引论:我们为您整理了13篇集成电路工程研究方向范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。
篇1
教育部工程教育专业认证专家委员会在2011年颁布的工程教育专业认证标准(试行),对机械、化工、电子信息等10大类工程专业进行了详细的认证标准规定[1]。这些标准涵盖整个培养过程的各个方面,包括专业目标、课程体系、师资队伍、支持条件、学生发展、管理制度、质量评价、专业特殊要求等等。对于电子信息与电气工程类专业,该标准给出了详细的专业分类以及每个细分专业的具体要求进行了规定。其中电路理论课,包含直流电路、正弦交流电路、一阶和二阶动态电路、电路的频率分析、电网络矩阵分析、分布参数电路等内容,是重要的工程基础类课程。在多数高等院校中,承担这部分教学内容的课程是《电路分析基础》,如何结合该课程目前存在的一些问题,以工程教育为目标改革课程教学方法,以适应新形势下的满足工程认证标准的要求,是从事“电路分析基础”教学研究的教育工作者亟待解决的问题。
2.电路分析课程教学方法现状与问题
电路分析基础课程的教学目的是要通过学习使学生掌握电路的基本理论和基本分析方法,建立一般电路系统的数学模型,训练必要的实验技能,为后续课程的学习打下基础[2]。通过分析后续课程对电路分析基础课程知识点的要求,我们发现该课程是90%以上专业课的基础,也是电气信息类多个学科考研的必考课程,在整个专业教学体系中起到承上启下的重要作用,教学效果的好坏将直接影响学生的专业发展。近年来,电路分析基础的教学方式有了一些创新,多媒体教学、启发式教学等都大大改善了教学效果,但依然没有脱离“灌输式”的教学模式,学了的不会用、有用的没有学、理论与生产实践脱节、对具体问题分析能力不足、教学中学生的参与性和主动性不够等问题仍然存在。
电路分析基础课程是一门理论性和实践性较强的学科基础课程,既强调知识的综合性、实用性,又强调创新能力、综合分析和解决生产实践问题的能力,这也是“工程教育”培养计划所要求的。但现有的教学存在一些问题亟待解决,一切都是由教师决定,学生只能被动的参与。同时教师不注意采取先进的教学手段来充实自己的教学活动,忽视案例教学、问题教学等方式的运用,导致教学信息量太小,无法传授更多的知识。课程教学中只是理论知识的简单讲解,没有结合工程实际进行教学。
3.面向工程教育的教学方法研究
实现从单一传授知识的观念向综合能力培养的观念转变,积极推行启发式教学、讨论式教学、研究型教学、案例式教学等先进教学方法。在教学过程中加强与后续课程和相关业的的联系,要充分体现出课程的工程性和实践性,调动学生的学习兴趣和学习积极性,树立理论联系实际的工程观念,提高分析问题和解决问题的能力。
启发式教学:在设计一些知识点的课堂组织时注重为学生营造一定的氛围,引导学生如何运用已有的知识和技能解决新的矛盾和问题,从而发现并创造新的知识。例如,通过习题总结规律引导出叠加定理和替代定理等。在教学中再现一些知识点的相关来源,为学生营造良好的创新性思维环境。例如,诺顿定理可由戴维南定理和等效变换推断出,节点电压法可由回路电流及对偶原理得出[3]。
讨论式教学:讨论式教学针对某一问题组织讨论。比如通过讨论正弦交流电路时域分析的缺陷和复数计算的特点引出相量法,使学生对相量法的理解更透彻。通过讨论几种特殊联接方式的耦合电感去耦等效方法[3],总结出耦合电感去耦等效的规律性,完善耦合电感去耦等效方法。
研究型教学:课程教学质量中的“质”涉及诸多内容,其核心是根据课程的实际特点,将以“授课、考核”为主要特征的“传授型”教学转变为以“六个环节和六个融合”为基本特征的“研究型”课程。“六个环节”是:教――加强基础理论与基础知识的教学;学――引导学生养成良好学习习惯和思维习惯从而达到自学能力的提高;训――强化基本技能、工程实践能力及创新能力和人文与科学精神的训练;研――引导学生参加开发应用研究和提高学习效果的研究;管――通过严格的教学过程管理促进优良学风建设;考――将考核过程转化为促进学生深入学习和实践与提高的过程。“六个融合”是:课内环节与课外环节相融合,教与学相融合,理论与实践相融合,知识传授与素质能力培养相融合,统一要求与个性培养相融合,专业教育与科学精神培养相融合。
案例式教学:案例教学法是根据教学大纲规定的教学目的和要求,以代表性、典型性和新颖性的案例为基本素材,运用多种形式启发学生独立思考,对案例进行分析研究,并在课堂教学中注重体现学生的主体地位、实践技能和创新精神,使学生从知识的被灌输者变成学习的主动建构者,教师也从知识的传授者与灌输者转变成知识建构的帮助者和促进者。案例教学法是一种具有启发性、实践性,理论联系实际的新型教学方法,能够开发学生智力,提高学生综合素质和分析问题、解决问题的能力。
在讲授电路特性时从现实生活中的实例切入,可有效引发学生的兴趣。如讲解 RC 基本电路[3]时,课堂引入了照相机闪光灯电路的例子,引导学生先从照相机实物的闪光灯物理系统建立闪光灯电路模型,进而与学生一起分析电路的充放电过程,总结出这种简单的 RC 电路具有可以提供瞬间大电流脉冲的特点,并告知学生此特性在电子点焊、雷达发射管等场合都得到应用。
4.合理利用多媒体技术提高教学质量
多媒体电子课件主要应用的软件为微软Office办公软件所含的Word、PowerPoint等,通过自带的画图软件、绘图工具以及公式编辑器等基本上可以完成电路课的教学任务[4]。尤其是PPT的动画效果利用,可以极大的丰富教学内容,在课堂上吸引学生的目光,而且它比较有条理,顺序性很强,便于学生学习。
课堂以多媒体电子课件为主,黑板为辅。我校电路分析基础课程自2000年以来就开始使用多媒体课件,在应用过程中不断完善,课堂信息量不断增大。课件符合学生的认知规律,深受学生好评。经过多年改进,现已基本实现课件内容与教师讲授同步。针对公式推导较多的内容,则采用交互性很强的“黑板+粉笔”这种传统方式,以有效地抓住学生的思路。由于授课内容多,信息量大,为避免学生疲于抄笔记,影响听课效果,我们制作了学生版课件作为课堂笔记的基础,课件留有适当的空白,这样,既不必用大量时间抄笔记,又可敦促学生认真听课,紧跟主线,记录要点。
5.结论
在工程教育认证背景下,以往电路分析课程教学方法与工程教育要求存在一定的脱节。改革教学方法,实现从单一传授知识的观念向综合能力培养的观念转变,在教学过程中要充分体现出课程的工程性和实践性,调动学生的学习兴趣和学习积极性,树立理论联系实际的工程观念,提高分析问题和解决问题的能力。
参考文献:
[1] 全国工程教育专业认证专家委员会秘书处. 工程教育专业认证标准(试行). 2011.
[2] 庞勇伟. 电路分析课程教学探究[J]. 才智,2012,(31):134.
篇2
长期以来复旦大学微电子学教学形成了“基础与专业结合,研究与应用并重,创新人才培养国际化”特色。近年来,在教育部第二批高等学校特色专业建设中,我们根据国家和工业界对集成电路人才的要求,贯彻“国际接轨、应用牵引、注重质量”的教学理念,制定了复旦大学“微电子教学工作三年计划大纲”并加以实施,在高端创新人才培养方面对专业教学的特色开展了深层的挖掘和拓展。
一、课程体系的完善和课程建设
微电子技术的高速发展要求微电子专业课程体系在相对固定的框架下不断加以更新和完善。
我们设计了“复旦大学微电子学专业本科课程设置调查表”,根据对于目前工作在企业、大学和研究机构的专业人士的调查结果,制定了新的微电子学本科培养方案。主要修改包括:
(1)加强物理基础、电路理论和通信系统课程。微电子学科,特别是系统芯片集成技术,是融合物理、数学、电路理论和信息系统的综合性应用学科。因此,在原有课程基础上,增加了有关近代物理、信号与通信系统、数字信号处理等课程,使微电子学生的知识覆盖面更宽。
(2)面向研究、应用和学科交叉的需要,增加专业选修课程。如增加了电子材料薄膜测试表征方法、射频微电子学、铁电材料与器件、Perl语言、计算微电子学、实验设计及数据分析等课程,为本科生将来进一步从事研究和应用开发打下基础。
(3)强调能力和素质训练,高度重视实验教学。开设了集成电路工艺实验、集成电路器件测试实验、集成电路可测性设计分析实验及专用集成电路设计实验等从专业基础到专业的多门实验课。
在课程体系调整完善的同时,还对于微电子专业基础课和专业必修课开展了新一轮的课程建设。包括:
(1)精品课程的建设。几年来,半导体物理、集成电路工艺原理、数字集成电路设计经过建设已经获得复旦大学校级精品课程。其中半导体物理和集成电路工艺原理课程获得学校的重点资助,正在建设上海市精品课程。另有半导体器件原理和模拟集成电路设计正在复旦大学校级精品课程建设之中,有望明年获得称号。
(2)增加全英语教学和双语教学课程。为了满足微电子技术的高速发展和学生尽快吸收、学习最新知识的需求,贯彻落实教育部“为适应经济全球化和科技革命的挑战,本科教育要创造条件使用英语等外语进行公共课和专业课教学”的要求,在本科生专业课的教学中新增全英语教学课程3门,双语教学课程4门。该类专业课程的开设也为微电子专业的国际交流学生提供了选课机会。
(3)教材建设。为了配合课程体系的完善和补充更新专业知识,除了选用一些国际顶级高校的教材之外,还依据我们的课程体系组织编写了一系列专业教材和论著。有已经出版的《深亚微米FPGA结构与CAD设计》、《Modern Thermodynamics》、《现代热力学-基于扩展卡诺定理》,列入出版计划的《半导体器件原理》、《超大规模集成电路工艺技术》和《计算机软件技术基础》。另外根据课程体系的要求对实验用书也进行了更新。
为了传承复旦微电子学的丰富教学经验和保证教学质量,建立了完备的教学辅导制度,如课前试讲、课中听课及聘请经验丰富的退休老教师与青年教师结对子辅导等。每学期听课总量和被听课教师分别均超过所授课程和任课教师人数的50%以上。对所有听课结果进行了数据分析,并反馈给任课教师,为教师改进教学提供了有益的帮助。在保证教学内容的情况下,鼓励教师尝试新的教学手段,实现所有必修课程的电子化,建立主要必修课程的网页,完全公开提供所有课件信息,部分课件获得超过15000次的下载量。青年教师还独创了“移动课堂”的授课新方法,该方法能够完整复制课堂教学,既能高清晰展示教学课件的内容,又能把教师课上讲解的声音、动作及临时板书全部包含在内,能够使用大众化的多媒体终端进行播放,随时随地完美重现课堂讲解全过程。
通过国际合作的研究生项目及教师出国交流,复旦大学微电子学专业教师的教学水平得到进一步提升。在研究生的联合培养项目(如复旦-TU Delft硕士生项目、复旦-KTH硕士生/博士生项目等)中海外高校教师来到复旦全程教授所有课程,复旦配备青年教师跟班听课和担任课程辅导。这使得青年教师的授课理念、授课方式及授课水平都有大幅提高。同时,由于联合培养项目及其他合作项目,复旦的青年教师也被邀请参与海外高校的教学,担任对方课程的主讲,青年教师利用交流的机会,引进海外高校的一些课程用于补充复旦微电子的培养方案。这些都为集成电路专业特色的挖掘和拓展起到重要的作用。
经过几年的努力,微电子专业的教学水平普遍得到提升,在教学评估中得到各个方面的好评。
二、培养方法的改进和创新
培养适应时代要求的微电子专业创新人才也需要在培养方法上加以改进和创新。
