移动通信新技术实用13篇

引论:我们为您整理了13篇移动通信新技术范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

移动通信新技术

篇1

1 移动通信概述

移动通信是指通信当中任意一方或者双方可以在移动过程中进行通,也就是说,必须有一方具有移动性。其形式可以是移动方与固定方之间的通信,又或者是具有可移动性两者之间的通信。移动通信能够达到人们所希望的在任何时间任何地点都能进行通信的愿望。自从上世纪80年代,尤其是从上世纪90年代开始,移动通信得到了迅猛的发展。几十年间移动通信技术的发展,促使移动电话从最初的富人独享的玩具,到现在成为人人所能拥有的日常生活用品。移动通信技术经历了模拟系统、数字系统直到当今的第三代宽带系统的广泛应用,而未来通信技术LTE也在紧张的测试当中。

2 移动通信技术的发展历程

过去几十年当中,全世界移动通信技术得到了极大的进步,移动通信技术尤其是蜂窝技术被迅速应用,令广大的用户摆脱了终端设备的束缚、完整的实现了个人通信方式的移动性、传输手段的可靠性及接续性。目前为止所使用过的移动通信技术按照其发展历程可划分为三代,其具有以下的特点:

1)第一代移动通信系统(1G)提出于上世纪80年代初,完成于90年代初。基于模拟传输的1G移动通信技术,具有业务量小、交全性差、质量差、缺乏加密行及速度低等特点。基于蜂窝结构组网的1G通信技术,直接采用模拟语音调制技术,传输速率约2.4kbit/s。不同国家采用不同的工作系统。

2)第二代移动通信系统(2G)。源于上世纪90年代的第二代移动通信系统中采用数字技术,利用蜂窝组网技术。多址方式由频分多址转向时分多址和码分多址技术,双工技术仍采用频分双工。2G通信网络采用蜂窝数字移动通信,具有数字传输优点的同时也克服了1G通信网络所具被的缺点,通话语音质量及保密性能得到了极大提高。

3)第三代移动通信系统(3G),也称IMT2000,是正在全力开发的系统,最为突出的特点是具有智能信号处理的能力,智能信号处理单元将成为最基本的功能模块,支持话音和多媒体数据通信,能够提供前两代产品所不具备各种宽带信息业务的选项,例如高速数据传输、电视图像和慢速图像等。第三代移动通信系统的通信标准包括CDMA2000、WCDMA和TD-SCDMA。

3 移动通信新技术概述

目前正在测试应用的第四代移动通信技术(4G)又可称之为分布网络,具有高速非对称传输数据的能力,数据传输速度可达2Mbit/S。4G作为集合多种无线技术的大系统,不但具备现有3G通信增强技术,还具备宽带无线局域网(WLAN)、无宽带无线固定接入及互操作广播网络系统的能力。4G移动通信核心技术如下文所述。

3.1 WiMAX

WiMax(World wide Interoperability for Microwave Access),即全球微波互联接入。WiMAX又可称作802.16无线城域网或802.16。WiMAX作为新兴的接入技术,具备高速连接互联网的能力,最远的数据传输距离可达50km。WiMAX同时还具备传输速率高、QoS保障、多业务等优点。由于采用了代表未来通信技术发展方向的AAS、OFDM/OFDMA、MIMO等先进技术,因而从技术角度来看,Wimax的起点较高。随着技术标准的发展,WiMAX将会逐渐实现宽带业务被移动化,而3G通信移动业务则宽带化,由此可推测随着技术的发展两种网络的相互融合程度会越来越高。

3.2 LTE技术

长期演进LTE(Long Term Evolution)。LTE又被称为3.9G通信技术,其数据下载能力可高达100Mbps,从而被视作从3G向4G演进的主流技术。LTE的研究,包含了一些普遍认为很重要的部分,如具备更高的用户数据速率、减少时间的等待、系统容量和覆盖区域的改善以及降低运营成本。3GPP长期演进(LTE)项目是近两年来3GPP启动的最大的新技术研发项目,这种以OFDM/FDMA为核心的技术可以被看作“准4G”技术。3GPPLTE项目的主要性能目标包括:在20MHz的带宽下能够提供下行100Mbps、上行50Mbps的峰值数据速率;提高小区的容量;对小区边缘用户的性能的改善;系统延迟时间的降低,用户平面内部单向传输时延低于5毫秒,控制平面从睡眠状态到激活状态迁移时间低于50毫秒,从驻留状态到激活状态的迁移时间小于100毫秒;支持100公里半径的小区覆盖;能够为移动速度达350Km/h的移动用户提供数据传输速度大于100kbps的接入服务;支持成对或非成对频谱,并可灵活配置从1.25MHz到20MHz多种带宽。

3.3 OFDM

OFDM(Orthogonal Frequency Division Multiplexing)

即正交频分复用技术,实际上OFDM是多载波调制(MCM MultiC

Arrier Modulation)的一种。其核心思想是:将信道分成许多正交子信道,将高速的数据信号转换成并行的低速子数据流,调制到在每个子信道上进行传输。在接收端应用相关技术对正交信号分开,通过此种方式可以降低子信道之间的相互干扰ICI。由于每个子信道上的信号带宽小于对应的信道相关的带宽,因此每个子信道上的可以看成平坦性衰落,因此能够消除符号之间的干扰。再且每个子信道的带宽只占原信道带宽当中的一小部分,故信道均衡变得相对容易。

3.4 软件无线电

软件无线电作为志勇具有开放式结构的通信新技术,其是将标准化、模块化的硬件以一个通用硬件平台为基础,采用软件加载方式来实现各种类型的无线电通信系统。通过加载不同的软件程序,在硬件平台上可实现所需的功能,可以实现在不同系统中基于单一的终端进行漫游,它是解决移动终端在不同系统中工作的关键技术。软件无线电技术主要涉及数字信号处理硬件(Digital Signal Process Hardware,DSPH)、现场可编程器件(Field Programmable Gate Array,FPGA)、数字信号处理(Digital Signal Processor,DSP)等。

3.5 M-QAM

IMT-2000所定义的关于未来个人通信,是多种业务的综合。不仅包括传统的语音服务(96kbps),还包括多媒体业务(384kbps和2Mbps)。若在这些高速数据传输中采用一般的调制技术,则会急剧增加信道带宽并使原本宽带频率紧张的状况加剧恶化。因此,采用高频谱利用率的调制方式,是解决有限的频谱资源与高速率多媒体业务这一对矛盾的有效方法。而M--QAM(正交振幅调制)就是这样的一种技术。多进制正交幅度调制作为在中、大容量数字微波通信系统中被广泛使用的一种载波控制方式,该方式具备极高的频谱利用率,在调制进制数较高时,信号矢量集的分布也较合理,同时实现起来也较方便。目前在LMDS、SDH数字微波等大容量的数字微波通信系统中被广泛使用的64QAM、128QAM等均属于这种调制方式。

3.6 智能天线

智能天线原名自适应天线阵列(Adaptive Antenna Array,AAA),最初用来完成空间滤波和定位。智能天线是一种安装在基站现场的双向天线,通过一组具备可编程电子相位关系的固定天线单元获取方向性,可同时对基站和移动台之间各个链路的方向特性进行获取。智能天线的原理是将无线电的信号导向具体的方向,向空间发射定向波束,使天线主波束对准用户信号到达方向DOA(Direction of Arrinal),旁瓣或零陷对准干扰信号到达方向,达到充分高效利用移动用户信号并删除或抑制干扰信号的目的。智能天线具备精确定位功能,可实现接力切换,减少信道资源浪费,从而提高系统的性能,并且通过空分多址空间资源之间智能天线接收器的交叠最小,干扰最小,提高频谱利用率。

3.7 多载波技术

多载波技术包括OFDM和多载波CDMA技术等,现在主要应用的是OFDM技术,其主要思想是:将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制在每个子信道上进行传输。正交信号可以通过在接收端采用相关技术来分开,这样可以减少子信道之间的相互干扰(ICI)。每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道上的可以看成平坦性衰落,从而可以消除符号间干扰。

4 结论

移动通信无疑是现今社会最热门,也是社会发展最离不开的技术,移动通信技术的发展状况已成为评价一个国家科技实力的重要指标,移动通信技术相关的业务发展,产生了巨大的经济效益,对现代移动通信新技术的研究将会成为今后科研机构、高校、企事业单位的重要课题。本文对移动通信新技术进行了概述,对当今存在的移动通信新技术进行总体概括,旨在分析当今移动通信新技术发展趋势。

参考文献:

[1]毛京丽,现代通信新技术[M].北京:北京邮电大学出版社,2008.

[2]李震,3G发展现状与前景[J].网络与信息,2007(5).

[3]全庆一,卫星移动通信[M].北京:北京邮电大学出版社,2000.

[4]IEEE Wireless MAN 802.16 制定[M]. EStandard for Lo cal and met ropolitan areanetw or ks.

