燃料经济性的目的。
6.电子燃油喷射系统
和传统的化油器系统相比,电子燃油喷射系统可以对燃油喷射进行更加精确的控制,因而提高了汽车的效率和燃油经济性,提高功率性能,增强汽车的操纵灵活性并且使排放更加清洁,目前电子燃油喷射系统已在汽车上被广泛使用。
7.电气空调
在常规汽车中,通常由发动机驱动空调的压缩机,因此压缩机的速度在一个很大的范围种变化,并且压缩机的容量必须大于标准,从而在发动机转时也能提供足够的制冷。此外,轴封和橡皮软管会导致制冷剂(CFC)泄漏,造成环境污染。
而在电气空调中,一般是由三相MOSFET桥驱动的直流无刷电动机来驱动压缩机。电气空调的压缩机速度和发动机速度无关。因此,压缩机可以采用标准的,并且没有过冷的问题发生。同时,轴封和软管可以利用密封系统代替,避免制冷剂泄漏。另一个优点是电气空调由于不需发动机驱动,所以安装位置非常灵活。
三、小结
电力电子技术已是汽车的核心控制技术之一,电力电子器件的性能关系到汽车的可靠性,在汽车中正在起着越来越重要的作用。它为提高汽车性能、安全性和功能的新技术应用提供可能。可以肯定地说,电力电子技术在未来汽车技术的发展中必将继续起着重要的作用。
篇12
1 电气自动化技术在火力发电中的基本作用
电气自动化技术在火力发电中的基本作用是通过以监视控制设备为主,数据交换信号反馈为辅助的自动化系统,监控设备时以主接线图,曲线等形式测量设备的运行状态和数据信息,并能及时的上报设备的警告信号、动作事件异常等情况,避免操作失误和危险情况的发生。电气自动化系统的高级功能还提供很多特殊的数据反馈,例如利用测控装置本身的计量功能或脉冲信号进行电量统计,定值的远方修改在线自动效核,电气主站系统的在线设备管理,故障诊断及电动机状态检修等。
2 电气自动化技术在火力发电中的必要性
一般来说,传统的火力发电厂中的集散控制系统(DCS)主要是侧重于对机、炉系统的简单控制,而电气系统的保护与安全装置都可以基本实现独立运行,诸如厂用电源切换装置(ATS)和自动励磁调节装置(AVR)等都与集散控制系统(DCS)之间的信息互访和交换量有限,对整个电气自动化系统的反映信息量相对较少,也导致电气系统的操作人员所关注的测量、参数等信息都无法在集散控制系统(DCS)中得到有效反映,这也就对电气系统的操作人员运行系统造成了一定程度地不便,无法实现轻松、快捷、简便的系统操作,非常不利于其对火力发电厂的事故进行及时地分析与解决。因此,为了提高火力发电厂中电气系统的自动化水平,就必须改变传统电气系统控制中对变送器和控制电缆大量安装的情况,转变过去硬接线一对一采集电气信号的形式为现场总线技术和智能设备的结合形式,建立火力发电厂的电气系统通信网络,充分利用其联网信息多样化和全面化的优势,进行电气系统深层次的相关数据挖掘,实现火力发电厂中电气系统的自动化,提高整个火力发电厂电气自动化系统的运行和管理水平,这对于火力发电厂的长远发展发挥着至关重要的作用。
3 电气自动化技术在火力发电中的发展现状
电力自动化技术在火力发电厂中的应用水平是随着科学技术的不断进步而不断发展和提高的。电气自动化系统的日新月异也为火力发电厂的数据采集和信息通信等开拓了新的技术发展领域。火力发电厂中电气自动化系统的监控装置不仅可以实现对交流采样的测量、保护和监控,而且可以通过新型计算机的监控与保护实现现场总线技术与工业以太网的网络形成。通常情况下,电气自动化系统是由控制层、间隔层和通信层三大主要部分组成,并通过分布分层的方式实现对整个系统的监视与控制。下层的功能则可以摆脱对上层设备和网络的依赖,而独立实现。另外,电气自动化系的控控制层是整个系统的核心,其主要任务是监视、控制、采集和整理整个系统的数据信息,需要依赖上层的主站系统来实现。起通信层的主要任务则是要完成系统间隔层与各站点之间的数据交流、互访与转换,逻辑监视与控制电气设备。至于电气自动化系统的间隔层,则是由保护见恐慌只和智能设备两大部分组成,通过网络和接口等方法实现与系统上层功能的数据互访与沟通。当前,火力发电厂的电气自动化系统的监控技术也已经与其他相关监控系统进行数据交换,从而实现火力发电厂的信息化管理与控制。
4 创新电气自动化技术在火力发电中的系统配置
电气自动化技术在火力发电中的系统配置主要可以分为以下三种形式:I/O集中监控方式、远程智能I/O方式和现场总线控制系统(FCS)方式。
4.1 I/O集中监控方式
I/O集中方式。是将电气的各馈线在现场设置现场设备I/O接口,通过硬接线电缆与集控室DCSI/O通道相连,经A/D处理后进人DCS组态,实现DCS对全厂电气没备的监控。这种监控方式优点是速度对应快、运行维护好、监控站的防护等级低,从而使DCS的造价下降,但由于电气设备全部进入DCS监控,随着监控对象的大量增加使DCS主机冗余的下降,电缆数量巨大,控制楼面积大,长距离电缆引进的干扰可能影响DCS的可靠性。
4.2 远程智能I/O方式
远程智能I/O方式是在数据采集较集中月一离控制室较远的现场设立远程I/O采集柜(即现场A/D转换机柜),现场设备I/O信号通过硬接线电缆与加采集柜相连,加采集柜与控制室DCS控制器主机柜通过光纤或双绞线。远程I/O具有节省大量电缆、节省安装费用、节省控制楼面积、可靠性高等优点智能化远程I/O还可完成数据处理、自检、自校正等功能。但I/O卡件、模拟量卡件及电量变送器还是不能减少。