针对微电子工程的特点,在坚持扎实的理论的基础上,强调理论联系实际,开展实践能力训练。在学校的支持下,教学实验室环境得到及时更新,几个方面的实验教学在国内形成特色。
(1)本科的集成电路工艺实验可以在学校自己的工艺线上完成芯片的清洗、氧化、扩散、光刻、蒸发、腐蚀等基本工艺制作步骤,为学生完整掌握集成电路制造的基本能力提供了很好的实际训练。
(2)在集成电路测试方面,结合自动化测试机台(安捷伦SoC93000ATE),开设了可测性设计课程,附带实验。
(3)集成电路设计课程都附带课程项目实践,培养了学生实际设计能力和素质,取得很好效果。
通过课程教学训练学生创新思维和分析问题的能力。尝试开设了部分本科生和研究生同时共同选修的研讨型课程。在课程学习的过程中,本科生不仅可以得到研究生的指导,在课堂上就某些课程内容进行探究,还可以在开展课程设计时在小组内和研究生同学共同开展小型项目研究,对于提高本科生进一步学习微电子专业的兴趣和培养他们发现问题解决问题的能力有很大的帮助。
参加科研无疑是培养学生创新能力的一个最为有效的途径。配合复旦大学的要求,微电子学专业在本科阶段,持续设置多种科研计划,给予本科生进实验室开展科研以支持。
(1)大一的“启航”学术体验计划。计划鼓励大一学生在感兴趣的领域进行探究式学习和实践,为学生打造一个培养创新意识,锻炼学术能力的资源平台。“启航”学术体验计划的所有学术实践项目均来自各个微电子专业的导师,学生通过对感兴趣的项目进行申报与自荐的形式申请加入各学术实践小组。引导学生领略学科前沿,体验研究乐趣。
(2)二、三年级曦源项目。项目建立在学生自主学习和创新思想的基础上,鼓励志同道合的同学组成研究团队,独立提出研究方向,寻找合适的指导教师。加入自己感兴趣的研究方向的团队。在开放课题列表中寻找合适的课题方向,并向该课题指导教师进行申请。还有更多的学生在大三甚至更早就进入各个研究小组,参与教授领导的各类国家级、省部级项目及来自企业、海外等的合作项目的研究。在完成的计划和项目成果之外,学生们还在收集文献资料、获取信息的能力,发现问题、独立思考的能力,运用理论知识解决实际问题的能力,设计和推导论证、分析与综合的能力,科学实验、发明创造的能力,写作和表说的能力等方面,都有不同的收获。
通过学生参加国际交流活动及外籍教师讲授课程给学生提供国际化的培养,提供层次更高、路径多元的培养方案,培养了学生的国际化眼光,开拓了学生的培养渠道。
几年来,微电子学专业学生的出国交流人数逐年增长,从2008年起,共有20位本科生赴国外多个高校交流学习。交流的项目包括双学位、长学期和暑期项目等,交流时间从3个月到2年不等,交流学校包括美国(耶鲁、UCLA等)、欧洲(伯明翰、赫尔辛基等)、日本(早稻田、庆应等)及我国港台高校。大多数同学在交流期间的学习成绩达到交流学校的优秀等级,同时积极参加交流学校教授小组的科研工作,得到了很好的评价。个别同学由于表现优异在交流结束回国后被对方教授邀请再次前去完成毕业论文;也有同学交流期间)参加国际级大师的科研小组工作,获益匪浅,直研后表现出强于一般研究生的科研能力。可以看到,国际交流不仅为同学们提供了专业知识和研究能力的不同培养模式,也为他们提供了更加广阔的视野和体验多种文化的机会,为他们今后的发展和进步打下了很好的基础。自特色专业建设以来,每学期均新开设“前沿讲座”课程,课程内容不固定,授课人为聘请的海外教师,有的来自海外高校,有的来自海外企业,课程均为全英语课程或双语教学课程。这类课程直接引进了海外高校的课程和教学方式,不仅学生受益,同时也培养了复旦微电子专业的青年教师。企业还提供与课程内容直接相关的软件,在改善教学环境的同时,还为学生参加科研提供了培训。
篇3
目前,集成电路设计公司在招聘新版图设计员工时,都希望找到已经具备一定工作经验的,并且熟悉本行业规范的设计师。但是,IC设计这个行业圈并不大,招聘人才难觅,不得不从其他同行业挖人才或通过猎头公司。企业不得不付出很高的薪资,设计师才会考虑跳槽,于是一些企业将招聘新员工目标转向了应届毕业生或在校生,以提供较低薪酬聘用员工或实习方式来培养适合本公司的版图师。一些具备版图设计知识的即将毕业学生就进入了IC设计行业。但是,企业通常在招聘时或是毕业生进入企业一段时间后发现,即使是懂点版图知识的新员工,电路和工艺的知识差强人意,再就是行业术语与设计软件使用不够熟练、甚至不懂。这就要求我们在版图教学时渗入电路与工艺等知识,使学生明确其中紧密关联关系,树立电路、工艺以及设计软件为版图设计服务的理念。
一、企业对IC版图设计的要求分析
集成电路设计公司在招聘版图设计员工时,除了对员工的个人素质和英语的应用能力等要求之外,大部分是考查专业应用的能力。一般都会对新员工做以下要求:熟悉半导体器件物理、CMOS或BiCMOS、BCD集成电路制造工艺;熟悉集成电路(数字、模拟)设计,了解电路原理,设计关键点;熟悉Foundry厂提供的工艺参数、设计规则;掌握主流版图设计和版图验证相关EDA工具;完成手工版图设计和工艺验证[1,2]。另外,公司希望合格的版图设计人员除了懂得IC设计、版图设计方面的专业知识,还要熟悉Foundry厂的工作流程、制程原理等相关知识[3]。正因为其需要掌握的知识面广,而国内学校开设这方面专业比较晚,IC版图设计工程师的人才缺口更为巨大,所以拥有一定工作经验的设计工程师,就成为各设计公司和猎头公司争相角逐的人才[4,5]。
二、针对企业要求的版图设计教学规划
1.数字版图设计。数字集成电路版图设计是由自动布局布线工具结合版图验证工具实现的。自动布局布线工具加载准备好的由verilog程序经过DC综合后的网表文件与Foundry提供的数字逻辑标准单元版图库文件和I/O的库文件,它包括物理库、时序库、时序约束文件。在数字版图设计时,一是熟练使用自动布局布线工具如Encounter、Astro等,鉴于很少有学校开设这门课程,可以推荐学生自学或是参加专业培训。二是数字逻辑标准单元版图库的设计,可以由Foundry厂提供,也可由公司自定制标准单元版图库,因此对于初学者而言设计好标准单元版图使其符合行业规范至关重要。
2.模拟版图设计。在模拟集成电路设计中,无论是CMOS还是双极型电路,主要目标并不是芯片的尺寸,而是优化电路的性能,匹配精度、速度和各种功能方面的问题。作为版图设计者,更关心的是电路的性能,了解电压和电流以及它们之间的相互关系,应当知道为什么差分对需要匹配,应当知道有关信号流、降低寄生参数、电流密度、器件方位、布线等需要考虑的问题。模拟版图是在注重电路性能的基础上去优化尺寸的,面积在某种程度上说仍然是一个问题,但不再是压倒一切的问题。在模拟电路版图设计中,性能比尺寸更重要。另外,模拟集成电路版图设计师作为前端电路设计师的助手,经常需要与前端工程师交流,看是否需要版图匹配、布线是否合理、导线是否有大电流流过等,这就要求版图设计师不仅懂工艺而且能看懂模拟电路。
3.逆向版图设计。集成电路逆向设计其实就是芯片反向设计。它是通过对芯片内部电路的提取与分析、整理,实现对芯片技术原理、设计思路、工艺制造、结构机制等方面的深入洞悉。因此,对工艺了解的要求更高。反向设计流程包括电路提取、电路整理、分析仿真验证、电路调整、版图提取整理、版图绘制验证及后仿真等。设计公司对反向版图设计的要求较高,版图设计工作还涵盖了电路提取与整理,这就要求版图设计师不仅要深入了解工艺流程;而且还要熟悉模拟电路和数字标准单元电路工作原理。
三、教学实现
1.数字版图。数字集成电路版图在教学时,一是掌握自动布局布线工具的使用,还需要对UNIX或LINUX系统熟悉,尤其是一些常用的基本指令;二是数字逻辑单元版图的设计,目前数字集成电路设计大都采用CMOS工艺,因此,必须深入学习CMOS工艺流程。在教学时,可以做个形象的PPT,空间立体感要强,使学生更容易理解CMOS工艺的层次、空间感。逻辑单元版图具体教学方法应当采用上机操作并配备投影仪,教师一边讲解电路和绘制版图,一边讲解软件的操作、设计规则、画版图步骤、注意事项,学生跟着一步一步紧随教师演示学习如何画版图,同时教师可适当调整教学速度,适时停下来检查学生的学习情况,若有错加以纠正。这样,教师一个单元版图讲解完毕,学生亦完成一个单元版图。亦步亦趋、步步跟随,学生的注意力更容易集中,掌握速度更快。课堂讲解完成后,安排学生实验以巩固所学。逻辑单元版图教学内容安排应当采用目前常用的单元,并具有代表性、扩展性,使学生可以举一反三,扩展到整个单元库。具体单元内容安排如反相器、与非门/或非门、选择器、异或门/同或门、D触发器与SRAM等。在教授时一定要注意符合行业规范,比如单元的高度、宽度的确定要符合自动布局布线的要求;单元版图一定要最小化,如异或门与触发器等常使用传输门实现,绘制版图时注意晶体管源漏区的合并;大尺寸晶体管的串并联安排合理等。
2.模拟版图。模拟集成电路版图设计更注重电路的性能实现,经常需要与前端电路设计工程师交流。因此,版图教学时教师须要求学生掌握模拟集成电路的基本原理,学生能识CMOS模拟电路,与前端电路工程师交流无障碍。同时也要求学生掌握工艺对模拟版图的影响,熟练运用模拟版图的晶体管匹配、保护环、Dummy晶体管等关键技术。在教学方法上,依然采用数字集成电路版图的教学过程,实现教与学的同步。在内容安排上,一是以运算放大器为例,深入讲解差分对管、电流镜、电容的匹配机理,版图匹配时结构采用一维还是二维,具体是如何布局的,以及保护环与dummy管版图绘制技术。二是以带隙基准电压源为例,深入讲解N阱CMOS工艺下双极晶体管PNP与电阻匹配的版图绘制技术。在教学时需注意晶体管与电阻并联拆分的合理性、电阻与电容的类型与计算方法以及布线的规范性。
3.逆向版图设计。逆向集成电路版图设计需要学生掌握数字标准单元的命名规范、所有标准单元电路结构、常用模拟电路的结构以及芯片的工艺,要求学生熟悉模拟和数字集成单元电路。这样才可以在逆向提取电路与版图时,做到准确无误。教学方法同样还是采用数字集成电路版图教学流程,达到学以致用。教学内容当以一个既含数字电路又含模拟电路的芯片为例。为了提取数字单元电路,需讲解foundry提供的标准单元库里的单元电路与命名规范。在提取单元电路教学时,说明数字电路需要归并同类图形,例如与非门、或非门、触发器等,同样的图形不要分析多次。强调学生注意电路的共性、版图布局与布线的规律性,做到熟能生巧。模拟电路的提取与版图绘制教学要求学生掌握模拟集成电路常用电路结构与工作原理,因为逆向设计软件提出的元器件符号应该按照易于理解的电路整理,使其他人员也能看出你提取电路的功能,做到准确通用规范性。
集成电路版图设计教学应面向企业,按照企业对设计工程师的要求来安排教学,做到教学与实践的紧密结合。从教学开始就向学生灌输IC行业知识,定位准确,学生明确自己应该掌握哪些相关知识。本文从集成电路数字版图、模拟版图和逆向设计版图这三个方面就如何开展教学可以满足企业对版图工程师的要求展开探讨,安排教学有针对性。在教学方法与内容上做了分析探讨,力求让学生在毕业后可以顺利进入IC行业做出努力。
参考文献:
[1]王静霞,余菲,赵杰.面向职业岗位构建高职微电子技术专业人才培养模式[J].职业技术教育,2010,31(14):5-8.