篇2

所谓的移动通信是指移动体之间相互进行的通信,即通信的双方在可移动的情况下进行的通信,具有显著的可移动性特点。移动通信包括可移动体之间的通信,或是可移动体与固定体之间进行的通信。所指的移动体可以是人,也可以是移动状态中的物体两种。移动通信基本上满足了人们在任何地点任何时间的通信要求,移动通信市场在进行着不断的变化,所以,移动通信技术也快速的发展起来。

1、移动通信技术的发展历程

1.1 第一代移动通信技术

对第一代移动通信技术的介绍,第一代通信技术简称为1G,在20世纪80年起,因为其采用了频分多址技术和模拟技术,所以又被称为是模拟移动通信技术。第一代移动通信技术的主体是AMPS和TACS,代表是频分双工、频分多址制式,以蜂窝组网技术的应用来提高频率资源的利用率。我国所使用的第一代移动通信技术是主要以TACS为主的移动通信技术,每秒的传输速率最高可达到2.4kB,即使传输速率足够快,但是由于传输带宽限制的原因,TACS的活动区域范围有限,只能在有限的区域范围内将移动通信系统的功能发挥出来,所以移动通信的长途漫游不易得到实现。随着移动通信市场的快速发展,第一代移动通信技术的弊端就显现的越来越明显了,下面列举一下它存在的缺陷,比如各制式不易兼容、频谱利用率低、低传输速率、保密性能低等。

1.2 第二代移动通信技术

第二代移动通信技术的简称是2G,起源时间是上世纪90年代,第二代移动通信的关键技术使用的是码分多址与时分多址的技术,所以又被称为是数字移动通信技术。第二代移动通信技术的代表制式是CDMA和GSM两种,我国主要使用的是GSM制式。2G的传输速率是9.6kB~28.8kB每秒,不同于第一代移动通信,第二代移动通信系统的保密性极强,频谱使用率也较高。除此之外,还能提供很多其他的业务,也解决了异地漫游这个问题。因为国际制式缺乏统一,2G所具备的异地漫游,具有局限性,只能在统一制式的活动区域内进行。第二代移动通信的传输带宽实现了增加,但是多媒体业务等高速率业务想要得以实现,第二代移动通信的数据仍存在一定的约束性。

2、现代移动通信的新技术

2.1 高速下行分组接入技术

移动通信系统中的数据业务在未来的发展趋势中占据关键地位,所以,提供有效的多用户高速下行数据业务技术是未来移动通信业务发展的必然趋势,而现如今高速下行分组接入技术完全满足这一需要,所以高速下行分组接入技术成为未来移动通信系统发展的主要且是唯一的趋势之一。高速下行分组接入技术的主要构成是MIMO、H-ARQ技术,该技术能够将下行速率由8Mbps提升到20Mbps,MIMO技术能使移动通信系统的容量得到扩充,还能够将数据传输速率提升到14.4Mbps到21.6Mbps范围内,但是MIMO技术也存在一些缺陷,比如会增加移动台和基站的复杂度。研究表明,配有四付天线的移动台的复杂度是单个天线的两倍,所以为了弥补MIMO的信道空间存在的缺陷,使MIMO的信道空间得到充分地利用,所以空时处理方案的BLAST技术便产生了。BLAST技术的主要作用是通过多径提供的空间并行性大大的提高比特率。BLAST系统的使用条件通常是在信道极窄的情况下才能使用,但是如果接收端使用的是MIMO-DFE技术,在频率选择性信道等较一般的情况下就可以使用BLAST技术。

2.2 自适应可变速率调制技术

未来移动通信系统所要求的是要满足传输速率不同和质量不同的多种业务,还要具备灵活性,随时间和传播地点的变化而灵活变化,所以,根据以上要求,未来移动通信系统的发展趋势之一是要有较强的自适应调制传输速率的能力。自适应编码调制技术应该以确保传输的质量为基础,根据不同的传播条件进行有效地调整传输速率,这样才能将所用频谱的效率发挥到最大。可变速率调制技术主要有两种方式:一个是调制可变速率正交振幅,又称VRQAM。它主要是振幅和相位相互联合构成的键控技术。电平数较少,每码元携带的信息比特数就较少,反之亦然,电平数若较多,其每码元携带的信息比特数便较多。另一个是可变扩频增益码分多址,又称VSGCDMA。它主要采用的是通过改变发射的功率和扩频的增益来对不同的业务速率进行传输。在对高速业务进行传输的过程中应该以保证传输质量为前提,才能降低扩频的增益,此时要做的是适当地提高发射功率;但在对低速业务进行传输时必须要做的是在保证传输质量,适当增大扩频增益,同时还要降低发射的功率,避免多址干扰的出现。

2.3 IP技术

将来的移动通信网络会有一个十分完善的IP系统,该系统能使核心网得以IP化,更能使无线接入部分得到IP化。核心网的IP化考虑的主要内容是原有核心网的改动程度、改动后和兼容性以及改动的成本等。但是无线接入部分的IP化能够保证IP技术的相互协调,促进了以IP包为基础的统计复用技术的实现,同时很大程度上的降低了传输成本,实现了全带宽的利用度,真正促进和实现了语音和业务数据融合。

2.4 软件无线电技术

软件无线电指的是研制出一个可编程的完全的硬件平台以及软件编程程序,所有的应用将通过这一平台中的软件编程程序得到获得。也就是说,即使是不同系统的基站和移动终端也能够通过相同硬件平台上的不同软件而得以实现。软件无线电技术能够有效地促进各种移动台及各移动通信设备之间的无缝集成,同时能够使移动通信系统的建设成本大大降低。同时将使移动通信的网络结构有所改变,并加速无线网与有线网的相互融合,实现多种网络互联,增强网络的灵活性。

2.5 多用户检测技术

多用户检测技术简单来说主要是一种检测系统中的几个或多个平行传送信号的高效检测程序。多用户检测技术的出发点是把所有用户的信号看成是有用的信号,不是干扰信号,以清除用户受到的多址干扰信号的方式,来促进提高频谱效率和增加容量。

2.6 智能天线阵列技术

篇3

随着4G网络的全面建设,对移动通信网络的建设提出了更高的要求。近几年,基站建设数量的逐年增加,站间距越来越小,基站数越来越密,给我们基站选址工作带来了很大的挑战和难度,也暴露出了各种各样的选址问题,严重影响了移动通信基站建设的步伐。

近年来在基站选址和建设方面运营商陷入了两难的境地:一方面,为了满足用户不断增长的通信需求,提高服务质量,运营商需要建设更多的基站来不断完善网络覆盖和质量,在通信网络上的建设任何延迟,可能都会带来用户的投诉和用户满意度的下降,甚至客户的流失;另一方面,随着人们环保意识的不断提高以及对基站辐射了解程度不深的情况下,在基站的选址和建设中也遇到越来越多的关于基站辐射方面的投诉。

二、选址中常见的问题

政府层面:与城市规划结合不够紧密,政策上支持力度不够,建设的过程中不容易得到规划部门的许可和支持。

开发商层面:与开发商的协商过程中,很难得到土地开发商在建设中的配合。

业主层面:因站点费用问题,或者对基站辐射的错误认识,部分业主、村民抱团阻挠选址和施工。

部分困难场景:密集市区、老城区的铁塔空间资源和站址资源较为紧张,随着网络的深度覆盖,老城区、密集市区的选址工作难度也在加大。

三、原因分析

第一,基站对城市环境的主要影响为破坏城市景观。随着通信基站建设量的增大,天线架设五花八门,有的直接架设在楼顶女儿墙上,有的架设在楼顶铁架上,有的直接安装在落地的铁塔上,在一定程度上影响了市容景观。

第二,群对基站的抵触心理。人们在对移动通信服务要求提高的同时,也越来越关注电磁辐射对人体健康的影响,加之一些群众对基站辐射缺乏正确的认识,普遍担心基站辐射对人体可能造成伤害,因此排斥通信基站的选址和建设。

第三,新技术的应用不够深入,部分密集市区的站点选址困难,空间资源紧张。

四、新方案解决选址难题

4.1多功能路灯塔

疑难站址大部分是因为群众的抵触心理和市政规划的许可。如果能够结合现有的公共照明、治安监控、传媒广告等元素,大大的降低用户的抵触心理。此类站点对社会治安、环境保护、新闻传媒等方面的民生效益较为突出,容易得到市政部门的规划许可,为解决密集市区、老城区、街道的疑难站址提供了一个新的思路,如下图所示。

4.2小型智慧机房

对于CBD、公园、机场、风景区、广场绿地等美化隐蔽性要求高的区域,选点困难的敏感地区。选择隐蔽性较高的机房,配合伪装美化天线,降低周边业主对基站的感知。此类站点根据周边环境设计,机房的外观造型与周边环境融合,维护便利,安全防盗,为景区选址提供了一条新的思路,如下图所示。

4.3都市之眼

利用混凝土筏基自重抗倾覆,依靠监控、广告屏、美化天线罩作为伪装,解决城区争议站点的建设问题;实现“建的值”、“建的好”、“建的快”等多元化建设目标,满足特殊场景快速建设的需求,提高客户满意度。该方案塔形适合对环境要求较高,需与周边环境协调,尤其是景区。敏感地带,市政不允许进行土方、大开挖作业,常规建设无法实施的区域,对于现场客观因素限制的疑难站址,也是较为适用的解决方案。

4.4小基站覆盖方案

小基站体积小、重量轻、对工程的建设环境要求较低,能够解决工程建设、物业协调等方面的问题,更为实现深度覆盖提供了可能。同时小基站耗电低,符合绿色节能发展的趋势,能够满足运营商对节能增效降耗的要求。对于某些老式小区,用户对宏基站辐射非常敏感,在小区内部选址建站难度很大,可以考虑在小区采用小基站的建设模式来解决覆盖,如上图所示。

4.5多频天线替换方案

用于整合天面空间、解决无空余天面资源的问题,降低选址难度。同时可以减少天线数量,降低公众对电磁辐射的恐惧。对于选址困难的站点,也可以考虑采用周边站点,替换多频天线,调整网络覆盖参数的手段来解决网络覆盖和质量问题。

4.6市政规划结合的方案

对于农村、乡镇征地难的问题,可以主动介入当地的城乡规划,主动建议政府主管部门在城乡规划建设文化广场、健身广场等大型公众场地的时候,预留通信基站位置,采用美化机房+景观塔的方式结合覆盖,此举可大大的降低选址的难度,并且可以长期和城市规划紧密结合,一举多得。

五、总结

疑难站址的获取目前是铁塔公司和运营商关注的重点问题,以上主要是根据工作中常见的疑难站址,给出的解决方案。对于提高目前基站选址的质量和效率有较高的实用性。

基站的选址的顺利推进,促进了城市通信事业的发展,对于铁塔公司来说,基站的选址规划是通信发展规划以及网络优化的必要前提,对通信产业的发展起到了良好的保障。

篇4

11G移动通信系统

1G移动通信系统相对于以往的系统最主要的优势是它采用了模拟蜂窝通信网,这是具有突破性的重要进展,这一系统的主要技术特征是FDMA,即模拟制式,是用电波的信号模拟人说话声音的变化,质量很高,几乎与固定电话相当。同时,1G系统的模式是双频分工,用户只有被同时分配到一对频率,并同时使用两个信道时才能进行通信。尽管如此,1G系统也存在一些不尽人意的地方和难以解决的问题:由于FDMA技术的一个载频被一个信道占用,所以经常在窄带系统中实现;系统基站庞大而复杂,信道间会互相干扰。这种干扰可用带通滤波器来限制。同时,因为切换越区不够简单,所以保密性不好。业务形式单一,长途漫游受到限制,同时传输速度低。