4.3 现场总线控制系统方式
现场总线是当今3C技术,即通信、计算机、控制技术发展的结合,是信息技术、网络技术发展到控制领域和现场的体现。现场总线废弃了DCS的控制站及其输人/输出单元,从根本上改变了DCS集中与分散相结合的集散控制系统体系,通过将控制功能高度分散到现场设备这一途径,实现了彻底的分散控制。
5 创新电气自动化技术在火力发电中的应用
5.1 统一单元炉机组
创新电气自动化技术在火力发电中的应用,实现由机、电控制一体化向火力发电厂机、炉、电一体化的单元制运行监控方式转化。这样,火力发电厂中集散控制系统(DCS)可以通过机、炉、电单元制的运行方式对整个火电机组的所有运行参数和状态信息进行汇总和分析,最大限度地挖掘火电机组潜力,并发挥其自身特有的控制功能,最大限度地缩小控制室,实现对监控系统的简化,也就能够最大可能地降低成本造价;同时,统一单元炉机组也便于火力发电中电厂信息管理系统(MIS)的信息采集,从而加强火电电网的统一运行和管理,完成中调AGC的相关指令和要求,提高电网的工作效率,使其保持在最经济和最佳的运行状态。因此,统一单元炉机组有利于提高火电机组的监控水平和自动化水平。
5.2 创新控制保护手段
篇13
电气自动化技术是在电力系统中实现远程监控以及监视管理的有效地途径,是将现代的电子技术、信息的处理技术以及网络通信技术融为一体的基础上,发展起来的综合技术。电气自动化技术,为电力系统的平稳运行提供了良好的条件,并且随着发展,电力系统也得到了更为优质的服务。电力系统自动化技术的要求主要有:①保证电力系统各部分的技术要求,以实现设备的安全以及经济,并以设备的实际运行为主要的依据,保证操作人员实际的控制和协调;②尽量的利用电气自动化技术进行安全性能的改善,从而可以减少事故,并能够节省人力,避免紧急事故的发生和发展;③还要对电力系统的整体数据以及参数进行检验、收集并对之进行处理,保证各系统的正常运行;④保证电力系统各部分的安全以及经济。
二、电力系统中的电气自动化技术
(一)变电站自动化。电力系统中变电站与输配电线路是联系发电厂与电力用户的主要环节。变电站自动化的目的是取代人工监视和电话人工操作,提高工作效率,扩大对变电站的监控功能,提高变电站的安全运行水平。变电站自动化的内容就是对站内运行的电气设备进行全方位的监视和有效控制,其特点是全微机化的装置替代各种常规电磁式设备;二次设备数字化、网络化、集成化,尽量采用计算机电缆或光纤代替电力信号电缆;操作监视实现计算机屏幕化;运行管理、记录统计实现自动化。变电站自动化除了满足变电站运行操作任务外还作为电网调度自动化不可分割的重要组成部分,是电力生产现代化的一个重要环节。
(二)电网调度自动化。现代的电网自动化调度系统是以计算机为核心的控制系统,包括实时信息收集和显示系统,以及供实时计算、分析、控制用的软件系统。信息收集和显示系统具有数据采集、屏幕显示、安全检测、运行工况计算分析和实时控制的功能。在发电厂和变电站的收集信息部分称为远动端,位于调度中心的部分称为调度端。软件系统由静态状态估计、自动发电控制、最优潮流、自动电压与无功控制、负荷预测、最优机组开停计划、安全监视与安全分析、紧急控制和电路恢复等程序组成。
(三)发电厂分散测控系统(DCS)。发电厂分散控制系统(DCS)-般采用分层分布式结构,由过程控制单元(PCU)、运行员工作站(os)、工程师工作站(ES)和冗余的高速数据通讯网络(以太网)组成。过程控制单元(PCU)由可冗余配置的主控模件(MCU)和智能1/0模件组成。MCU模件通过冗余的1/0总线与智能1/0模件通讯。PCU直接面向生产过程,接受现场变送器、热电偶、热电阻、电气量、开关量、脉冲量等信号,经运算处理后进行运行参数、设备状态的实时显示和打印以及输出信号直接驱动执行机构,完成生产过程的监测、控制和联锁保护等功能。运行员工作站(os)和工程师工作站(ES)提供了人机接口。运行员工作站接收PCU发来的信息和向PCU发出指令,为运行操作人员提供监视和控制机组运行的手段,工程师工作站为维护工程师提供系统组态设置和修改、系统诊断和维护等手段。
三、电力系统中电气自动化技术的应用
(一)主动对象数据库技术在电力系统中的应用。数据库技术在电力系统中的应用主要是用于电力系统的监视系统中,因此,这对系统的开发、继承、封装等都有很大的作用,引发了软件技术的变革。主动对象数据库技术在电力系统得到了广泛的应用和认可,并用来支持对象标准,因此与一般的关系数据库相比,主动对象数据库主要是对技术以及主动功能的技术支持,因此,在电力系统中也得到了广泛的应用。主动对象数据库是利用系统的监视功能,对对象函数进行利用,从而可以实现电力系统中电气自动化的应用,随着触发机制的使用,数据库监视得到了很好的控制与实现,从而节省了数据写入以及读出的时间,还对数据管理功能充分的进行利用,并得到了技术上的保证。当前,我国的数据库技术得到了很广泛的应用,并且监视系统也得到了很好的发展,电气自动化技术在电力系统以及日后的电力系统中并将得到更为完善的应用。