[2]刘俐,赵杰.针对职业岗位需求?摇探索集成电路设计技术课程教学新模式[J].中国职业技术教育,2012,(2):5-8.
[3]鞠家欣,鲍嘉明,杨兵.探索微电子专业实践教学新方法-以“集成电路版图设计”课程为例[J].实验技术与管理,2012,29(3):280-282.
篇4
随着集成电路工艺的迅猛发展,也促使集成电路测试技术不断更新,以提高半导体行业的生产效益。其中晶圆测试对整个集成电路生产过程的良品率及成本控制起着重要的作用。
2 晶圆测试概述
2.1 晶圆测试介绍
晶圆测试是半导体后段区分良品与不良品的第一道工序,主要目的是对晶圆中独立的晶粒(die)进行测试,通过探针卡接触晶粒上的触点(bond pad),测试其电气功能特性,把不良片筛选出来,同时按照电性不良类型把不合格的产品分类(bin), 提供给晶圆制造厂进行数据分析,改进工艺。不合格的晶粒会被标上记号,而后当芯片依晶粒为单位切割成独立的晶粒时,标有记号的不合格晶粒会被洮汰,不再进行下一个制程,以免徒增制造成本。
2.2 晶圆测试分类
通常情况下,晶圆测试是对一片晶圆上每一个独立完整的芯片进行测试,逐一执行程序中设定的所有测试项(Full Probe),即完全测试,它主要针对研发阶段及设计生产逐步走向成熟的产品。但随着晶圆生产工艺的不断完善,测试环节的成本控制就会显得尤为重要。更重要的一个因素是,随着电子行业的飞速发展,半导体厂需要以更快更优的方式把产品提供给客户。这就决定了测试工程师必须进一步分析测试程序,研究什么需要被测试以及以何种方式满足这些测试。因此晶圆的快速测试方法应运而生,它是一个既满足成本控制,又能提高测试效率的最佳解决方案。
3 晶圆的快速测试方法
在晶圆快速测试(speed probe)中,首先把整片晶圆按照良品率分为两个区域。良品率低的区域进行完全测试,所有程序中涉及的测试项都会逐一被测试。但针对良品率高的区域采取缩减测试项的快速测试方法,只进行关键电性参数的测试,这样就能大大缩短整片晶圆的测试时间。
快速测试优点和风险分析:
・在关键性电参数都被测试的情况下,极大的缩短了测试时间。
・通过大量历史测试数据分析来划分良品率高的区域和良品率低的区域,能最大限度的规避快速测试带来的质量风险。
・晶圆上每一个独立完整的晶粒都会被测试。
・关键的电性参数在快速测试中都会被测试到,如激光修复,ECID,HVST,以及客户特别要求的测试参数。
・在实际测试中,如果抽样测试的良品率高于预先设定的阈值,则晶圆上其余的晶粒将执行缩减测试项的程序流程,只进行关键参数的测试;如果抽样测试的良品率低于预先设定的阈值,则晶圆上其余的晶粒将执行程序中规定的所有测试项。
・晶圆快速测试既能提高晶圆测试厂的产能,又能大大降低测试成本。
4 产品A快速测试解决方案
4.1 分析晶圆历史测试图(wafer map),确立每一颗晶粒所在位置的历史良品率,划分良品率高的区域和良品率低的区域,计算分析触发快速测试的良品率阈值。
4.2 由测试工程师和产品工程师分析确立关键电性参数测试列表(CTL),分析每个测试项的测试时间,在程序中设定缩减的测试流程。
4.3 进行成本分析,包括晶圆测试时间/成本,封装及最终测试(Finial Test)成本。
5 产品A快速测试结果验证及结论
使用完全测试和快速测试的方式分别测试三片同样的晶圆,分bin和良品率(yield)对比结果偏差均符合规格(Bin Kappa Bias < limit 6%, Yield Kappa Bias
通过在产品A执行快速测试,有效的降低了测试成本,缩减了测试时间,同时提高了晶圆测试的产能。
参考文献
[1]PeterVanZant. Microchip fabrication:a practical guide to semiconductor processing,fifth edition
[2]Tokyo Electron. Fully automatic wafer prober model.
[3]W.Chen. Speed testing during wafer sort for KGD product. King Yuan Electronics Co. Sep. 2007
篇5
2015年北京工业大学硕士研究生拟招生学科目录已公布,具体内容请各位考生查看如下:
院(所)、学科代码、名称 学科方向 招生人数 考试科目 备注 001 机械工程与应用电子技术学院 223 0801 力学 _ 01动力学与控制 _ 02固体力学 _ 03流体力学 _ 04工程力学 27 ①101思想政治理论 ②201英语一 ③301数学一 ④811理论力学或812材料力学I 080200 机械工程 _ 01数字化设计与制造技术 _ 02精密数控加工与自动化装备 _ 03现代焊接技术与自动化装备 _ 04机电系统控制及自动化 _ 05机构及机器人系统分析与控制 _ 06机械及微机电系统结构设计 78 ①101思想政治理论 ②201英语一 ③301数学一 ④811理论力学或812材料力学I或813电工学 0804 仪器科学与技术 _ 01精密测试技术与仪器 _ 02现代测控技术及方法 _ 03计算机测试与控制技术 _ 04智能仪器与虚拟仪器技术 23 ①101思想政治理论 ②201英语一 ③301数学一 ④803电子技术I或812材料力学I或813电工学 085201 机械工程(专业学位) _01数字化设计与制造及装备 _02现代机械系统设计 _03机电液一体化设计与制造 _04现代测控技术与仪器 _05高端装备强度与动态分析 95 ①101思想政治理论 ②204英语二 ③302数学二 ④809工程力学或813电工学 002 电子信息与控制工程学院 232 0809 电子科学与技术 _ 01信号处理与电路 _ 02数字多媒体信息技术 _ 03信息光电子学与光通信 _ 04超大规模集成电路设计与系统集成 _ 05电子器件、射频和功率集成电路及可靠性 58 ①101思想政治理论 ②201英语一 ③301数学一 ④822信号与系统或823半导体物理 1、01-02方向选822; 2、03-05方向选823。 0810 信息与通信工程 _ 01语音与音频信号处理 _ 02多媒体通信技术 _ 03信号处理理论与通信技术 _ 04图像与视频信号处理 30 ①101思想政治理论 ②201英语一 ③301数学一 ④822信号与系统 0811 控制科学与工程 _ 01自动控制理论及其应用 _ 02测控技术与自动化系统 _ 03智能系统与智能信息处理 _ 04信息融合与自主导航 _ 05计算机控制技术及其应用 63 ①101思想政治理论 ②201英语一 ③301数学一 ④821自动控制原理 085208 电子与通信工程(专业学位) _ 01信号与信息处理及其应用技术 _ 02图像处理与模式识别技术 _ 03多媒体通信技术 _ 04无线通信技术 _ 05嵌入式系统技术 35 ①101思想政治理论 ②204英语二 ③302数学二 ④822信号与系统 085210 控制工程(专业学位) _ 01工业过程的建模、控制与优化 _ 02系统工程(系统优化与决策) _ 03信息管理系统 _04生产过程综合自动化 _ 05智能控制与智能系统 30 ①101思想政治理论 ②204英语二 ③302数学二 ④821自动控制原理 085209 集成电路工程(专业学位) _ 01集成电路设计 _02集成电路制备工艺及相关技术研究 _03微电子器件检测与可靠性评价技术 16 ①101思想政治理论 ②204英语二 ③302数学二 ④823半导体物理 004 建筑工程学院 246 0814 土木工程 _01工程抗震减震与城市综合防灾减灾理论、方法和技术 _02结构新体系与高性能材料 _03结构全寿命设计、健康监测与可持续发展 _04岩土与地下工程安全风险分析、评价方法和技术 _05工程施工技术与风险管理 _06水环境恢复工程及水质处理保障技术 _07建筑环境控制及能源利用技术 119 ①101思想政治理论 ②201英语一或203日语 ③301数学一 ④841结构力学 或833土力学与地基基础 或843钢筋混凝土结构 或 845水分析化学与水力学;或846传热学Ⅰ或867流体力学Ⅱ 1、土木工程(含工民建、道桥等)或相近专业考生报考方向可选01~05,考试科目可选841或833或843; 2、给排水或相近专业考生报考方向可选06,考试科目可选845; 3、暖通或相近专业考生报考方向可选07,考试科目应选846或867。 0823 交通运输工程 _ 01道路与铁道工程 _ 02交通运输规划与管理 _ 03交通信息工程及控制 4 ①101思想政治理论 ②201英语一 ③301数学一 ④848道路工程 或 849交通工程或832交通信息与控制 1、01方向选848; 2、02-03方向选849或832。 0815 水利工程 _ 01水文学及水资源 _ 02水力学及河流动力学 _ 03水工结构工程 _ 04水利水电工程 _ 05港口、海岸及近海工程 10 ①101思想政治理论 ②201英语一或203日语 ③301数学一 ④841结构力学或844水力学Ⅱ 085213 建筑与土木工程(专业学位) _01工程抗震减震与城市综合防灾减灾理论、方法和技术 _02结构新体系与高性能材料 _03结构全寿命设计、健康监测与可持续发展 _04岩土与地下工程安全风险分析、评价方法和技术 _05工程施工技术与风险管理 _06工程项目管理及信息化 _07水环境恢复工程及水质处理保障技术 _08建筑环境与能源利用技术 100 ①101思想政治理论 ②204英语二或203日语 ③302数学二 ④841结构力学或833土力学与地基基础或845水分析化学与水力学 或846传热学Ⅰ或867流体力学Ⅱ 1、土木工程(含工民建、道桥等)或相近专业考生报考方向可选01~06,考试科目可选841或833或843; 2、给排水或相近专业考生报考方向可选07,考试科目可选845; 3、暖通或相近专业考生报考方向可选08,考试科目应选846或867。 085222 交通运输工程(专业学位) _01道路交通安全理论与道路工程技术 _02交通规划与交通控制理论及方法 _03智能交通、仿真与可持续发展整合体系 5 ①101思想政治理论 ②204英语二 ③302数学二 ④848道路工程或849交通工程或832交通信息与控制 1、01方向选848; 2、02-03方向选849或832。 1256 工程管理(专业学位) _ 00不区分研究方向 8 ①199管理类联考综合能力 ②204英语二 005 环境与能源工程学院 152 070304 物理化学 _01能源材料物理化学 _02催化化学 _03纳米材料物理化学 _04界面物理化学与分离技术 11 ①101思想政治理论 ②201英语一 ③684物理化学I ④887无机化学II · 0807 动力工程及工程热物理 _ 01可再生能源利用及先进环境能源理论与技术 _ 02强化传热传质理论与工程应用 _ 03制冷低温系统及其环保节能理论与技术 _ 04车辆及动力系统节能、净化与控制 23 · ①101思想政治理论 · ②201英语一 · ③301数学一 · ④851传热学Ⅱ或852工程热力学 0817 化学工程与技术 _ 01绿色化学与精细有机化工 _ 02工业催化与纳米科学 _ 03膜科学与化工分离技术 _ 04材料化学理论与应用 _ 05先进材料合成及催化应用 25 ①101思想政治理论 ②201英语一 ③302数学二 ④814物理化学Ⅲ或820有机化学I或878化工原理 0830 环境科学与工程 _ 01环境规划与污染防治 _ 02污染控制化学 _ 03环境分析与监测 _ 04环境规划与管理 _ 05水污染控制工程 _ 06大气污染控制工程 28 ①101思想政治理论 ②201英语一或203日语 ③302数学二 ④856环境影响评价或857微生物基础I或858环境工程学 1、只有05方向招日语考生; 2、01-04方向,选856; 3、05方向选857; 4、06方向选858。 085206 动力工程(专业学位) _01可再生能源利用与先进环境能源技术 _02能源动力系统优化及工程应用 _03制冷低温系统及其节能环保技术 _04动力机械及车辆动力系统节能、净化与控制 32 ①101思想政治理论 ②204英语二 ③302数学二 ④851传热学Ⅱ或852工程热力学 085229 环境工程(专业学位) _01水污染控制工程 _02大气污染控制工程 _03环境规划与管理 33 ①101思想政治理论 ②204英语二 ③302数学二 ④856环境影响评价或857微生物基础I或858环境工程学 1、01方向选857; 2、02方向选858; 3、03方向选856。 006 应用数理学院 98 0701 数学 _ 01基础数学 _ 02应用数学 _ 03运筹学与控制论 _ 04科学计算 35 ①101思想政治理论 ②201英语一 ③663数学分析 ④865高等代数 0714 统计学 _ 01非参数统计与数据分析 _ 02应用统计 _ 03生物统计 _ 04金融工程与应用概率 _ 05经济统计 14 ①101思想政治理论 ②201英语一 ③663 数学分析 ④865 高等代数 0702 物理学 _ 01理论物理 _ 02凝聚态物理 _ 03光学 25 ①101思想政治理论 ②201英语一 ③662普通物理I ④861量子力学或863光学 1、01方向选861; 2、02方向选861或863; 3、03方向选863。 