22G移动通信系统

无线通信系统从第二代系统(即2G)开始了纯数字模式,其中PHS,PDC,GSM,HSCSD等网咯结构同属于2G标准。时分多址技术在2G系统中大量采用,GSM在同一时间接受发射会引起干扰,为了解决这一问题,要分开时间的发和接受时限。2G在1G的基础上有了明显的优化,通信容量增加,也提高了频谱的利用率,有较强的抗干扰能力,能方便地切换越区,加快了传输速度。但与此同时TDMA也有很多缺点,如:突发传输的速度远高于语音传输的速率度,这增加了同步开销;因为码间串扰大,自适应均衡被广泛地应用在了这一系统中。

33G移动通信系统

2G系统经过线性扩展后,构成了第三代移动通信技术(3G)。电路交换与包交换是该系统的两种不同结构。常见的3G标准大体分为4种,被最大泛围应用的标准是WCDMA标准,它的接纳程度也是最高的。3G系统的信道依靠自己的代码建立,是多址通信。3G较2G有了更大的提高,通信容量更大,同时也解除了自适均衡。大大加快了传输的速度。为增强市场竞争力,3G技术进行了一系列后期演进。主要改进了传输数据速度和系统的频谱。并将FDMA/OFDM作为革命技术。新技术演进仍在完善工作模式与更替先进技术方面投入较大,它能有效增加系统的现有容量,并演化出了一些4G的特征。从一定程度上这为4G的发展打开了思路。

44G移动通信系统

第四代通信系统首次拥有了传导三维影像的能力,并较前三代进化出了更强大的数据传输速度,能对移动的用户提供高质量的服务。4G系统采用多种先进技术,实现了无线局域网等技术的革新。正交频复用是4G的重点技术之一,这种技术用低速子数据流代替了高速数据信号,传输在每个子信道上。该技术可以使子信道之间减少相对干扰,同时因为信道的相关宽度较大,它的均衡也变得容易。4G系统应用了自适应天线,提供了极强的搜索能力和不受干扰的唯一通道,可以克服多种干扰。该技术可以在各种平台与系统中自由切换,灵活性很强,方便了系统升级与互联。并有了两种不同的升级思路。同时,4G技术与无线技术相互融合,满足未来的通信需求,并与汽车、民航等产业相互结合,与各种软件运营、网络设备等领域相互介入。为人们提供更灵活的信息交流方式。

5移动通信技术的发展趋势

无线移动通信技术呈现多方向发展,在更高层面上将互联网与移动通信紧密结合,呈现多元化发展。随着多种多址技术的应用,核心的无线技术仍是提高数据传输能力,并且取得了重大进步,系统数据的传输量级也有了提高。同时,无线经历了从只有语音业务发展到支持多媒体业务的进程,从早期的人与人的通信逐渐发展为人机通信、机器通信,业务种类更加多样化。并逐渐出现了多种传感、识别的功能。无线通信也由早期的单一体制发展为多种体制标准共存,并为未来十几种体制的共同存在提供的可能。人与周边环境的交流日益密切,泛在网络概念也应运而生,多个国家和组织设想将网络融合,服务对象向更大的方向拓展,由人向周边环境转变。未来或可实现人与任何客户端的信息交融,互联网将渗透入生活的每一部分。

6总结

近年来,移动通信技术获得了长足的发展,并极大地丰富了人们的生活。虽然仍有一些问题的困扰,但这些困难正逐步被解决。未来的移动通信技术会有更多样化的特征,人们自由漫游标准,在蜂窝数据、卫星通信等技术的切换将会实现。信息与各种技术结合从而形成一个密不可分的整体。用户的各项需求也会得到满足,网络将会表现出自治性与自适性,并具有几号的组织能力、重新构成能力与可变换的尺度,未来的无线通信技术仍会以高速的发展与进化改变我们的生活和与周边环境的交流方式。

参考文献

[1]张玉龙,李志峰,赵勋,等.对4G移动通信技术应用与发展的展望[J].信息通信,2013(1):226.

篇5

  一、引言

  伴随着移动通信市场的快速发展,用户对更高性能的移动通信系统提出了更高要求,希望享受更为丰富和高速的通信业务。第二代移动通信运营商发展速度趋于缓和而竞争越加激烈,为寻找新的增长点,通过发展数据业务来提高自身的服务质量和业务类型,需要3G的支持。同时由于第二代移动通信无线频率资源日趋紧张,已不能满足长期的通信需求发展需要。

  二、移动通信的发展历程

第一代移动通信系统是在20世纪80年代初提出的,它完成于20世纪90年代初。第一代移动通信系统是基于模拟传输的,其特点是业务量小、质量差、交全性差、没有加密和速度低。

第二代移动通信系统(2G)起源于90年代初期。欧洲电信标准协会在1996 年提出了GSM Phase 2+,目的在于扩展和改进GSM Phase 1及Phase 2中原定的业务和性能。它主要包括CMAEL(客户化应用移动网络增强逻辑),SO(支持最佳路由)、立即计费,GSM 900/1800双频段工作等内容,也包含了与全速率完全兼容的增强型话音编解码技术,使得话音质量得到了质的改进;半速率编解码器可使GSM系统的容量提高近一倍。在GSM Phase2+ 阶段中,采用更密集的频率复用、多复用、多重复用结构技术,引入智能天线技术、双频段等技术,有效地克服了随着业务量剧增所引发的GSM 系统容量不足的缺陷;自适应语音编码(AMR)技术的应用,极大提高了系统通话质量;GPRS/EDGE技术的引入,使GSM与计算机通信/Internet有机相结合,数据传送速率可达115/384kbit/s,从而使GSM 功能得到不断增强,初步具备了支持多媒体业务的能力。尽管2G技术在发展中不断得到完善,但随着用户规模和网络规模的不断扩大,频率资源己接近枯竭,语音质量不能达到用户满意的标准,数据通信速率太低,无法在真正意义上满足移动多媒体业务的需求。?

  三、第三代移动通信系统概述

第三代移动通信系统(3G),也称IMT2000,是正在全力开发的系统,其最基本的特征是智能信号处理技术,智能信号处理单元将成为基本功能模块,支持话音和多媒体数据通信,它可以提供前两代产品不能提供的各种宽带信息业务,例如高速数据、慢速图像与电视图像等。如WCDMA的传输速率在用户静止时最大为2Mbps,在用户高速移动时最大支持144Kbps,所占频带宽度5MHz 左右。

但是,第三代移动通信系统的通信标准共有WCDMA,CDMA2000和TD-SCDMA三大分支,共同组成一个IMT 2000家庭,成员间存在相互兼容的问题,因此已有的移动通信系统不是真正意义上的个人通信和全球通信;再者,3G的频谱利用率还比较低,不能充分地利用宝贵的频谱资源;第三,3G支持的速率还不够高,如单载波只支持最大2Mbps 的业务,等等。这些不足点远远不能适应未来移动通信发展的需要,因此寻求一种既能解决现有问题,又能适应未来移动通信的需求的新技术(即新一代移动信:next generation mobile communication)是必要的。

篇6

  伴随着移动通信市场的快速发展,用户对更高性能的移动通信系统提出了更高要求,希望享受更为丰富和高速的通信业务。第二代移动通信运营商发展速度趋于缓和而竞争越加激烈,为寻找新的增长点,通过发展数据业务来提高自身的服务质量和业务类型,需要3G的支持。同时由于第二代移动通信无线频率资源日趋紧张,已不能满足长期的通信需求发展需要。

  二、移动通信的发展历程

第一代移动通信系统是在20世纪80年代初提出的,它完成于20世纪90年代初。第一代移动通信系统是基于模拟传输的,其特点是业务量小、质量差、交全性差、没有加密和速度低。

第二代移动通信系统(2G)起源于90年代初期。欧洲电信标准协会在1996 年提出了GSM Phase 2+,目的在于扩展和改进GSM Phase 1及Phase 2中原定的业务和性能。它主要包括CMAEL(客户化应用移动网络增强逻辑),SO(支持最佳路由)、立即计费,GSM 900/1800双频段工作等内容,也包含了与全速率完全兼容的增强型话音编解码技术,使得话音质量得到了质的改进;半速率编解码器可使GSM系统的容量提高近一倍。在GSM Phase2+ 阶段中,采用更密集的频率复用、多复用、多重复用结构技术,引入智能天线技术、双频段等技术,有效地克服了随着业务量剧增所引发的GSM 系统容量不足的缺陷;自适应语音编码(AMR)技术的应用,极大提高了系统通话质量;GPRS/EDGE技术的引入,使GSM与计算机通信/Internet有机相结合,数据传送速率可达115/384kbit/s,从而使GSM 功能得到不断增强,初步具备了支持多媒体业务的能力。尽管2G技术在发展中不断得到完善,但随着用户规模和网络规模的不断扩大,频率资源己接近枯竭,语音质量不能达到用户满意的标准,数据通信速率太低,无法在真正意义上满足移动多媒体业务的需求。?