0803 光学工程 _ 01脉冲激光技术与应用 _ 02信息光学与应用 _ 03微纳光学 _ 04光电传感与检测技术 7 ①101思想政治理论 ②201英语一 ③301数学一 ④828激光原理 0252 应用统计(专业学位) _01生物医学统计 _02精算统计 _03数量金融 _04质量管理统计 17 ①101思想政治理论 ②204英语二 ③303数学三 ④432统计学 007 计算机学院 151 0812 计算机科学与技术 _ 01 计算机系统结构 _ 02 计算机软件与理论 _ 03计算机应用技术 _ 04 信息安全 68 ①101思想政治理论 ②201英语一 ③301数学一 ④895 计算机学科专业基础 085211 计算机技术(专业学位) _ 01计算机网络技术 _ 02计算机软件技术 _ 03计算机应用技术 _ 04信息安全技术 83 ①101思想政治理论 ②204英语二 ③302数学二 ④896数据结构 009材料科学与工程学院 140 0805 材料科学与工程 _ 01生态环境材料与资源循环技术 _ 02稀土、难熔金属等功能材料 _ 03高性能结构材料技术 _ 04先进材料加工技术 _ 05光电信息与高效能源材料 80 ①101思想政治理论 ②201英语一或203日语 ③302数学二 ④875材料科学基础 085204 材料工程(专业学位) _ 01生态环境材料与资源循环技术 _ 02稀土、难熔金属等功能材料 _ 03高性能结构材料技术 _ 04先进材料加工技术 _ 05光电信息与高效能源材料 60 ①101思想政治理论 ②204英语二或203日语 ③302数学二 ④875材料科学基础 011 经济与管理学院 182 1201 管理科学与工程 _ 01技术与项目管理 _ 02战略管理与社会网络 _ 03信息管理与信息系统 _ 04城市管理 _ 05运作管理与质量管理 _ 06金融工程 25 ①101思想政治理论 ②201英语一或203日语 ③303数学三 ④801管理学或804经济学原理或805数据库技术与应用 0202 应用经济学 _01金融学 _02国际贸易学 _03产业经济学 _04区域经济学 _05数量经济学 _06统计学 _07劳动经济学 25 ①101思想政治理论 ②201英语一 ③303数学三 ④804经济学原理 1202 工商管理 _ 01会计学 _ 02企业管理 _ 03旅游管理 _ 04技术经济及管理 13 ①101思想政治理论 ②201英语一或203日语 ③303数学三 ④801管理学或804经济学原理 1251 工商管理硕士(专业学位) _ 00不区分研究方向 99 ①199管理类联考综合能力 ②204英语二 1252 公共管理硕士(专业学位) _ 00不区分研究方向 20 ①199管理类联考综合能力 ②204英语二 012 建筑与城市规划学院 60 0833 城乡规划学 _ 01城乡规划理论与方法 _ 02居住区规划与设计 _ 03城市设计与景观规划 _ 04历史城市与街区保护规划 _ 05城市防灾减灾规划 15 ①101思想政治理论 ②201英语一 ③633城市规划原理 ④503城市规划与设计 接收建筑学、城市规划学(含园林景观)专业的考生报考。 0851 建筑学(专业学位) _01都市建筑设计及理论 _02历史建筑的保护与更新 _03建筑与城市绿色环境技术 _04城市设计方法及理论 40 ①101思想政治理论 ②201英语一 ③355建筑学基础 ④504建筑快速设计 接收建筑学、城市规划学专业的考生报考。 085237 工业设计工程(专业学位) _ 00不区分研究方向 5 ①101思想政治理论 ②204英语二 ③337工业设计基础 ④502产品设计 接收工业设计、产品设计、艺术设计专业等相关专业考生报考。
085229 环境工程(专业学位) _01水污染控制工程 _02大气污染控制工程 _03环境规划与管理 33 ①101思想政治理论 ②204英语二 ③302数学二 ④856环境影响评价或857微生物基础I或858环境工程学 1、01方向选857; 2、02方向选858; 3、03方向选856。 006 应用数理学院 98 0701 数学 _ 01基础数学 _ 02应用数学 _ 03运筹学与控制论 _ 04科学计算 35 ①101思想政治理论 ②201英语一 ③663数学分析 ④865高等代数 0714 统计学 _ 01非参数统计与数据分析 _ 02应用统计 _ 03生物统计 _ 04金融工程与应用概率 _ 05经济统计 14 ①101思想政治理论 ②201英语一 ③663 数学分析 ④865 高等代数 0702 物理学 _ 01理论物理 _ 02凝聚态物理 _ 03光学 25 ①101思想政治理论 ②201英语一 ③662普通物理I ④861量子力学或863光学 1、01方向选861; 2、02方向选861或863; 3、03方向选863。 0803 光学工程 _ 01脉冲激光技术与应用 _ 02信息光学与应用 _ 03微纳光学 _ 04光电传感与检测技术 7 ①101思想政治理论 ②201英语一 ③301数学一 ④828激光原理 0252 应用统计(专业学位) _01生物医学统计 _02精算统计 _03数量金融 _04质量管理统计 17 ①101思想政治理论 ②204英语二 ③303数学三 ④432统计学 007 计算机学院 151 0812 计算机科学与技术 _ 01 计算机系统结构 _ 02 计算机软件与理论 _ 03计算机应用技术 _ 04 信息安全 68 ①101思想政治理论 ②201英语一 ③301数学一 ④895 计算机学科专业基础 085211 计算机技术(专业学位) _ 01计算机网络技术 _ 02计算机软件技术 _ 03计算机应用技术 _ 04信息安全技术 83 ①101思想政治理论 ②204英语二 ③302数学二 ④896数据结构 009材料科学与工程学院 140 0805 材料科学与工程 _ 01生态环境材料与资源循环技术 _ 02稀土、难熔金属等功能材料 _ 03高性能结构材料技术 _ 04先进材料加工技术 _ 05光电信息与高效能源材料 80 ①101思想政治理论 ②201英语一或203日语 ③302数学二 ④875材料科学基础 085204 材料工程(专业学位) _ 01生态环境材料与资源循环技术 _ 02稀土、难熔金属等功能材料 _ 03高性能结构材料技术 _ 04先进材料加工技术 _ 05光电信息与高效能源材料 60 ①101思想政治理论 ②204英语二或203日语 ③302数学二 ④875材料科学基础 011 经济与管理学院 182 1201 管理科学与工程 _ 01技术与项目管理 _ 02战略管理与社会网络 _ 03信息管理与信息系统 _ 04城市管理 _ 05运作管理与质量管理 _ 06金融工程 25 ①101思想政治理论 ②201英语一或203日语 ③303数学三 ④801管理学或804经济学原理或805数据库技术与应用 0202 应用经济学 _01金融学 _02国际贸易学 _03产业经济学 _04区域经济学 _05数量经济学 _06统计学 _07劳动经济学 25 ①101思想政治理论 ②201英语一 ③303数学三 ④804经济学原理 1202 工商管理 _ 01会计学 _ 02企业管理 _ 03旅游管理 _ 04技术经济及管理 13 ①101思想政治理论 ②201英语一或203日语 ③303数学三 ④801管理学或804经济学原理 1251 工商管理硕士(专业学位) _ 00不区分研究方向 99 ①199管理类联考综合能力 ②204英语二 1252 公共管理硕士(专业学位) _ 00不区分研究方向 20 ①199管理类联考综合能力 ②204英语二 012 建筑与城市规划学院 60 0833 城乡规划学 _ 01城乡规划理论与方法 _ 02居住区规划与设计 _ 03城市设计与景观规划 _ 04历史城市与街区保护规划 _ 05城市防灾减灾规划 15 ①101思想政治理论 ②201英语一 ③633城市规划原理 ④503城市规划与设计 接收建筑学、城市规划学(含园林景观)专业的考生报考。 0851 建筑学(专业学位) _01都市建筑设计及理论 _02历史建筑的保护与更新 _03建筑与城市绿色环境技术 _04城市设计方法及理论 40 ①101思想政治理论 ②201英语一 ③355建筑学基础 ④504建筑快速设计 接收建筑学、城市规划学专业的考生报考。 085237 工业设计工程(专业学位) _ 00不区分研究方向 5 ①101思想政治理论 ②204英语二 ③337工业设计基础 ④502产品设计 接收工业设计、产品设计、艺术设计专业等相关专业考生报考。 036 学院 10 010108 科学技术哲学 _ 01科学技术与社会研究 _ 02工程伦理学 _ 03生态哲学与可持续发展问题研究 5 ①101思想政治理论 ②201英语一 ③620科学技术史 ④825哲学 0305 理论 _ 01基本原理 _ 02中国化研究 _ 03思想政治教育 5 ①101思想政治理论 ②201英语一 ③651基本原理 ④883思想政治教育基本原理 035 艺术设计学院 22 1305 设计学 _ 01 产品设计 _ 02 环境设计 _ 03 服装与服饰设计 _ 04 工艺美术 _ 05 数字媒体艺术 _ 06 视觉传达设计 7 ①101思想政治理论 ②201英语一 ③622设计史论 ④505快题设计 505考试为6小时。 1351 艺术(专业学位) _ 01 产品设计 _ 02 环境设计 _ 03 服装与服饰设计 _ 04 工艺美术 _ 05 数字媒体艺术 _ 06 视觉传达设计 _ 07 动画 _ 08 绘画 _ 09 雕塑 8 ①101思想政治理论 ②204英语二 ③622设计史论 或 619美术史论 ④505快题设计 或 506专业创作 1、01-04方向选622和505。 2、05-09方向选619和506。 3、506和505考试时间为6小时。 085237 工业设计工程 _01 工业设计 _02 设计管理 _03 交互设计 7 ①101思想政治理论 ②204英语二 ③337工业设计基础 ④502产品设计 报考02设计管理的考生须有两年以上工作经验,专业不限。 039 城市交通学院 87 0823 交通运输工程 _ 01交通规划理论与方法 _ 02道路与交通工程设计方法 _ 03交通安全理论与技术 _ 04智能交通控制与信息处理 _ 05路基路面结构与材料 _ 06道路养护与运营管理 23 ①101思想政治理论 ②201英语一 ③301数学一 ④848道路工程 或 849交通工程或832交通信息与控制 1、01-04方向选849或832; 2、05-06方向选848。 085222 交通运输工程(专业学位) _01交通规划技术 _02交通管理与工程设计 _03交通信息与控制技术 _04道路设施设计与施工技术 _05道路养护与管理 23 ①101思想政治理论 ②204英语二 ③302数学二 ④848道路工程或849交通工程或832交通信息与控制 1、01-03方向选849或832; 2、04-05方向选848。 0812 计算机科学与技术 _ 01智能交通信息处理 _ 02虚拟现实与交通仿真 _ 03物联网信息感知与智能处理 _ 04智能人机交互与多媒体技术 _ 05交通大数据智能处理技术 21 ①101思想政治理论 ②201英语一 ③301数学一 ④895 计算机学科专业基础 085211 计算机技术(专业学位) _ 01智能交通信息处理 _ 02虚拟现实与交通仿真 _ 03物联网信息感知与智能处理 _ 04智能人机交互与多媒体技术 _ 05交通大数据智能处理技术 5 ①101思想政治理论 ②204英语二 ③302数学二 ④896数据结构 0811 控制科学与工程 _ 01智能交通系统控制 _ 02自主车辆与车路协同 _ 03交通图像与视频信号处理与分析 _ 04交通信息智能化处理 8 ①101思想政治理论 ②201英语一 ③301数学一 ④821自动控制原理 085210 控制工程(专业学位) _ 01智能交通系统管理与控制技术 _ 02智能车辆与车路协同控制技术 _ 03交通信息处理方法与应用 _ 04交通图像与视频信号处理技术 7 ①101思想政治理论 ②204英语二 ③302数学二 ④821自动控制原理
篇6
三维集成电路是指多层面构建集成电路,可进一步扩展布局空间,减少线路相互之间的干扰,解决信号拥堵问题,扩大频宽,降低功耗,最终提高系统性能。3D封装是三维集成电路关键技术,主要包括裸片堆叠封装、叠层封装与封装内堆叠三种具体实现形式,各有优劣。贯穿硅通孔技术(TSV)是一种系统级架构技术,可实现层级间裸片互联,是目前最先进、应用最广泛的互联方式之一。本次研究就基于硅通孔技术的三维集成电路基本设计进行概述与分析。
1 TSV制备
TSV制备工艺据通孔制作工艺顺序可分为先通孔与后通孔两种,先通孔是指在制备IC时同时通孔,后者是指在制备IC后通孔。
前通孔主要特征包括:(1)工艺在CMOS或BEOL制备前应用;(2)在元件设计阶段即介入应用;(3)需严格的CD控制;(4)通孔宽度为5-20μm;(5)深宽比AR3:1-10:1。而后通孔主要特征为:(1)工艺在BEOL或TSV键合(Bonding)制备后应用;(2)在设计阶段后期介入;(3)CD控制较宽松;(4)通孔宽度20-50μm;(5)深宽比AR3:1-15:1。
通孔刻蚀技术是TSV技术的核心,强调通孔尺寸一致性,无残渣,形成需达到一定速度,规格设计具有一定灵活性,目前仅有IBM及其部分代工厂掌握该核心技术。通孔刻蚀技术主要可分为博世工艺技术、激光刻蚀技术,两者各有优劣。博士工艺孔径大小、数目、深度无特殊要求,但孔径侧面较粗糙,材料成本高,需要光刻。激光刻蚀仅适用于>10μm孔径通孔,孔径数目也受吞吐量影响,但通孔侧壁表明光滑,耗材低,无需光刻。
通孔后,TSV需进行填充,涉及通孔绝缘、淀积与电镀多个工艺步骤,使用材料包括硅烷、正硅酸丁酯等。填充时需要考虑填充绝缘、沉积温度等多个方面因素,一个细节的疏忽都可能影响通孔性能,进而影响系统稳定性与功效。目前,主要填充技术包括溅射沉积、均匀淀积,但考虑到成本因素,电镀铜是目前应用最广泛的硅通孔填充方式。
最后为实现晶体TSV互联,需应用TSV键合技术,目前最常用的键合技术包括金属-金属键合、氧化物共熔键合与高分子黏结键合。三种键合技术各有优劣,应用均十分广泛,但均只适用于满足电学特性的光滑键合表面,不能进行机械表面与电学特性表面键合,金属-金属键合有望打破这种限制。
2 反映TSV性能的参数及其意义
2.1 互联延时
全局互联普遍被认为是集成系统性能提升的设计瓶颈,全局互联产生的连线延时决定系统时钟频率与速度传输限,创造一种更有效的互联策略已成为当今电路设计中研究热点。缓冲器插入式目前应用最广泛的一种缩短全局互联延时的设计,使用灵活,有助于减少硅通孔数目与集成密度,进而降低互联延时效应,提高系统性能,降低误差。
2.2 互联功耗
互联功耗与系统电路规模与集成密度有关,目前,互联电容已取代门电路成为片上功耗与动态功耗主导因素,插入缓冲器后功耗与全局互联规模有关。应用硅通孔三维互联构架,可减少互联需要,但却需要更多的缓冲器,增加片上功耗,在设计PSV时,需充分考虑PSV功耗。
3 TSV三维集成具体设计主要思路
3.1 阻抗特性差异
三维集成虽然可缓解不同材料、工艺差异所产生的串扰噪声,降低混合技术同化复杂度与电路模块电磁干扰,最终降低成本,提高效效能,但与此同时,三维设计也增加了阻抗差异。阻抗差异后是源层互联固有缺陷,应用TSV技术互联则增加了阻抗差异,进一步放大了这种缺陷。因此将TSV应用三维集成系统构架中,需综合考虑阻抗差异,尽力减少阻抗差异对互联信号的影响,避免信号发生反射或失真。
3.2 热管理与优化
电路工作之中不可避免的发散热量,热效应已成为影响集成电路功效、元件可靠性的重要因素之一。三维集成技术增加了芯片物理层数,顶端物理层与散热片距离显著增加;三维集成技术缩短了物理尺寸,芯片功耗密度显著增加,热效应增加,芯片内温度上升,可能造成元件性能下降,电迁移失败,甚至可能造成物理损毁。应用TSV技术,可能影响整个芯片热扩散效果、途径,因此在设计TSV系统构架时,需对热扩散进行预测,分析芯片内外温度分布,并提出热优化技术与策略,降低消热阻。目前常采用的热优化技术策略为减薄衬底厚度,降低散热片等效热阻,热驱动优化,布局优化,热通孔插入,等。
4 碳纳米管TSV设计
碳纳米管具有优良的电热传输特性,平均自由程较长,耐高温,是一种较理想的互联材料,具有较大的发展潜力。碳纳米管电流承载密度极限远高于铜,电子迁移稳定,有助于克服承载不稳定性TSV技术这一固有缺陷。碳纳米管具有一维导体特性,热特性较高,热传导率极高,可达到3000~8000W/m-K,将碳纳米管应用于TSV集成可极大的提高系统散热能力。
5 小结
硅通孔技术是三维集成电路制造核心技术之一,其技术水平直接影响系统性能、稳定性。电路设计工作者,在应用TSV技术过程中,应尽量采用时下成熟的TSV制备技术,把握具体设计思路,从提升系统整体性能出发,提升设计水平。同时,应具有创新、探索精神,积极尝试引入新材料、技术与理念,大胆尝试,开阔设计思路,以探索更优的设计方案。
参考文献
[1]X.ChuanL.Hong,R.Suaya and pact AC modeling and performance analysis of through silicon vias in 3-D ICs.IEEE Trans.Electron Devices,2010,57(12):3405-3417.
[2]童志义.3D IC集成与硅通孔(TSV)互联[J].电子工业专用设备,2009(27):26-29.
[3]王高峰,赵文生.三维集成电路中的关键技术问题综述[J].杭州电子科技大学学报,2014,34(2):1-5.
作者简介
篇7
An Overview of Regularity Extraction Algorithms in Integrated Circuits
ZHANG Hou-jun, ZHOU Zhou
(Department of Computer Science and Technology, Tongji University, Shanghai 201804, China)
Abstract: Data-path dominated integrated circuits always have a good amount of regularity in them. Regularity of integrated circuits has the merits for predigesting design, shortening the period of design, reducing the design cost, and improving the performance of the system. This paper is a literature review. It introduces the recent study of graph-theory based regularity extraction algorithms in summary. Meanwhile the solving idea and time-complexity of some classical algorithms, such as TREE and SPOG, are introduced. The advantages and disadvantages are analyzed too. Moreover, some important properties are summarized and compared. Last, this paper provides a referenced direction for the study of regularity extraction.
Key words: reconfigurable; regularity extraction; graph isomorphism; sub-graph extension; data-flow graph
1 概述
随着集成电路制造技术的进步和应用需求的增长,整个系统现在已经可以集成在单个芯片之中,片上系统(system on a chip,SoC)已成为集成电路系统设计的重要形式和热点研究内容。然而,当前集成电路设计能力不足已成为制约集成电路工业进一步发展的重要因素。因此必须尽快改进设计方法,不断提高设计能力[12]。
传统的设计方法中忽略了系统描述本身所包含的结构特性。在以数据处理为主的应用描述中往往具有高度的规律性,存在着大量的相似结构,利用其规律性可以实现规则的布图以提高芯片的性能及可制造性。因此,如果能够将基于模板的技术用在集成电路的设计当中,分析和提取电路中相似结构以实现规则性的布图,那么芯片在性能和集成度方面将会有大大改善。
电路模板技术是指将电路中重复出现的子电路抽象出来作为模板,它在电路性能的提高、电路的验证、设计重用、电路划分等领域以及处理高层次综合领域中的调度和分配问题都具有重要的作用[12]。因此对集成电路的规则性提取问题的研究在VLSI 自动化设计领域具有深远的意义。
此外,嵌入式多媒体应用程序的一个显著特点也是规则运算很多,运算时间复杂度很高,因此也迫切需要提高性能,降低功耗。
从输入数据流图(data-flow graph, DFG)中提取出图中频繁运用的子图集合或相似子图集合,通过后续模板覆盖、任务划分和调度阶段对原始DFG进行模板覆盖,将相似子程序调度到相同的PE阵列上去,这使得程序的调度更有效,最大可能地复用模块单元实现系统的功能,提高重用性,减少系统的面积。因此,基于模板的技术也是可重构系统任务编译器前端设计中一种较有效的方法。如果能在可重构系统的编译器当中使用模板技术,那么对系统的并行处理及逻辑优化等将会有很大帮助。
无论是对数据通路型集成电路还是对嵌入式多媒体应用程序进行规律性提取时,通常都是将电路的门级网表或者程序转化为对应的DFG表示。因此,本文主要讨论基于图论的模板提取。
2 问题定义
对于一个DFG,结点表示一个简单的操作(比如ADD,SUB等),有向边表示数据流的方向。设G(V,E)表示一个DFG,V为其顶点集,E为其边集,有如下定义。
定义1 若图SG(SV,SE) 满足SV∈V 及SE∈E,则称SG是G 子图[16]。
定义2 对于G(V,E)中的两个子图G1(V1,E1),G2(V2,E2),如果V1和V2之间存在一一对应的映射关系f:V1V2,对于vi,vj∈V1,∈E1当且仅当∈E2,并且与的重数相同,那么称G(V,E)的两个子图G1(V1,E1),G2(V2,E2)是同构的[16]。
定义3 模板T就是DFG中频繁出现的子图结构,而与此模板结构相同的子图称为该模板的实例,这种子图的个数称为该模板的频数[13]。
定义4 若SG(SV,SE)是G(V,E)的一个子图,将SV记为有序的结点集,则SV的第一个结点称为SV或子图SG的起点[12]。
定义5 图G(V,E)的顶点平均度,记作
其中,deg(vi)为顶点vi的度,表示与vi相邻顶点的个数[11]。
3 现有模板提取算法分析
目前,国外有些学者提出了一些模板提取的算法,并取得了一定的研究成果,国内研究尚处于初级阶段。下面对一些典型的模板提取算法的思想作一下介绍。
3.1 模板提取算法
3.1.1 TREE和SPOG算法[8]
由Chowdhary等人提出的TREE算法能够提取出单输出和内部没有汇聚的模板。而且其通过两个假设(假设1:把图G的子图集S限制在只包括某些子图,这些子图满足不再是S中任一图的子图,且在S中其频数大于1。假设2:对于G中每一个有入边的结点v,假设其有f条入边,前驱结点分别为u1,u2…uf,每一条边都被赋予一个唯一的索引号,k[ui, v]=i, 1≤i≤f)将树形模板的数量减少到v(v-1)/2。算法的基本思想如下:
1)对G的所有结点进行拓扑排序v1,v2…vn。
2)对于任意两个编号的结点vi, vj(1≤i,j≤n),生成以这两个结点为根的功能上相同的最大子图作为一个模板Sm。
3)判断模板库中是否存在于Sm功能上等价的模板。如果不存在,将Sm加入到模板库当中;否则,舍弃Sm。
SPOG算法则是在TREE算法基础上的扩展和改进,将生成的模板扩展到多输出模板。此时SPOG子图的数量可以被限制在v(v-1)。
TREE算法和SPOG算法是典型的模板提取算法,它能够提取出基于两个假设以及各自限制条件之内的所有模板,这对于后续的模板覆盖有很大的帮助,覆盖率较高。但同时此算法也有着很大的不足之处,都适用于分散图,且生成的模板限制在tree形或spog形,算法的复杂度也很高,为O(v5),不适合实际工程的需要。
3.1.2 FAN算法[15]
潘伟涛等人提出的FAN算法通过边权值编码,先生成小规模模板,然后再逐级扩展生成较大规模模板,产生扇形频繁子电路。算法的基本思想如下:
1)统计电路中每种标准单元出现的频率。依据最小支持度确定为各标准单元作标记还是删除它,并计算所有顶点的有效输入权值。
2)搜索所有同构实例,对于每一个同构实例在最左顶点扩展一条边。
3)统计扩展后的扇形子电路的种类和频数。依据最小支持度确定将此子电路标记为模板并进行下一轮的扩展还是将它删除。
FAN算法采用最小支持度对每次扩展生成的子图进行限制,通过比较子电路的出现的频数,有效地避免了子图扩展时一些不必要的冗余扩展,并且此算法采用逐级扩大规模的方法,得到的模板层次化较强,可以对电路进行更好的覆盖实用性较强。
3.1.3 其他算法
Rao and Kurdahi [3]最早关注于数据通路型集成电路的模板提取,它将基于模板的聚类思想应用到数据通路的综合上,这里的模板提取过程也就是基于不同子图(它们可以被复制来覆盖整个DFG)的识别过程。文献[4]在解决模板提取问题时,假设子模块已经生成,主要解决子模块分类问题,但是一般情况下需要自动生成模块。文献[5-6]提出了一些模块生成算法,但均是先选择某一顶点作为一个模块,然后在此模块内不断加入其它的顶点形成新的模块。这几种算法对模块的形式没有限制,但也有其固有的缺点,就是所生成的模块形式依赖于起始模块的选择。文献[11]提出了一种基于顶点的辐射路特征的门级到功能模块级的快速子电路提取算法,解决了宏单元模板自动匹配,通过单个顶点的相似度特征,将子图同构问题转化为顶点之间的匹配问题,算法最差时间复杂度为■(其中,n和k为两图结点数,d为原始电路的直径)。文献[12]中算法对DFG的整体结构以及模块的结构没有要求,增强了算法的健壮性,而且生成的模板的层次化较强,模板覆盖率较高,但在同构判断时无针对性,需对所有模板进行一一判断,导致程序复杂性的提高。