  三、第三代移动通信系统概述

第三代移动通信系统(3G),也称IMT2000,是正在全力开发的系统,其最基本的特征是智能信号处理技术,智能信号处理单元将成为基本功能模块,支持话音和多媒体数据通信,它可以提供前两代产品不能提供的各种宽带信息业务,例如高速数据、慢速图像与电视图像等。如WCDMA的传输速率在用户静止时最大为2Mbps,在用户高速移动时最大支持144Kbps,所占频带宽度5MHz 左右。

但是,第三代移动通信系统的通信标准共有WCDMA,CDMA2000和TD-SCDMA三大分支,共同组成一个IMT 2000家庭,成员间存在相互兼容的问题,因此已有的移动通信系统不是真正意义上的个人通信和全球通信;再者,3G的频谱利用率还比较低,不能充分地利用宝贵的频谱资源;第三,3G支持的速率还不够高,如单载波只支持最大2Mbps 的业务,等等。这些不足点远远不能适应未来移动通信发展的需要,因此寻求一种既能解决现有问题,又能适应未来移动通信的需求的新技术(即新一代移动信:next generation mobile communication)是必要的。

篇7

(二)第二代——数字移动通信系统

第二代(即2G,是thesecondgeneration的缩写)移动通信系统是从20世纪90年代初期到目前广泛使用的数字移动通信系统,采用的技术主要有时分多址(TDMA)和码分多址(CDMA)两种技术,它能够提供9.6-28.8kbps的传输速率。全球主要采用GSM和CDMA两种制式,我国采用主要是GSM这一标准,主要提供数字化的语音业务级低速数据化业务,克服了模拟系统的弱点。和第一代模拟移动蜂窝移动系统相比,第二代移动通信系统具有保密性强,频谱利用率高,能提供丰富的业务,标准化程度高等特点,可以进行省内外漫游。但因为采用的制式不同,移动标准还不统一,用户只能在同一制式覆盖的范围内进行漫游,还无法进行全球漫游,虽然第二代比第一代有更大的带宽,但带宽还是很有限,限制了数据的应用,还无法实现高速率的业务,如移动的多媒体业务。

(三)第三代——多媒体移动通信系统

随着通信业务的迅猛发展和通信量的激增,未来的移动通信系统不仅要有大的系统容量,还要能支持话音、数据、图像、多媒体等多种业务的有效传输。第二代移动通信技术根本不能满足这样的通信要求,在这种情况下出现了第三代

(即3c,是thethirdgeneration的缩写)多媒体移动通信系统。第三代移动通信系统在国际上统称为IMT一2000,是国际电信联盟(1TU)在1985年提出的工作在2000MHz频段的系统。与第一代模拟移动通信和第二代数字移动通信系统相比,第三代的最主要特征是可提供移动多媒体业务。

二、第四代移动通信系统的概念

4G也称为广带接入和分布网络.具有超过2Mb/s的非对称数据传输能力.对高速移动用户能提供150Mb/s的高质量的影像服务.并首次实现三维图像的高质量传输它包括广带无线固定接入、广带无线局域网.移动广带系统和互操作的广播网络(基于地面和卫星系统).是集多种无线技术和无线LAN系统为一体的综合系统.也是宽带lP接入系统.在这个系统上.移动用户可以实现全球无缝漫游.为了进一步提高其利用率.满足高速率、大容量的业务需求.同时克服高速数据在无线信道下的多径衰落和多径干扰等众多优势。

三、4G的关键技术

1.OFDM技术。它实际上是多载波调制MCM的一种.其主要原理是:将待传输的高速串行数据经串/并变换,变成在N个子信道上并行传输的低速数据流,再用N个相互正交的载波进行调制,然后叠加一起发送。接收端用相干载波进行相干接收,再经并/串变换恢复为原高速数据。

2.多输入多输出(MIMO)技术。多输入多输出(MIMO)技术是无线移动通信领域智能天线技术的重大突破。该技术能在不增加带宽的情况下成倍地提高通信系统的容量和频谱利用率,是下一代移动通信系统的核心技术之一。MIMO系统采用空时处理技术进行信号处理,在丰富的散射环境下,空分复用MIMO系统(如BLAST结构)可以获得与天线数成正比的容量增长,从而极大地提高频谱效率,增加系统的数据传输速率。但是当散射程度欠佳时,会引起信道间的空间相关,尤其在室外环境下,由于基站的天线较高,从而角度扩展较小,其空间相关难以避免,在这种情况下MIMO不可能获得所期望的数据传输速率。

3.切换技术。切换技术能够实现移动终端在不同小区之间跨越和在不同频率之间通信以及在信号质量降低时如何选择信道。它是未来移动终端在众多通信系统、移动小区之间建立可靠通信的基础。主要划分为硬切换、软切换和更软切换.硬切换发生在不同频率的基站或不同系统之间。第4代移动通信中的切换技术正朝着软切换和硬切换相结合的方向发展。

4.软件无线电技术。软件无线电是将标准化、模块化的硬件功能单元经过一个通用硬件平台,利用软件加载方式来实现各种类型的无线电通信系统的一种具有开放式结构的新技术。通过下载不同的软件程序,在硬件平台上可实现不同功能,用以实现在不同系统中利用单一的终端进行漫游,它是解决移动终端在不同系统中工作的关键技术。软件无线电技术主要涉及数字信号处理硬(DigitalSignalProcessHardware,DSPH)、现场可编程器件(FieldProgrammableGateArray,FPGA)、数字信号处理(DigitalSignalProcessor,DSP)等。

5.IPv6协议技术。3G网络采用的主要是蜂窝组网,而4G系统将是一个基于全lP的移动通信网络,可以实现不同类型的接入系统和通信网络之间的无缝连。为了给用户提供更为广泛的业务,使运营商管理更加方便、灵活,4G中将取代现有的IPv4协议,采用全分组方式传送数据的IPv6协议。

四、发展趋势

目前,4G移动通信还只处于实验室研究开发阶段。具体的设备和技术还没有完全成型,后续的软件开发还没有启动。这都会给4G的发展带来很多难题,有待人们深入研究。但未来移动通信必将具有文中描述的这些基本特征:高速率、高质量的数据传输,完全集中的服务。无所不在的移动接入,高智能的多样化的用户设备。随着新问题、新要求的不断出现。第四代移动通信技术将会相应地调整、完善和进一步发展。我们相信,不远的将来,人们将会不受时间、地点限制,可以自由自在地利用移动网络获取和传递信息,从而使人们的学习、工作、生活发生更深刻的变化。

参考文献:

[1]张重阳.数字移动通信技术[M].西安:江西科技大学出版社,2006.

[2]唐兴.移动通信技术的历史和发展趋势[J].江西通信科技,2008(2).

篇8

1、安装的应用程序存在安全漏洞。

现阶段网络技术还处于不成熟阶段,软件中存在着许多的安全漏洞,网络浏览器和其他应用程序很容易出现故障。很多人对4G网络认识不清,对4G移动通信安全系统不了解,不正常的操作极易出现系统问题和死机现象导致信息的不安全和不完整。

2、病毒的破坏。

4G移动网络通信技术虽然有很多的优势,但它也跟其他网络一样惧怕病毒。病毒是安全系统的蛀虫,当病毒入侵网络系统后后不仅仅会对电脑网络的传输途径造成很大的破坏,而且会导致信号传播中出现乱码,妨碍信息的正确传递。

3、黑客的入侵。

黑客是指拥有高级知识的程序编辑人员,并且通过编程序来操作系统,利用电脑系统存在的漏洞非法的侵入他人系统,盗取他人的信息资料,非法获得自身所需要的东西的人。黑客的入侵通常会导致系统安全的破坏,使他人利益损坏,对他人造成危害。

三、完善4G移动通信技术

4G系统是一个业务多种多样的异构网络,现有的3G安全方案加/解密匙的方法并不适用于4G系统。4G安全系统将是一种轻量的具有复合特点的能够重复配置的系统。仅仅有防范和检查作用的安全系统是不能完全保卫系统的安全的,建立能够对病毒有一定的抵御能力和自动回复能力安全系统是非常必要的。所有的系统都会有一定的缺陷,一旦发生了信息的泄露将产生不可挽回的灾难性的损失。人为的缺失和自然灾害都会对网络系统,造成毁灭性的灾害。要在4G移动通信系统中加入系统容灾技术,一些自然灾害虽然会对通信系统产生危害但是在灾难过后就能快速准确的恢复原有数据,保卫系统安全。作为最后数据屏障的数据备份系统,不能有失误。要想保障数据不出现差错,数据容灾要选用两个存储器,这两个存储器内保存的内容虽然一致,但是他们两个相互独立一个出现问题不会直接影响另外一个,这两个储存器一个放在本地另外一个放在异地。它们通过IP连接在一起,是一个具有完整性、准确性、安全性的容灾系统,二者同时为为本地的服务器服务,同时使用。要不断地完善4G通信系统,无论是系统的硬件还是软件都要全面升级,不断地提升系统的安全性能。

篇9

在任何时间,任何地点只有有人的存在,就需要进行通信,移动通信业务刚好满足了人们进行通信的愿望。要实现未来的理想个人通信服务,移动通信是必经之路。移动通信技术在信息技术支持,和市场需求及竞争的影响下取得了突飞猛进的发展,未来的发展趋势可以分为:(1)网络业务的分组化;(2)网络技术智能化;(3)网络技术宽带化;(4)高频段的选择;(5)高频段的利用;(6)网络融合。现在先简单介绍下移动通信的发展历程。

1 移动通信技术的发展历程

1.1 第一代移动通信技术(模拟移动通信技术)

第一代移动通信系统提出于20世纪80年代。它的特点主要表现为模拟技术和频分多址技术的采用。1G(缩写于the first generation)有多种制式,我国采用的技术是TACS,其每秒能够达到2.4kB的传输速率。但是考虑到传输带宽的限制,TACS不能实现移动通信的长途漫游,仅仅可以在一定区域内发挥移动通信系统的功能。虽然第一代移动通信系统取得了巨大的商业利润,但是不可遮掩其日益显露的弊端。其主要有较低的频谱利用率、业务少、制式多且不兼容、易被偷听、传输速率低等弊端。

1.2 第二代移动通信技术(数字移动通信技术)

接替了1G的发展,2G起源于20世纪90年代初,到目前为止2G还在广泛的使用中。2G主要采用了码分多址与时分多址的技术。在不同的制式中,全球多采用CDMA和GSM这两种制式,我国采用的是GSM标准。它能提供每秒9.6kB~28.8kB的传输速率。相比于第一代移动通信技术的蜂窝形象,2G有着更好的保密性,并且利用了更高的频率段及更好的频谱使用率。同时,2G可以实现异地漫游,提供更多的业务。但是由于国际制式并不统一,漫游只能限制在采用一致制式的区域范围内。虽然第二代移动通信的带宽更大了,但是还不足以实现如多媒体业务等高速率业务,数据应用受到一定的限制。

1.3 第三代移动通信技术(多媒体通信系统)