3.2 模板提取算法的比较与分析
模板提取算法有以下一些重要性质:1)输入DFG的类型,如连通图、有向图和无环图等;2)遍历策略,如深度优先或者广度优先等;3)候选子图的产生策略,如逐级扩展还是其他;4)对重复图的消除策略,如主动地或被动地;5)生成模板的层次化,如较好或较差。表1详细列出了一些模板提取算法的重要性质,并进行了比较。
4 总结和展望
随着集成电路产业的发展,迫切地需要提高芯片的性能,而利用集成电路自身的规律性可以实现规则的布图。因此,基于模板的技术将会对提高芯片的性能及可制造性有很大的帮助。本文归纳了基于图论的模板提取的各种算法,目前在这方面的研究已经取得了很大成绩,并被应用到一些实际的系统中。本文重点介绍了TREE、SPOG和FAN等典型的模板提取算法,并对其他算法进行了简要介绍。归纳出模板提取算法的一些重要性质,并对现有各算法进行了比较。
虽然目前存在的算法较多,且执行效率较高,但我们觉得还可以在以下方面加以改进或做进一步的研究:
1)现实生活中有各种各样的图形:有向图,无向图,加权图,无连通图等,但目前的算法大部分都是针对连通图的提取,对加权图有环图等的提取算法很少,因此对加权图有环图等的提取算法的研究也是一个重要的研究方向。
2)现有方法优势还主要集中在对小规模集成电路的提取上,集成电路产业的发展要求我们能够对大规模甚至超大规模集成电路进行提取,因此需要研究大规模集成电路的提取方法。
3)模板提取评测方法的研究。目前主要是靠算法复杂度的评估以及模板覆盖率等,在模板覆盖阶段,现有最大模板优先和最频繁模板优先的方法,但这样不能达到对系统最好覆盖,因此我们应该考虑如何在模板的规模和频数之间进行权衡,以利用所提取的模板达到对系统的最完美覆盖,最大程度地减小系统面积开销。
参考文献:
[1] Philip Brisk,Adam Kaplan,Ryan Kastner,Majid Sarrafzadeh.Instruction Generation and Regularity Extraction For Reconfigurable Processors[C].Proceedings of the ACM,Grenoble,France,2002:262-269.
[2] Yuanqing Guo,Gerard J M,Smit Hajo,et al.Template Generation and Selection Algorithms[C].Proceedings of The 3rd IEEE International Workshop on System-on-Chip for Real-Time Applications,2003.
[3] Rao D S,Kurdahi F J.Partitioning by regularity extraction. In: Proceedings of the ACM[C].IEEE Design Automation Conference,Anaheim,California,USA,1992:235-238.
[4] Rao D S,Kurdahi F J.An approach to scheduling and allocation using regularity extraction[C].Proceedings of the Europe Conference on Design Automation,Paris,France,1993:557-561.
[5] Arikati S R,Varadarajan R.A signature based approach to regularity extraction[C].Proceedings of the International Conference on Computer Aided Design,San Jose,California,USA,1997:542-545.
[6] Kutzschebauch T.Efficient logic optimization using regularity extraction[C].Proceedings of the International Workshop on Logic Synthesis,Austin,Texas,USA,1999:487-493.
[7] Shmidt D,Druffel L.A fast backtracking algorithm to test directed graphs for isomorphism using distance measures[J].Journal of ACM,1976,23(3):433-445.
[8] Chowdhary A,Kale S,Saripella P,et al.A general approach for regularity extraction in datapath circuits[C].Proceedings of the International Conference on Computer Aided Design,San Jose, California,USA,1998:332-339.
[9] Rosiello A P E,Ferrandi F,Pandini D,et al.A Hash-based Approach for Functional Regularity Extraction During Logic Synthesis[C]//IEEE Computer Society Annual Symposium on VLSI.New York:IEEE, 2007:92-97.
[10] Chowdhary A,Kale S.Extraction of Functional Regularity in Datapath Circuits[J].IEEE Trans on Computer Aided Design,1999,18(9):1279-1296.
[11] 李长青,汪雪林,彭思龙.辐射路匹配:从门级到功能模块级的子电路提取算法[J].计算机辅助设计与图形学学报,2006,18(9):1377-1382.
[12] 郎荣玲,秦红磊,路辉.集成电路中的规则性提取算法[J].计算机学报,2006,29(4):597-601.
篇8
on a PLL Technology
Abstract: The paper is based on Phase-Locked Loops technology with the analysis to Local Oscillator tuning of RF signal digital receiver. A method for BICMOS digital frequency tuning circuit with very low power dissipation is presented. The theory of the tuning system is demonstrated in detail, on its circuits and curves and data of simulation. The circuit adopts a programmable divider to decide a divide ratio which is needed. Consequently, the Phase-Locked Loops system will be locked on a concerned frequency. Accordingly, the Voltage Controlled Oscillator is operated to give a Local Oscillation frequency within a closed loop by a frequency divider, phase detector and a charge pump.
Key words: Phase-Locked Loops; Local Oscillator; Voltage Controlled Oscillator; frequency tuning; divide ratio
1引言
频率调谐系统作为信号接收机对信号筛选过程中重要的一部分,在便携式通信电子产品中得到广泛应用,。本文是基于PLL技术,分析设计射频信号接收机中的数字调谐部分。PLL的基本作用是把时钟频率调制到所需的频率上,并使这个频率锁定以达到稳定的输出。本篇文章分析的重点是在调谐系统内部,通过PLL控制外部振荡器的频率;难点是数字调谐部分中的可编程分频器,要根据设计要求计算分频比的理论值,然后推算分频器输入到输出的算法函数,根据算法函数设计出电路。
2电路的原理与技术分析
2.1 电路工作原理
如图1所示,射频信号接收机数字调谐系统由压控振荡器(VCO),数字调谐部分和一个二分频器组成,而VCO与数字调谐部分又组成了锁相环结构,可以根据锁相环理论来设计电路。整个数字调谐系统结构如图2所示,VCO输出的振荡频率经过可编程分频器处理,与外部晶振提供的基准参考频率一同送入鉴频鉴相器进行比较。出于对功耗的考虑,本文选用32.768KHz晶体振荡电路设计,作为频率调谐系统的参考频率。
鉴频鉴相器输出驱动电荷泵,通过环路滤波器向压控振荡器提供调谐电流,用以调整变容二极管的电容值,修正压控振荡器输出频率。当可编程分频器输出频率与参考频率完全一致时,环路处于锁定状态,使压控振荡器输出频率固定,最终得到的频率再经2分频电路送入混频器。本设计使用两个不同时间常数的滤波器,在第一个阶段,环路必须快速响应,但后一个环路要有窄的带宽来限制噪声以达到好的信噪比。
2.2 压控振荡器
振荡器就是在直流电源供电的情况下,产生周期性变化的电压信号的电路。任何振荡器都可看作是一个在振荡频率处呈正反馈的环路。如图所示,Ha(w)为前向电路的传输函数,Hf(w)为反馈网络的传输函数。振荡器的起振条件为T(w)=Hf(w)Ha(w)>1
2.2.1负阻特性振荡器
本文中压控振荡器使用负阻LC振荡器结构。负阻LC振荡器可看作是一个能量补偿系统。可将振荡器看作一个LC谐振回路与呈现负阻特性的有源电路相接。使振荡器获得稳定输出,
阻抗匹配分析法常用于负阻LC振荡器。当信号源所驱动电路的输入阻抗和信号源阻抗共轭时,从信号源吸收的功率才能达到最大值,这时达到了输入阻抗匹配条件;同理,只有当电路的输出阻抗与该电路的负载阻抗共轭时,负载从电路吸收的功率才能最大,电路达到了输出阻抗匹配条件。
如图4,VG为信号源电压,ZS为信号源阻抗,ZIN为信号源所驱动电路的输入阻抗。ZS=RS+jXS, ZIN=ZS*是阻抗匹配的条件。负阻LC振荡器是把一个呈现负阻特性的有源器件(或电路)直接与LC谐振回路相接,以产的关系如下所示。
A、当Rn>Rp时,振荡器输出呈现衰减振荡,如图6所示。
B、当rn
C、当rn=Rp时,振荡器输出呈现等幅振荡,如图8所示。
2.2.省略 v(vcotank2) va
.plot ac zin(r) zin(i) zin(m) zin(p)
.ac dec 1000 1meg 1000meg
仿真的结果波形为:
通过变容二极管,调整回路的品质因子,来改进振荡器的性能。主要是分析外部LC部分负载阻抗与差分电路部分输出阻抗的阻抗匹配。图11为本设计VCO谐振回路的电路。谐振部分以外的电路是为了提高稳定性而采取的滤波电路。
本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文
2.2.3跨导与阻抗的匹配
Rp是谐振回路的等效阻抗,电感Lp的作用是给差分结构晶体管提供偏置电流。为了保证振荡,使负阻和平均阻抗绝对值等于Rp,一般将晶体管的跨导gm取为1/Rp的五到六倍之间,即设计余量因子为2.5-3。可以根据gm=i/u, 计算不同温度时的跨导。通过对其直流分量的测量而确定振荡器起振时的偏置电流。其典型值如下表1所示。
从结果中发现,25℃左右温度下跨导值相对稳定,而在-40℃以下或40℃以上时跨导值有1mA/v左右的变化;体现在直流分量上就是10uA左右。说明在-40℃以下或40℃以上条件下,振荡器的起振电流条件不稳定。本电路的振荡器部分采用双极晶体管工艺,电路对温度有明显的反映,直接导致的结果就是在75℃高温时的振荡器不能起振。因此,应慎重从设计及工艺角度来优化设计。
2.3调谐部分的设计
调谐部分的难点是可编程分频器,分频器是锁相环电路中的基本单元.是锁相环中工作在最高频率的单元电路。按照设计的要求,本电路采用13位可编程分频器。分析结果表明它的分频值是在要求范围之内变化的。
2.3.1理论要求
在FM广播波段中,接收频率范围是76MHz-108MHz,而每个电台的波段为200K,最大保持频段为150K。所以每隔200K的频率就会有一个可能的电台波段。射频信号经低噪声放大器后,和LO信号一同进入混频器进行差频,得到中频225K,中频作为新的载波携带音频信号进入到下一级进行声频信号调制。
在PLL频率调谐系统中,为了调节VCO的振荡频率,通过一个可编程分频器来实现调节的第一步。13位可编程分频器分频值的十进制表示可由下式给出。
FVCO, PLL值表示的是分频器实际需要的十进制分频值,这个值得到后要进行四舍五入的处理,然后根据这个分频值对分频器进行设计。表2为调谐系统中有关数值的传输过程。
2.3.2分析设计过程
可编程分频器
频率调谐部分的设计首先要从可编程分频器开始,VCO的输出直接与分频器第1级÷2/3电路相连,这是整个分频器中频率最高的部分,接着信号进入÷4/6双模前置分频器,该部分电路的频率仍然较高,依次类推,这些单个模块的分频器要受输入控制端D端的控制来确定与之对应的分频值,分频后和我们需要的基准频率32768Hz来进行比较。
选取标准频道76MHz来进行分析,把76MHz时的十进制分频值4652换算成二进制值为上边频,则D0-D12这13个二进制值就是控制分频器分频值的控制端,可以完成调节不同分频值来锁定我们所需要的收音频道。完成这个设计,首先要找到分频器各模块之间与D0-D12数值之间的关系,提出分频值的算法。
因为所有的分频模块中都可能有两种分频值(因为D值存在高电平1和低点平0两个输入模式)我们可以先得到各模块的一个基本分频规律,就是2的n次方,在不考虑D值的情况下,分频模块要基本保证2分频。而根据76M到108M的频率范围,可以确定分频器的分频值在4000到6700的范围内,这样就能确定n的具体数值为12(2的12次方为4096),所以我们至少要采用12个分频模块来完成设计要求。
其次我们要找到分频模块的具体算法:
因为是否是3分频是由D端的数值来确定,所以我们需要用D值来表示是否是3分频,可以假设当D值等于1时,单个模块的分频值应是3分频,当D值等于0时,单个模块的分频值应是2分频,这样我们就可以根据二进制转换十进制的逻辑写出可编程分频器分频比的基本算法:
通过以上的基本算法,我们就可以采用具体的分频器来搭配13位可编程分频器,本文设计的可编程分频器由双模分频器构成,如图12。
CK和CKB是差分时钟信号,CTRL是分频控制信号,CTRL=1时电路作2分频;CTRL=0时作3分频;
电路的仿真结果如下:
根据我们所设计的需要采用12个分频模块,则由双模分频器组成的可编程分频器电路结构可设计为图14所表示电路图。
电荷泵
在PLL电路中,电荷泵的主要功能是把PFD输出的数字信号转换为用来控制VCO输出频率的模拟信号。传统的电荷泵为了达到高速,往往以牺牲精度为代价。
本文设计的电荷泵采用两种调节,大大缩短了响应时间,既提高了锁相环的速度,又保证了锁相环的精度。电路原理如图15所示。
采用双电荷泵结构,上面用于微调,下面用于粗调。实际电路结构如图16所示,为降低噪声影响采用差分方式输入,通过对A,AN;B,BN两组差分信号对进行放大,为电荷泵的有源负载提供偏置。Q2、Q3、Q6、Q8、Q9根据鉴相器的输出信号来决定它们的开启或关闭,实现电荷泵的充电或放电功能。
对电压和电流特性的仿真结果如图17所示。
从仿真图可以看出,当PFD有信号输出时,电荷泵是逐级对VCO进行调整,在开始阶段之前的9ms,粗调和微调两电路同时工作,之后粗调电路开启,细调电路关闭,粗调电路的拉电流和灌电流很大,约为40uA,电荷泵输出电压控制VCO到所需的大概频率段上;当PFD输出信号减弱后,电荷泵微调电路开启,拉电流和灌电流降低约为1uA左右,微调输出控制VCO在较精准的频率上,直到PFD没有信号输出,电荷泵粗调和细调都被关闭。系统就会锁定我们需要的频率。电荷泵的设计是整个电路低功耗设计的重点。
3结论
本文设计了一个应用于数字调频接收机频率调谐系统的电路,解决了对可编程分频器设计和改进电荷泵的问题。根据设计的电路,测试数字调谐系统的理论计算值与实际仿真值并作比较,如图18所示。
本设计LO输出的误差范围在8Hz-8.5KHz之间,符合误差小于10KHz的设计要求。对本设计而言,基准频率32.768KHz的选取,是因为这个频率的晶振功耗小,但对系统的精度有影响,要寻求更高的精度,需要在功耗和精度之间做优化。电路功耗的检测从对整体数字调谐系统的实际仿真得出,仿真的结果是:2.5V电源下,在76MHz到108MHz的频率范围内,系统的平均功耗为 5.5mw,符合设计的要求。
射频电路的设计,主要是通过对网络匹配的分析,来满足系统的设计要求。
参考文献
[1][美]Behzad Razavi著,陈贵灿译:《模拟CMOS集成电路设计》p413-415,西安交通大学出版社,2003
[2]池保勇,余志平,石秉学著,《CMOS射频集成电路分析与设计》p55-p73,p348-p383,清华大学出版社,2003
[3][美]Roland E.Best著,《Phase-Locked Loops》chapter2,清华大学出版社,2003
[4]LouisFan.Fei著,《Frequency divider design strategies》,March 2005
[5][美]Paul R.Gray等著,张晓林译:《模拟集成电路的分析与设计》chapter1,高等教育出版社,2004
[6]王宝祥著,《信号与系统》chapter1,哈尔滨工业大学出版社,2000
[7]童诗白,华成英著,《模拟电子技术基础》p387-p406,高等教育出版社,2000
作者简介
王鸿鹏,硕士研究生,研究方向:集成电路设计研究;
郭宇,北京美新华微电子技术有限公司技术工程师,研究方向:集成电路设计研究;
篇9
一 调试的目的
调试的目的主要有两个方面,一发现设计的缺陷和安装的错误,并改进与纠正,或提出改进意见;通过调整电路参数,避免因元器件参数或装配工艺不一致,而造成电路性能的 不一致或功能和技术指标达不到设计要求的情况发生,确保产品的各项功能和性能指标均达到设计要求。
二 调试要点
电子产品是由众多的元器件组成的,由于各元器件性能参数具有很大的离散性(允许误差),电路设计的近似性,再加上生产过程中其他随时因素(如存在分布参数等)的影响,使得装配完的产品在性能方面有较大的差异,通常达不到设计规定的功能和性能指标,这就是整机装配完毕后必须进行调试(测试与调整)的原因。
三 调试技术方法
调试技术包括调整和测试(检验)两部分内容。调整:主要是对电路参数的调整。一般是对电路中可调元器件,如可调电阻、可调电容、可调电感等以及机械部分进行调整,使电路达到预定的功能和性能要求;测试:主要是对电路的各项技术指标和功能进行测试和试验,并同设计的性能指标进行比较,以确定电路是否合格。它是电路调整的依据,又是检验结论的判断依据。实际上,电子产品的调整和测试是同时进行的,要经过反复的调整和测试,产品的性能才能达到预期的目标。
调试的过程分为通电前的检查(调试准备)和通电调试两大阶段。对于较复杂的产品,还可进一步分为单元部件(单板)调试和整机调试两大阶段。
通电前的检查(调试准备)。在电路板安装完毕进行测试前,必须在不通电的情况下,对电路板进行认真细致的检查,以便发现和纠正比较明显的安装错误,避免盲目通电可能造成的电路损坏。重点检查的项目有:电源的正、负极是否接反,有、无短路现象,电源线、地线是否接触可靠。(可以万用表进行检查);元器件的型号(参数)是否有误、引脚之间有、无短路现象。有极性的元器件,如二极管、晶体管、电解电容、集成电路等的极性或方向是否正确;连接导线有无接错、漏接、短线等现象;电路板各焊接点有无漏焊、桥接短路等现象;用万用表的欧姆挡,测量电源的正、负极之间的正、反向电阻值,以判断是否存在严重的短路现象。
通电调试,通电调试包括测试和调整两个方面。测试的目的是了解电路实际工作状态,获得电路各项主要性能指标的数据,提供调整电路的依据。调整的目的是:使电路性能达到设计要求。较复杂的电路调试通常采用先分块调试,然后进行总调试。通电调试一般包括通电观察、静态调试和动态调试。通电观察。将符合要求的电源正确地接入被测电路,观察有无异常现象,如发现电路冒烟、有异常气味以及元器件发烫等现象,应立即切断电源,检查电路。排除故障后,方可重新接通电源进行测试;静态调试。静态调试是指在不加输入信号(或输入信号为零)的情况下,进行电路直流工作状态的测量和调整。模拟电路的静态测试就是测量电路的静态直流工作点;数字电路的静态测试就是输入端设置成符合要求的高(或低)电平,测量电路各点的电位值及逻辑关系等。通过静态测试,可以及时发现一损坏的元器件,判断电路工作情况并及时调整电路参数,使电路工作状态符合设计要求;动态调试。动态调试就是在电路的输入端接入适当频率和幅度的信号,循者信号的流向逐级检测电路个测点的信号波形和有关参数,并通过计算测量的结果来估算电路性能指标,必要时进行适当的调整,使指标达到要求。若发现工作不正常,应先排除故障,然后再进行动态测试和调整。
动态调整必须在静态调试合格的情况下进行;整机调试。整机调试是在单元部件调试的基础上进行的。各单元部件的综合测试合格后,装配成整机或系统。整机调试的过程包括:外观检查、结构调试、通电坚持、电源调试、整机统调、整机技术指标综合测试及例行试验等。
四 整机调试过程中的故障分析
电子产品调试过程中,经常会遇到调试失败的情况,甚至可能出现一些致命故障,如通电后,烧熔断丝、冒烟、打火、漏电等。造成电路无法正常工作。故电子线路故障的分析与处理也是电子产品调试工作中经常会遇到的问题,通过对所遇到的实际问题的分析与处理,可培养我们独立分析问题和解决问题的能力。
调试过程中所遇到的故障有其自身的特点:由于故障机是新装配的整机产品,或没有使用过,或是还不成熟的新产品样机等原因,故障以焊接和装配故障为主;一般都是机内故障,基本上不会出现几外及使用不当造成的人为故障,更不会有元器件老化故障。对于新产品样机,则可能存在特有的设计缺陷或元器件参数不合理的故障。故障的出现有一定的规律性,找出故障出现的规律,便能有效、快捷地检找和排除故障。
一般来说故障的原因主要有以下几种,焊接故障:如漏焊、虚焊、错焊、桥接等;装配故障:机械安装位置不当、错位、卡死等;电气连接错误:如集成块装反、二极管、晶体管的电极装错,其它有极性的元件(如电解电容)极性装反;元器件位置错误;漏装等;元器件失效:如集成电路损坏、晶体管击穿或元器件参数达不到要求;电路设计不当或元器件参数不合理造成的故障,这是样机特有的故障。这类故障查找出原因后,采用临时应急措施使产品的各项性能指标达到要求,并将结果写成样机调试报告,供设计生产部门参考。
五 整机调试过程中的故障处理的步骤
故障处理的步骤是先查找、分析出故障的原因,判断故障发生的部位,然后排除故障,最后对修复的整机的各项功能和性能进行全面检验。
故障处理一般可分为四步:观察,首先对被检查电路表面状况进行直接观察,从而发现问题,找出故障点。直接观察可在不通电和通电两种情况下进行。对于新安装的电路,首先要在不通电的情况下,认真检查电路是否有元件用错、元件引脚接错、元器件损坏、掉线、断线,有没有接触不良等现象。对于不能正常工作的电路,应在不通电的情况下观察被检修电路的表面,可能会发现变压器、电阻烧焦,晶体管断极,电容漏油,元器件脱焊,插件接触不良等。
参考文献
[1] 胡明主编.电子器件导论.北京理工大学出版社,1998年
[2] 杨颂华主编.数字电子技术基础.西安电子科技大学出版,1997年
[3] 刘华东主编.单片机原理与应用.电子工业出版社,2003年
篇10
文章编号:1004-373X(2011)20-0181-03
Design for Circuit of 5 Frequency Divider in USB3.0
ZHAO Guang, GONG Yu-bin
(School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China)
Abstract: A new divided-by-5 frequency divider based on current mode logic (CML) and true single phase clock (TSPC) are designed and implemented by using 65 nm CMOS process technology. The divider is applied to the clock frequency conversion in physical layer of USB3.0, and the output signal has a 50% duty cycle. Simulation result show the divider based on CML can work in 8 GHz frequency steadily and it's power dissipation is 1.9 mW; the divider based on TSPC can work in 10 GHz frequency steadily and it's power dissipation is 0.2 mW. Both dividers can satisfy the standard of USB3.0.