随着通信需求的不断扩大,数据量的激增,第二代移动通信不能满足语音、图像、多媒体等在内的业务的高效率传输,没有比较大的系统容量,因此第三代移动通信应运而生。国际上统称第三代移动通信为IMT-2000,这是因为国际电信联盟曾于20世纪80年代提出工作频段为2000MHz的通信系统。第三代移动通信系统最大的特点是可以提供多媒体业务,其传输速率为每秒384kB,某些局域网可以达到2M的速度。3G有CDMA2000、WCDMA、TD-SCDMA三大标准组成,由于制式兼容性问题,目前还不能实现真正意义上的全球通信。3G虽然有了更大的频谱,但是使用率较低,宝贵的资源未得到充分的开发利用。同时,传输速率也要进一步提高,才能满足新的多媒体业务的需要。

2 第四代移动通信的提出

第四代移动通信也被称为分部网络或者广带接入,传输能力有每秒2MB以上。4G的两个基本目标是实现全球的无线通信以及提供高质量的无线业务。它是综合了无线LAN系统和多种无线技术的综合系统。

目前正在孕育阶段的4G主要有以下特征:(1)更宽的网络频谱。4G比3G更宽的带宽。100MHz的频谱将会是3G网络W-CDMA频谱的20倍;(2)通信方式灵活多变。另外,其外形可能随心设计,例如眼睛、手表、钱包等均可设计为4G服务终端;(3)更快的通信速度。人们进行第四代移动通信系统的原因是为提高移动终端访问网络的速率。(4)兼容性更好。比较于前面的3代通信系统,4G要有全球通信的功能,并且接口开放、终端多元化、可以跟多种网络进行连接的特点,这样才可以让更多的手机用户用比较少的投资就可以进入到4G通信的使用;(5)有更高的智能性。4G移动终端不仅要在设计和操作上保持智能,在许多目前难以想象的功能上也要实现智能化。

4G的关键技术主要包括了OFDM技术、多输入多输出技术、切换技术、软件与无线电技术以及IPv6协议技术。

3 通信技术发展趋势

3.1 网络业务数据分组化

当前移动数据通信快速发展,无线数据被认为是未来移动通信发展的重要方向之一。随着人们生活方式的转变,职业、生活的需要使得人们必须在不同地点不同时间获取重要的信息,这是驱动无线数据发展的重要因素。

GSM的数据传输是每秒9.6kB,而1998年提出的电路交换型数据服务实现了57kB每秒的传输率,对于无线图像、电子邮件等要求连续比特率比较小的应用是很理想的。到99年的GPRS实现了100kB每秒的速率,EDGE则通过修改GSM的相关调制方式实现了超过300kB每秒的速率。这些技术的进步也为无线数据的发展提供了支持。

3.2 网络技术智能化

移动网络的迅速发展得益于移动通信需求的增长和新技术的广泛采用。移动网络已经有传统的传递信息朝着智能化处理并存储信息发展。移动智能网的是一种开放的智能平台,能够将智能网功能实体引入到移动网络中,进而可以完成智能控制其移动呼叫。伴随着3G的推进,通信网络智能化程度将不断提升。

3.3 通信技术宽带化

随着数据量的增加、多媒体业务的发展,移动网络必然将更加宽带化。通过采用蜂窝无线技术,第一代移动电话实现了无线接打电话,但是窄带模拟标准。2G实现了无缝国际漫游,有更高的网络容量但也属于窄带系统的发展。3G是真正意义上的宽带多媒体系统,可以实现全球无缝覆盖和更多的宽带业务。

3.4 高频段的选择

1G系统的最初的频段是在450MHz上,后来提升到900MHz。2G系统的工作频段先是900MHz,而后出现了1800MHz的系统。已经在推广使用的3G系统的频段是2GHz。

3.5 高频段的利用

无线电频率是很宝贵的一项资源。有限的频谱资源与急剧增长的用户数量构成了尖锐的矛盾,出现频段不够用的状况。模拟制式是频分多址技术,数字制式是码分多址技术,3G系统的宽带码分多址将会使无线频率得到更高效率的应用。

3.6 网络融合

随着通信技术的发展、市场竞争的加剧和市场需求的变化,计算机网、电视网、电信网必然加速融合,形成统一的综合通信宽带网。

当前,4G系统还在研发阶段,很多技术与设备没有成型,4G的发展也必然面临着更多的难题。但是移动通信未来发展的特征:高质量、高速率的传输数据,全面的业务服务是一定会得到实现的。相信在不久的将来,人们可以真正实现在不同地点、不同时间的的自由通话,利用移动网络为生活学习提供便捷。

参考文献

[1] 谢显中.基于TDD的第四代移动通信技术[M].北京:电子工业出版社,2005.

篇10

第四代移动通信技术可称为广带(Broadband)接入和分布网络,具有非对称超过2Mb/s的数据传输能力,对全速移动用户能提供150Mb/s的高质量影像服务,将首次实现三维图像的高质量传输。它包括广带无线固定接入、广带无线局域网、移动广带系统和互操作的广播网络(基于地面和卫星系统),集成不同模式的无线通信,移动用户可以自由地从一个标准漫游到另一个标准。其广带无线局域网(WLAN)能与B-ISDN和ATM兼容,实现广带多媒体通信,形成综合广带通信网(IBCN),他还能提供信息之外的定位定时、数据采集、远程控制等综合功能。其主要技术要求是:

(1)通信速度提高,数据率超过UMTS,上网速率从2Mb/s提高到100Mb/s。

(2)以移动数据为主面向Internet大范围覆盖高速移动通信网络,改变了以传统移动电话业务为主设计移动通信网络的设计观念。

(3)采用多天线或分布天线的系统结构及终端形式,支持手机互助功能,采用可穿戴无线电,可下载无线电等新技术。

(4)发射功率比现有移动通信系统降低10~100倍,能够较好地解决电磁干扰问题。

(5)支持更为丰富的移动通信业务,包括高分辨率实时图像业务、会议电视虚拟现实业务。

二、4G的关键技术

1.OFDM(正交频分复用)

OFDM技术实际上是MCM(Multi-CarrierModulation,多载波调制)的一种。其主要思想是:将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制在每个子信道上进行传输。正交信号可以通过在接收端采用相关技术来分开,这样可以减少子信道之间的相互干扰(ICI)。每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道上的可以看成平坦性衰落,从而可以消除符号间干扰。而且由于每个子信道的带宽仅仅是原信道带宽的一小部分,信道均衡变得相对容易。由于OFDM技术由于具备上述特点,是对高速数据传输的一种潜在的解决方案,因此被公认为4G的核心技术之一。

2.软件无线电

软件无线电(SoftwareDefinedRadio,简称SDR),就是采用数字信号处理技术,在可编程控制的通用硬件平台上,利用软件来定义实现无线电台的各部分功能:包括前端接收、中频处理以及信号的基带处理等。即整个无线电台从高频、中频、基带直到控制协议部分全部由软件编程来完成。其核心是在尽可能靠近天线的地方使用宽带的“数字/模拟”转换器,尽早地完成信号的数字化,从而使得无线电台的功能尽可能地用软件来定义和实现。软件无线电是一种基于数字信号处理(DSP)芯片以软件为核心的崭新的无线通信体系结构。

3.智能天线

智能天线是波束间没有切换的多波束或自适应阵列天线。多波束天线在一个扇区中使用多个固定波束,而在自适应阵列中,多个天线的接收信号被加权并且合成在一起使信噪比达到最大。与固定波束天线相比,天线阵列的优点是除了提供高的天线增益外,还能提供相应倍数的分集增益。智能天线具有抑制信号干扰、自动跟踪以及数字波束调节等智能功能,其基本工作原理是根据信号来波的方向自适应地调整方向图,跟踪强信号,减少或抵消干扰信号。智能天线的核心是智能算法,而算法决定电路实现的复杂程度和瞬时响应速率,因此需要选择较好算法实现波束的智能控制。

4.IPv6协议

4G通信系统选择了采用基于IP的全分组的方式传送数据流,因此IPv6技术将成为下一代网络的核心协议。

(1)巨大的地址空间。在一段可预见的时期内,它能够为所有可以想像出的网络设备提供一个全球惟一的地址。

(2)自动控制。IPv6还有另一个基本特性就是它支持无状态和有状态两种地址自动配置的方式。无状态地址自动配置方式是获得地址的关键。在这种方式下,需要配置地址的节点使用一种邻居发现机制获得一个局部连接地址。一旦得到这个地址之后,它使用另一种即插即用的机制,在没有任何人工干预的情况下,获得一个全球惟一的路由地址。

(3)服务质量。服务质量(QoS)包含几个方面的内容。从协议的角度看,IPv6与目前的IPv4提供相同的QoS,但是IPv6的优点体现在能提供不同的服务。IPv6报头中新增加的字段“流标志”,有了这个20位长的字段,在传输过程中,中国的各节点就可以识别和分开处理任何IP地址流。

篇11

目前,无线数据业务只占GSM网络全部业务量中的很小一部分,但是在未来的两年中这种状况将开始扭转,并大大改变。1999年以后,随着HSCSD、GPRS等新的高速数据解决方案显露峥嵘,并成为数据应用的新焦点,无线数据将成为运营商经营计划中越来越重要的部分,它预示着未来大量的商业机遇。

(1)应用驱动市场

无线数据业务的主要驱动力在于用户的应用。话音是单一的、易于被大众所接受的业务,然而无线数据则不同,无线数据最初的应用重点放在运输管理这样的专业市场。近期无线数据业务的目标市场是销售人员或现场工程师这样的用户群。从这些先发目标的应用中积累无线数据的经验,并从中受益。

在过去的十年里,传统的生活方式已经在迅速改变,人们更经常性地移动,职业和个人生活之间的分界变得模糊,人们需要不分时间、地点访问很重要的信息。发生在用户身上的这种生活方式的改变将成为驱动无线数据业务发展的重要因素。

(2)因特网的影响

和通信的其他领域一样,无线数据业务的一个最重要的驱动力来自Internet。根据最近的研究,未来两年欧洲的因特网用户数量将翻一番。在我国,因特网用户的年增长率将高达300%,显然用户在运动中接入因特网的需求将会增长。

为了满足接入因特网的需求,一个全球性的开放协议——无线应用协议(WAP)应运而生。WAP为将Internet的信息内容以及增值业务传送到移动终端提供了一种开放的通用标准,实现了IP与GSM网络的桥接,是一个为厂商提供加速市场增长、避免网络割接、保护运营商投资的标准,WAP确保任何与WAP兼容的GSM手机都能工作。

(3)数据速率的发展

GSM承载业务所提供的GSM数据速率最高只能达到9.6kbit/s。国际上1998年引入的高速电路交换数据(HSCSD)技术将实现57kbit/s的数据速率,对要求连续比特率和传输时延小的应用是理想的,如会议电视、电子邮件、远程接入企业的局域网和无线图像。1999年商用化的GPRS是第一个GSM分组数据应用,将实现超过100kbit/s的数据速率。对较短的“突发”类型业务是理想的,如信用卡认证、远程测量和远程事务处理。EDGE(增强数据速率GSM改进模式)使用修改过的GSM调制方式来实现超过300kbit/s的数据速率。EDGE会让GSM运营商特别受益,他们不但可以赢得第三代移动通信的经营执照,还可以提供有竞争力的宽带数据业务。

2.2个人多媒体通信——网络演进的方向

对随时随地话音通信的追求使早期移动通信走向成功。移动通信的商业价值和用户市场得到了证明,全球移动市场以超凡的速度增长。移动通信演进的下一阶段是向无线数据乃至个人移动多媒体转移,这一进展已经开始,并将成为未来重要的增长点。个人移动多媒体将根据地点为人们提供无法想像的、完善的个人业务和无线信息,将对人们工作和生活的各个方面产生影响。在个人多媒体世界里,话音邮件和电子邮件被传送到移动多媒体信箱中;短信将成为带有照片和视频内容的电子明信片;话音呼叫将与实时图像相结合,产生大量的可视移动电话,还将实现移动因特网和万维网浏览。像无线会议电视这样的应用将随处可见,电子商务将蓬勃开展。对于运动中的用户还有随时随地的各种信箱和娱乐服务。

3网络技术的宽带化

在电信业历史上,移动通信可能是技术和市场发展最快的领域。业务、技术、市场三者之间是一种互动的关系,伴随着用户对数据、多媒体业务需求的增加,网络业务向数据化、分组化发展,移动网络必然走向宽带化。

通过使用电话交换技术和蜂窝无线电技术,70年代末诞生了第一代模拟移动电话。AMPS(北美蜂窝系统)、NMT(北欧移动电话)和TACS(全向通信系统)是三种主要的窄带模拟标准。第一代无线网络技术的一大成就就是去掉了将电话连接到网络的用户线。用户第一次能够在他们所在的任何地方无线接收和拨打电话。

第二代系统引入了数字无线电技术,它提供更高的网络容量,改善了话音质量和保密性,并为用户引入了无缝的国际漫游。今天世界市场的第二代数字无线标准,包括GSM、MMPS、PDC(日本数字蜂窝系统)和IS95CDMA等,均仍为窄带系统。

第三代移动系统,即IMT-2000,是一种真正的宽带多媒体系统,它能够提供高质量宽带综合业务并实现全球无缝覆盖。2000年以后,窄带移动电话业务需求将依然很大,但随着Internet等高速数据通信及多媒体通信需求的驱动,宽带多媒体综合业务将逐步增长,而且就未来信息高速公路建设的无缝覆盖而言,宽带移动通信作为整个移动市场份额的子集将显得愈来愈重要。

第三代系统预计在2002年投入商用。

从第二代到第三代系统的变化并不像从第一代模拟网络到第二代数字网络那样存在重大的技术变迁。从目前的技术发展现状和趋势来讲,第二代系统将逐步子滑过渡到第三代系统,在此演进过程中,移动网络所能实现的数据速率逐步升级:GSM承载业务所能提供的数据速率为9.6kbit/s,1998年商用的HSCSD技术实现了57kbit/s的数据速率,1999年引入的GPRS将实现超过100kbit/s的数据速率,将在2000年引入的EDGE技术可实现超过300kbit/s的数据速率。2001年后投入商用的第三代系统将能够在广域网上实现384kbit/s的数据速率,在办公室和家中还可以达到2Mbit/s。

4网络技术的智能化

移动通信需求的不断增长以及新技术在移动通信中的广泛应用,促使移动网络得到了迅速发展。移动网络由单纯地传递和交换信息,逐步向存储和处理信息的智能化发展,移动智能网由此而生。移动智能网是在移动网络中引人智能网功能实体,以完成对移动呼叫的智能控制的一种网络,是一种开放性的智能平台,它使电信业务经营者能够方便、快速、经济、有效地提供客户所需的各类电信新业务,使客户对网络有更强的控制功能,能够方便灵活地获取所需的信息。移动智能网通过把交换与业务分离,建立集中的业务控制点和数据库,进而进一步建立集中的业务管理系统和业务生成环境来达到上述目标。通过智能网,运营公司可以最优地利用其网络,加快新业务的生成;可以根据客户的需要来设计业务,向其他业务提供者开放网络,增加收益。

关于移动智能网的研究,早在1995年就已开始,刚开始并没有具体的标准协议出现,各厂商各自制定了自己的标准,并且据此进行了不少的研究工作,如Alcatel、Nortel、Ericsson等都先后推出了自己的初期产品。这些工作为最终移动智能网标准的形成积累了经验。

1997年末,美国蜂窝电信工业协会(CTIA)制定了移动智能网的第一个标准协议——IS-41D协议。1998年1月,欧洲电信标准研究所(ETSI)在GSMphase2+阶段引入了CAMEL协议(移动通信高级逻辑的客户化应用程序),当时的版本是Phase1。1998年4月,ITU-T在新推出的智能网能力集一2标准中描述了移动接入的功能实体,称为CAMELphase2标准。

伴随着移动网络向第三代系统的演进,网络的智能化程度也在不断地提升。智能网及其智能业务是构成未来个人通信的基本条件。

5更高的频段

从第一代的模拟移动电话,到第二代的数字移动网络,再到将来的第三代移动通信系统,网络使用的无线频段遵循一种由低到高的发展趋势。1981年诞生的第一个具有国际漫游功能的模拟系统NMT的使用频段为450MHz,1986年NMT变迁到900MHz频段。我国目前的模拟TACS系统的使用频段也为900MHz。在第二代网络中,GSM系统的开始使用频段为900MHz,IS-95CDMA系统为800MHz。为了从根本上提高GSM系统的容量,1997年出现了1800MHz系统,GSM900/1800双频网络迅速普及。2002年将投入商用的第三代系统IMT-2000则定位在2GHz频段。

6更有效利用频率

无线电频率是一种宝贵资源。随着移动通信的飞速发展,频谱资源有限和移动用户急剧增加的矛盾越来越尖锐,出现了“频率严重短缺”的现象。解决频率拥挤问题的出路是采用各种频率有效利用技术和开发新频段。

模拟制的早期蜂窝移动通信系统采用频分多址方式,主要通过多信道共用、频率复用和波道窄带化等技术实现频率的有效利用。随着业务的发展,模拟系统已远不能满足用户发展的需求。数字移动通信比模拟移动通信具有更大的容量。同样的频分多址技术,数字系统要求的载干比较小,因而频率复用距离可以小一些,系统的容量可以大一些。而且,数字移动通信还可采用时分多址或码分多址技术,它比模拟的频分多址制在系统容量上大4-20倍。

GSM作为最具代表性和最为成熟的数字移动通信系统,其发展历程就是一部频率有效利用技术的演进史。GSM采用时分多址制式,其对频率的有效利用主要是通过频率复用技术的不断升级实现的。从传统的4×3方式,到3×3、1×3、MRP、2×6等新的复用技术,频率复用的密集度逐步提升,频谱效率快速提高,GSM系统的容量得到逐步释放。1995年开始投入商用的IS-95CDMA(窄带)系统,以无线技术的先进性和大容量等特点著称。它以扩频技术为基础,不同用户的信号靠不同的编码序列来区分,如果从频域或时域来观察,多个CDMA信号是相互重叠的,故理论上CDMA系统的频谱利用率比GSM系统更高,网络容量更大。同时CDMA系统具有一定的过载能力,即系统具备软容量。作为未来第三代移动通信系统主流无线接入技术的WCDMA(宽带码分多址)能够更高效地利用无线电频率。它利用分层小区结构、自适应天线阵和相干解调(双向)等技术,网络容量可得到大幅提高,可以更好地满足未来移动通信的发展要求。

7网络趋于融合,走向统一

7.1第三代移动通信系统的结构

篇12

Key words: communication system; 4 g;The key technology; Network system

中图分类号:TN929.5文献标识码:A文章编号:2095-2104(2013)

引言

通信技术的广泛应用,也使其不得不面临各种环境的考验。3G各种标准和规范已达成协议,并已开始商用。可是3G还是有其局限性:多用户干扰的存在使得CDMA 系统难以达到很高的通信速率;空中接口标准对核心网的限制,导致3G 所能提供服务速率的动态范围不大,限制了不同业务类型;分配给3G 的频率资源已经趋于饱和;3G 所采用的语音交换架构仍承袭了第二代(2G)的电路交换,而不是纯IP 方式;流媒体(视频)的应用不尽如人意;数据传输率较低等。所以,在第三代移动通信还没有完全铺开,距离完全实用化还有一段时间的时候,已经有不少国家开始了对下一代移动通信系统的研究。

1.新一代移动通信系统及其特点

新一代移动通信标准比第三代标准具有更多的功能,新一代移动通信可以在不同的固定、无线平台和跨越不同的频带的网络中提供无线服务,可以在任何地方用宽带接入互联网(包括卫星通信和平流层通信),能够提供定位定时,数据采集、远程控制等综合功能。此外,新一代移动通信系统是集成多功能的宽带移动通信系统,是宽带接入IP系统。目前正在开发和研制中的4G通信将具有以下主要特点:

1.1信息传播速率更快

由于人们研究现代移动通信的最初目的就是提高蜂窝电话和其他移动装置无线访问Internet的速率,因此4G通信的特征莫过于他具有更快的无线通信速度。第三代移动通信系统数据传输速率最高可达2Mbit/s,专家预估,现代移动通信系统的速度可达到10-20Mbit/s,最高可以达到100Mbit/s。

1.2多种业务的完整融合

4G应能集成不同模式的无线通信从无线局域网和蓝牙等室内网络、蜂窝信号、广播电视到卫星通信,移动用户可以自由地从一个标准漫游到另一个标准。各种业务应用、各种系统平台间的互联更便捷、安全,面向不同用户要求,更富有个性化。4G技术能提供各种标准的通信业务,从而满足宽带和综合多种业务需求。

1.3高度智能化的网络

采用智能技术的4G通信系统可以用于满足不同的环境、不同的用户的通信需求。采用智能信号处理技术对信道条件不同的各种复杂环境进行结合的正常发送与接收,有很强的智能性、适应性和灵活性。能使其自适应地进行资源分配,能够调整系统对通信过程中变化的业务流大小进行相应处理而满足通信要求,终端设备的设计和操作也将具有智能化。

1.4兼容性能更强

要使4G通信尽快地被人们接受,还应该考虑到让更多的用户在投资最少的情况下轻易地过渡到4G通信。因此,从这个角度来看,4G通信系统应当具备全球漫游、接口开放、能跟多种网络互联、终端多样化以及能从2G,3G平稳过渡等特点。

1.5高速移动中不同系统间的无缝连接和随时随地的移动接入

用户在高速移动中也能接入到系统中,并在不同系统间无缝切换,进行高速率的多媒体业务数据传送。在4G系统中利用先进的无线接入技术,提供话音、高速信息业务、广播以及娱乐等多媒体业务接入方式,让用户可在任何时间、任何地点接入到系统中。

2.移动通信的网络体系结构

新一代移动通信系统的网络体系分为三层:物理层(接入层)、网络层(承载层)以及应用层。物理层提供接入和选路功能,网络层作为桥接层提供QoS映射、地址转换、即插即用、安全管理、有源网络。物理层与网络业务执行技术层提供开放式IP接口。应用层与网络业务执行技术层之间也是开放式接口,用于第三方开发和提供新业务。新一代移动通信系统应该具有的特征:

2.1高速率,高容量:对于高速移动用户数据速率为2 Mbit/s,对于中速移动用户数据速率为20 Mbit/s,对于低速移动用户(室内或步行者),数据速率为100 Mbit/s;

2.2兼容性更加平滑:4G应该接口开放、能够跟多种网络互联,在不同系统间无缝切换,传送高速多媒体业务数据;

2.3灵活性更强:4G拟采用智能技术,可自适应地进行资源分配;

2.4用户共存性:能根据网络的状况和信道条件进行自适应处理,使低、高速用户和各种用户设备能够并存与互通,从而满足多类型用户的需求;

2.5高度自治的自适应网络:能对其结构进行自适应管理,从而满足用户在业务和容量上的变化和演进。

3.新一代移动通信关键技术

3.1多入多出(MIMO)技术

MIMO(多输入多输出)技术是指利用多发射、多接收天线进行空间分集的技术,它采用的是分立式多天线,能够有效的将通信链路分解成为许多并行的子信道,从而大大提高容量,其本质是一种基于空域和时域联合分集的通信信号处理方法。理论和计算机仿真表明:在信道状态已知的情况下,基于MIMO 的无线系统信道容量可随着收、发端天线的增加而线性增大, 因此具有广泛的应用价值。MIMO 技术领域的一个研究热点就是空时编码,常见的编码方法主要有空时分组码、空时格码和BLAST 码。

3.2先进的信号处理及传输技术

3.2.1 OFDM 技术

在无线通信中,高速移动会产生较大的多普勒频移,会导致严重的频率选择性衰落。新的调制技术如多载波正交频分复用(OFDM)调制技术可以有效的对抗频率选择性衰落,同时还具有很高的频谱效率。

OFDM是一种无线环境下的高速传输技术。无线信道的频率响应曲线大多是非平坦的,而OFDM技术的主要思想就是在频域内将给定信道分成许多正交子信道,在每个子信道上使用一个子载波进行调制,并且各子载波并行传输,这样,尽管总的信道是非平坦的,即具有频率选择性,但是每个子信道是相对平坦的,并且在每个子信道上进行的是窄带传输,信号带宽小于信道的相应带宽,因此就可以大大消除信号波形间的干扰。OFDM技术的最大优点是能对抗频率选择性衰落或窄带干扰。

3.2.2 自适应传输和迭代接收

自适应传输技术也是未来移动通信系统基带信号处理的核心技术。自适应无线传输技术是指移动通信设备能够根据无线网络的不同情况选取不同的传输方式来获得最佳的无线传输效果。在未来移动通信系统中,这种自适应无线传输技术将得到广泛的采用。其中信源信道联合编码技术、OFDM 子载波自适应调制技术就是自适应技术的很好体现。OFDM 自适应调制机制允许各个子载波根据信道状况的不同采用动态的调制方式:在信道条件比较好的时候采用高效的调制方案;信道状况比较差的时候采用效率较低而性能较好的调制方案。

迭代接收技术是提高接收系统可靠性的主要手段之一。迭代接收是指在接收端通过多次循环迭代使得接收机的检测和解码性能达到最佳。迭代技术从1993 年提出的Turbo 码迭代译码技术发展而来,Turbo 迭代信道估计和解码、波束形成和解码的联合迭代接收、面向MIMO 的迭代接收技术都是迭代接收技术具体应用的体现。随着硬件器件和数字信号处理技术的飞速发展, 这些迭代技术将会在未来通信技术中得到广泛应用。除此之外,高性能的前向纠错(FEC)编码如Turbo编码、LDPC编码技术等、自动重发请求(ARQ)和分集接收技术也是未来移动通信网络信号处理使用的主要技术。

3.3智能天线(SA)技术

智能天线具有抑制信号干扰、自动跟踪以及数字波束调节等智能功能,被认为是未来移动通信的关键技术。智能天线应用数字信号处理技术,产生空间定向波束,使天线主波束对准用户信号到达方向,旁瓣或零陷对准干扰信号到达方向,达到充分利用移动用户信号并消除或抑制干扰信号的目的。这种技术既能改善信号质量又能增加传输容量。

和传统的几种常用的多址接入方式相比,即时分多址(TDMA)、频分多址(FDMA)和码分多址(CDMA),智能天线引入空分多址(SDMA)接入方式。智能天线起到的作用相当于空时滤波器,在相同时隙、相同频率或相同地址码情况下,用户仍可以根据信号不同的空间传播路径而区分,等于在多维信号处理中又增加了一维。智能天线在消除干扰、扩大小区半径、降低系统成本、提高系统容量等方面具有独特的优越性。这种技术优点主要在于可以改善信号质量和增加传输容量,同时又能扩大覆盖区域、降低系统建设成本,因此将在未来系统中得到广泛应用。

3.4软件无线电技术

软件无线电是将标准化、模块化的硬件功能单元经过一个通用硬件平台,利用软件加载方式来实现各种类型的无线电通信系统的一种具有开放式结构的新技术。软件无线电的核心思想是在尽可能靠近天线的地方使用宽带A/D和D/A变换器,并尽可能多地用软件来定义无线功能,各种功能和信号处理都尽可能用软件实现。其软件系统包括各类无线信令规则与处理软件、信号流变换软件、信源编码软件、信道纠错编码软件、调制解调算法软件等。软件无线电使得系统具有灵活性和适应性,能够适应不同的网络和空中接口。

3.5切换技术

切换技术适用于移动终端在不同移动小区之间、不同频率之间通信或者信号降低信道选择等情况。切换技术是未来移动终端在众多通信系统、移动小区之间建立可靠移动通信的基础和重要技术。它主要有软切换和硬切换。在4G通信系统中,切换技术的适用范围更为广泛,并朝着软切换和硬切换相结合的方向发展。

4.结论

新一代移动通信技术尽管有着比3G 更快的通信速度、更宽的网络频谱、更灵活等一系列优越性,但要真正实现,现在看来还面临着许多难题。不少人都认为新一代无线通信网络系统是人类有史以来最复杂的技术系统,总的来说,要顺利、全面地实施4G 通信,还将可能遇到一些困难。因此,现在对未来移动通信网络结构的可行性、灵活性及其关键技术的探讨将对它的尽快实现有十分重要的意义。

参考文献

篇13

LTE(长期演进)项目是3G的演进,它改进并增强了3G的空中接入技术,采用OFDM和MIMO作为其无线网络演进技术,LTE移动通信网络系统在20MHz频谱带宽下能够提供下行100Mbps(TD-LTE)或150Mbps(FDD-LTE)、上行50Mbps(TD-LTE)或40Mbps(FDD-LTE)的峰值速率。国际上大多数国家采用FDD-LTE制式,FDD-LTE是主流的4G标准,也是终端种类最丰富的一种4G标准。TD-LTE是我国主导的4G国际标准,TD-LTE是我国具有自主知识产权的3G国际标准TD-SCDMA的后续演进技术,中国移动就采用了TD-LTE。

1.2LTE-Advanced

LTE-Advanced后向兼容LTE,LTE-Advanced针对室内环境进行了技术优化,并采用了载波聚合等技术,载波聚合技术能够弹性分配频谱,可以获得更宽的频谱带宽,能有效地支持新频段和大带宽应用。LTE-Advanced移动通信网络系统在100MHz频谱带宽下能够提供下行1Gbps、上行500Mbps的峰值速率,LTE-Advanced也分为FDD-LTE-Advance和TD-LTE-Advanced。

1.3WiMax

WiMax即IEEE802.16标准,能够提供最高接入速度70Mbps,IEEE802.16的工作频段范围为无需授权的2~66GHz频段。WiMax的优点有:(1)有利于避开已知干扰。(2)有利于节省频谱资源。(3)灵活的带宽调整能力有利于运营商协调频谱资源。(4)WiMax能够实现无线信号传输距离可达50km,非无线局域网或3G网络所能比拟。WiMax在移动性能方面存在缺陷,无法满足≥50kmph高速下无线网络的无缝衔接,并不能算作无线移动通信技术,只算是无线宽带局域网技术。

1.4WirelessMAN-Advanced

WirelessMAN-Advanced是WiMax的升级版,即IEEE802.16m标准,IEEE802.16m具有高速移动下无缝切换能力,能够有效地解决WiMax的移动性能问题。IEEE802.16m兼容4G无线网络,它可能成为4G标准,其优势有:(1)提高网络覆盖,实现网络无缝衔接。(2)提高频谱效率。(3)在漫游模式或高效率/强信号模式下可提供1Gbps无线传输下行速率。(4)提高数据和VoIP容量。(5)低时延,增强QoS。(6)节省功耗。

24G移动通信系统关键技术

2.14G网络结构分层

4G移动通信系统网络结构分为物理网络层、中间环境层、应用环境层三层。物理网络层提供网络接入和网络路由选择功能。中间环境层提供QoS机制、地址转换和安全管理等功能。应用环境层提供各种应用编程接口。

2.2OFDM技术

4G移动通信系统采用了正交频分复用(OFDM)技术,OFDM技术具有良好的抗噪声性能和抗多信道干扰能力,可以消除或减小信号波形间的干扰,对多径衰落和多普勒频移不敏感,提高了频谱利用率,支持高速率、小时延的无线数据传输技术,在频域内将给定信道分成许多正交子信道,在每个子信道上使用一个子载波进行调制,各子载波并行传输。OFDM的主要缺点是功率效率不高。

2.3调制与信道编码、信道传输技术

4G移动通信系统采用了多载波正交频分复用调制技术以及单载波自适应均衡调制技术,提高了频谱利用率,可延长用户终端电池的寿命。4G移动通信系统采用了比3G系统更高级的信道编码方案以及自动重发请求技术和分集接收技术等,在低Eb/No条件下可保证系统具有足够的性能。

2.4高性能的接收机

4G移动通信系统由于数据速率很高,所以对接收机的性能要求也很高。按照Shannon定理,对于3G系统,如果信道带宽为5MHz,数据速率为2Mbps,则所需的SNR为l.2dB。对于4G系统,要在5MHz带宽上传输20Mbps数据,所需的SNR为12dB。

2.5智能天线技术

智能天线具有抑制信号干扰、自动跟踪及数字波束调节等智能功能,智能天线技术既能改善信号质量,又能增加传输容量。智能天线应用数字信号处理技术,产生空间定向波束,使天线主波束对准用户信号到达方向,旁瓣或零陷对准干扰信号到达方向,可实现充分利用移动用户信号并消除或抑制干扰信号的目的。

2.6多输入多输出技术

MIMO(多输入多输出)技术又称为多天线技术,是LTE移动通信系统为了提高吞吐量而应用的一项关键技术,MIMO技术是利用多发射、多接收天线进行空间分集和空间复用的技术,能够有效地将通信链路分解成许多并行的子信道,能够提高系统抗衰落与噪声性能,提高系统通信容量、数据传输速率和传输质量。

2.7软件无线电技术

软件无线电技术是将标准化、模块化的硬件功能单元经过一个通用硬件平台,利用软件加载方式来实现无线电通信系统功能的一种具有开放式结构的新技术,各种功能和信号处理尽可能利用软件实现,包括各类无线信令规则与处理软件、信号流变换软件、信源编码软件、信道纠错编码软件、调制解调算法软件等。软件无线电技术使无线电通信系统具有灵活性和适应性,能够适应不同的网络和接口,能支持不同接口的多模式手机和基站,能实现各种不同应用的可变QoS。

2.8基于IP的核心网

4G移动通信系统的核心网是基于全IP的开放式移动网络,IP兼容多种无线接入协议,便于灵活设计核心网络,可以实现不同网络间的无缝互联,能允许各种空中接口接入核心网,不必考虑无线接入究竟采用何种方式和协议,能够提供端到端的IP业务。

2.9多用户检测技术

多用户检测技术是宽带通信系统中抗干扰的关键技术,传统的检测技术完全按照经典直接序列扩频理论对每个用户信号分别进行扩频码匹配处理,因而抗多址干扰能力较差。多用户检测技术抗多址干扰能力较强,解决了远近效应问题,可以更加有效地利用链路频谱资源,提高系统通信容量。

34G移动通信技术优势

3.1通信速度更快

4G移动通信具有更快的无线通信传输速度,TD-LTE移动通信系统可以达到下行100Mbps峰值传输速度,是3G移动通信传输速度的50倍。

3.2网络频谱更宽

要使4G移动通信达到100Mbps的传输速度,通信运营商必须使4G网络的频谱带宽高于3G网络的频谱带宽,每个4G信道占有100MHz的频谱,相当于W-CDMA3G网络的20倍。

3.3通信更加灵活

4G手机可以算得上是一台便携式电脑,4G移动通信使用户不仅可以随时随地通信,还可以双向下载传递资料、图画、影像,4G终端还可实现定位、告警等功能。4G移动通信系统会在不同的固定和无线平台及跨越不同频带的网络运行中提供无线服务,所涉及的关键技术包括高速移动无线信息存取技术、移动平台的拉技术、安全密码技术以及终端间通信技术等。

3.4智能性能更高

4G移动通信的智能性能更高,4G移动通信终端设备的设计和操作具有智能化,对菜单和滚动操作的依赖程度大大降低,4G手机能够根据设定适时地提醒手机主人此时该做什么事或不该做什么事,4G手机还可以当作一台手提电视机,可以用来随时随地观看电视节目。

3.5兼容性能更好

4G移动通信系统接口开放兼容,能与多种网络互联互通。4G终端多种多样,支持全球漫游。用户可以使用各种各样的移动终端接入4G系统,4G系统支持将各种不同的接入系统结合成一个公共的平台,4G系统可成为多行业、多部门、多系统用户沟通的桥梁,实现在任何地址宽带接入互联网。4G移动通信可集成不同模式的无线通信网络,从无线局域网和蓝牙等室内网络到无线蜂窝网、移动地面广播电视网和移动卫星通信网,移动用户可以自由地从一个网络标准漫游到另一个网络标准,并能自适应资源分配,能在信道条件不同的环境下处理变化的业务流。在移动卫星通信方面能够提供信息通信、定位定时、数据采集和远程控制等综合功能。

3.6可实现各种增值服务

4G移动通信系统采用空分多址(SDMA)技术和正交频分复用(OFDM)技术,业务容量达到3G的5~10倍,可以实现无线区域环路(WLL)、数字音讯广播(DAB)等方面的无线通信增值服务。

3.7可实现更高质量的多媒体通信

4G移动通信能够满足3G移动通信尚不能达到的在覆盖范围、通信质量、宽频带上支持高速数据传输和高分辨率多媒体服务要求,4G移动通信提供的无线多媒体通信服务包括语音、数据、影像等,4G移动通信堪称多媒体移动通信。

3.8频率使用效率更高

4G移动通信系统的基站天线可以发送更窄的无线电波波束,可以处理数量更多的业务。4G移动通信技术对无线频率的使用效率比3G系统要高,且抗信号衰落性能更好,可以支持更多的用户使用更多、更快的应用。

3.9通信费用更加便宜

4G移动通信兼容3G移动通信,可以让现有3G用户轻易地升级到4G移动通信。4G移动通信容易部署,能够有效地降低运营商和用户的费用。4G网络与固定宽带网络的使用费用差不多,且4G网络计费方式更加灵活机动,4G移动通信的无线即时连接等服务费用会比3G便宜,用户可以根据自身需求借助各种各样的4G终端随时随地享受高质量的通信服务。

44G芯片及4G手机

4.14G芯片

4G芯片目前已经具备高度集成、多模多频以及强大的数据与多媒体处理能力,目前全球4G手机大多数采用高通芯片。中国移动2013年度支持的TD-LTE终端中采用高通芯片的比例高于60%。高通的LTE芯片强调高集成度和支持多模多频,目前高通所有的LTE芯片组均同时支持TD-LTE和FDD-LTE。博通、Marvell、英特尔、联发科、联芯科技、创毅视讯、展迅、海思等芯片厂商也已推出4G基带芯片产品。

4.24G手机

4G手机目前主要有三星、索尼、天语、酷派等品牌,多模多频是LTE智能终端的发展方向,中国移动将重点建设发展支持5模10频、5模12频及Band41等LTE智能终端的TD-LTE/FDD-LTE融合网络。

54G移动通信网络建设及4G牌照

5.14G网络建设

2013年中国移动启动了4G网络工程集采招标,4G网络建设正在抓紧进行,2013年中国移动4G网络将覆盖超过100个城市,将建设完成20万个基站,4G终端的采购将超过100万部。中国移动在频段上主要采用1900MHz(F频段)、2600MHz(D频段)、2300MHz(E频段),其中F频段以升级为主,D频段以新建为主。

5.24G牌照

4G牌照是指第四代移动通信业务的经营许可权,运营商必须获得由工信部许可、发放的4G牌照,才可经营4G业务,我国已在2013年12月4日发放4G牌照。

64G移动通信系统面临的难题

4G移动通信系统技术复杂,4G移动通信网络存在的技术问题大多与互联网有关,需要花费几年时间才能解决,要顺利、全面地实施4G移动通信,将会面临一些难题。

6.1标准难以统一

4G标准难以统一,如果没有统一的或兼容的国际标准,将会给4G手机用户带来诸多不便。开发4G移动通信系统必须首先解决通信制式等全球统一或兼容的标准化问题。

6.2技术难以实现

要实现4G移动通信的下载速度还面临着如何保证楼区、山区及其它有障碍物等易受影响地区的信号强度等一系列必须解决的技术难题。

6.3容量受到限制

4G移动通信从理论上说具备100Mbps的宽带速度,但手机使用速度还受到通信系统容量的限制,手机用户越多,速度就越慢,4G手机很难达到其理论速度。

6.4市场难以消化

整个移动通信市场正在消化吸收3G技术,对于4G移动通信系统的接受还需要一个逐步过渡的过程,而5G技术随时都有可能威胁到4G系统的赢利计划,所以4G系统漫长的投资回收和赢利计划可能变得异常脆弱。

6.5设施难以更新

要向4G通信技术转移,全球的许多无线基础设施都需要经历大量的变化和更新,这种变化和更新势必减缓4G移动通信技术全面进入市场和占领市场的速度。