Keywords: frequency divider;trigger; current mode logic (CML); logic of single phase clock (TSPC)
0 引 言
USB 3.0是通用串行总线(Universal Serial Bus)的最新规范,该规范由英特尔等大公司发起,其最高传输速度可达5 Gb/s[1],并且兼容USB 2.0及以下接口标准。物理层的并串/串并转换电路是USB 3.0的重要组成部分,在发送端将经过8 b/10 b编码的10位并行数据转换成串行数据并传输到驱动电路,在接收端将经过CDR(Clock and Data Recovery)恢复出来的串行数据转换成10位并行数据。在并串/串并转换过程中,同时存在着时钟频率的转换,若串行数据采用时钟上下沿双沿输出[2],则串行数据传输频率降低一半,并行传输时钟为串行传输时钟的1/5,即五分频。
本文设计了基于65 nm工艺的五分频器,产生┮桓稣伎毡任50%的五分频信号。对该电路的设计不以追求高速度为惟一目标[3],而是在满足USB 3.0协议所要求的频率范围基础上,尽可能的降低功耗。
1 电路原理与结构
采用基于D触发器结构的五分频器逻辑框图如┩1所示。图1由3个D触发器和少量逻辑门构成,采用了同步工作模式,其原理是由吞脉冲计数原理产生2个占空比不同的五分频信号A和B,然后对时钟信号CLK,A和B进行逻辑运算得到占空比为50%的五分频信号CLK/5,其计数过程如表1所示,从表1的计数过程可知,分频后的时钟CLK/5的周期是输入时钟CLK的5倍,由此实现了五分频并且其占空比为50%。
图1 5分频电路逻辑结构
2 分频器基本电路的设计
触发器是整个分频器中最基本的结构,只有设计好一个快速的触发器,才能实现一个高频率的分频器[4],目前用于分频电路的触发器电路主要有3种。第1种是CML(Current Mode logic)电路,是由ECL(Emitter Couple Logic)电路演变来的,相比传统的静态分频器,由于电路的摆幅较小,因而电路的工作速度快;第2种是TSPC(True Single Phase Clock)电路,采用单相时钟,大大减少了电路的元件数目,从而提高电路工作速度,同时这种电路功耗极低;第3种是注锁式(Injected-Locked)电路,由于要使用电感,因而它的体积过大且工艺难度高,成本较高,很少被广泛采用。本文分别采用CML电路和TSPC电路构成分频电路,并对两者的速度和功耗等进行比较。
CML电路构成的触发器如图2所示,由图中可以看出,该触发器由2个CML结构锁存器组成,它们构成主从型结构,每个锁存器都要经过2个阶段:跟踪阶段和保持阶段。当主锁存器跟踪输入信号时,从锁存器处于锁存保持阶段,然后交替。其中N13,N14为尾电流管,偏置电压V_bias使N13,N14管工作在饱和状态,充当恒流源的作用。dp和dn是由输入信号d经传输门和反相器产生的一对互补差分信号,ck_m和ck_p是由输入时钟信号clk经传输门和反相器产生的一对互补时钟差分信号。主锁存器工作状态为:当ck_m为高电平时,N5管导通,N6管关闭,此时N1,N2管工作在差分状态,将输入信号dp,dn采入。当ck_p为高电平时,N6管导通,N5管关闭,此时N3,N4使电路维持在锁存状态,从锁存器工作状态恰好与主锁存器工作状态相反。设计中在触发器输出端q,qn之间加了2个反相器从而在q,qn之间形成正反馈,增强了电路的输出驱动能力。工作时,电路的尾电流应当足够大,有利于提高电路工作频率和输出信号的摆幅。
TSPC电路构成的触发器如图3所示,由图中可以看出,该电路由四级反相器构成,上升沿触发,当CK为低电平,输入反相器在节点X上采样反向d输入,┑2级反相器处于保持状态,节点Y预充电至Vdd,第三级反相器处于保持状态,时钟上升沿来时,第二级反相器求值,Y的电平值发生变化,时钟ck为高电平时,节点Y的值传送到输出q,该触发器的延时为4个反相器的传播延时,由于电路中元件数目很少,而且采用动态逻辑,因此功耗极低。
3 仿真结果与分析
采用Cadence 公司的spectre 仿真器对设计的分频器分别仿真,仿真电源电压为1 V,结果表明:在典型工艺参数条件下[5],基于CML电路结构的五分频器最大工作频率是8 GHz,最小工作频率是1 kHz,当工作在8 GHz时,功耗为1.7 mW,输出信号占空比为49.76%;基于TSPC电路结构的五分频器最大工作频率是10 GHz,最小工作频率是10 MHz,当工作在10 GHz时,功耗采用10 ns内的平均功耗,功耗为0.2 mW,输出信号占空比为49.92%。由于是单端输入输出,基于TSPC电路结构的分频器抗噪声能力较弱。最高工作频率下的仿真结果如图4,图5所示。
对于不同频率的分频器。通常采用FOM值来比较其性能,分频器的FOM值定义为:
ИFOM=fmax/PИ
式中:fmax是分频器的最高工作频率;P是分频器在最高工作频率下的功耗,表2为本文设计的分频器和其他文献中介绍的分频器作对比,所有的分频器均采用CMOS工艺,对比表明本文设计的5分频器性能较优,在65 nm工艺下具有明显的功耗低优势,尤其是采用TSPC电路结构的分频器,功耗极低。
4 结 语
本文基于65 nm工艺分别采用CML电路结构和TSPC电路结构设计了1个五分频器,采用spectre仿真表明,采用CML结构的分频器最高工作频率8 GHz,功耗1.7 mW,输出信号占空比49.76%;采用TSPC电路结构分频器最高工作频率10 GHz,功耗为0.2 mW,输出信号占空比49.91%, 由于采用单端输入输出, 所以采用TSPC结构的分频器抗噪声能力较弱。输出信号占空比为50%是本文一大特点,2种结构的分频器工作频率完全覆盖了USB 3.0协议所要求的频率范围,满足协议要求。
参考文献
[1]Intel Corporation.Universal serial bus 3.0 specification R1.0 \.USA: Intel, 2008.
[2]欧阳干,李少青,王建军.一种新型的高速5分频电路设计[C].桂林:中国计算机协会第十届计算机工程与工艺学术年会,2006.
[3]葛洪利,徐太龙,孟坚,等.1.2 V 6 GHz 1.19 mW 32/33前置分频器的设计[J].电子技术,2010,47(3):76-77.
[4]周春元,李国林.基于90 nm CMOS工艺的12 GHz二分频器[J].微电子学,2008,38(5):670-673.
[5]高清运,李学初.CMOS 高性能奇数分频器的设计[J].电子学报,2004,32(5):869-870.
[6]蒋东铭,黄风义,严菲,等.0.18 μm CMOS工艺高速双模分频器设计[C].贵阳:全国第十一届微波集成电路与移动通信学术年会,2006.
[7]刑立冬,朱刘松,蒋林.0.18 μm CMOS 1∶20分频器电路设计[J].西安邮电学报,2008,13(3):1-4.
[8]赵旭昊,安凌凌,孟令琴.0.18 μm 12 GHz CMOS八分频电路设计[J].现代雷达,2007,29(8):109-111.
[9]LIANG Bang-li, CHEN Dian-yong, WANG BO, et al. A 43 GHz static frequency divider in 0.13 um standard CMOS \// Proceedings of CCECE/CCGEI. Canada: CCECE, 2008: 110-118.
篇11
Li yan
Anhui vocational and technical college
Abstract: Aim: According to EWB's main features, function and electrical and electronic courses teaching on the current characteristics of China's vocational education classes conducted in-depth investigation and for EWB in the teaching experiment, obtained over the application EWB software in teaching conclusion of the traditional teaching methods. Through teaching practice shows, teaching courses in power in the importance of the introduction of computer-assisted instruction.
Key words: EWB;Computer-Aided Instruction;Simulation;Teaching methods;
1、引言
目前,计算机辅助教学正逐步走进学校,走进课堂,以其鲜明的教学特点,丰富的教学内容,形象生动的教学形式,促进教育技术的信息化,并逐步打破‘一块黑板、一支粉笔’的传统教法,改变了以往那种以教师为中心的传统教育模式,将教师与学生的主观能动性充分调动起来,构建起新型的教学模式。《电子技术基础》是一门实践性很强的技术基础课,若在学习理论知识的同时,辅助实验演示或实验,可以起到事半功倍的效果。传统的教学方式是:先由老师传授理论知识,然后安排一定数量的实验让学生实践巩固,虽然也能达到教学目的,但效率较低。随着计算机技术的发展,EWB软件的出现,使实验室进入课堂成为可能。利用EWB辅助电子技术课程的实验教学,不仅可以弥补实验仪器、元器件缺乏带来的不足,而且排除了原材料消耗和仪器损坏等因素,可以帮助学生更快、更好地掌握课堂讲述的内容,加深对概念、原理的理解,弥补课堂理论教学的不足,而且通过电路仿真,可以熟悉常用电子仪器的测量方法,进一步培养学生的综合分析能力、排除故障能力和开发、创新能力。课堂上可以随时演示各种实验,展示实验结果,根据需要随意控制,使实验结果反复重现;也可以由学生自己动手,通过实验得到结果,大家一起讨论。这样的教学模式生动形象,激发学生的学习兴趣,加深学生的理解和记忆,提高教学效率。
2、EWB软件功能与特点
电子工作平台是一种在国内外高校和电子技术界广为应用的优秀计算机仿真设计软件,被誉为“计算机里的电子实验室”。该软件以Pspice内核,由加拿大:Interactive Image Technologies 公司研制开发。具有界面直观、操作方便等优点,创建电路、选用元件和测试仪器等均可以直接从屏幕图形中选取,而且测试仪器与实物外形基本相似。电子工作平台 EWB的设计试验工作区好像一块“面包板”(如图1),在上面可建立各种电路进行仿真实验。平台上存放着7种虚拟仪器:数字万用表、示波器、函数信号发生器、波特图仪、逻辑分析仪、字信号发生器,还有可进行逻辑表达式和逻辑电路图相互转换的逻辑转换仪。这些虚拟仪器随时可以拖放到工作区对电路进行测试,并直接显示有关数据或波形。EWB有数十个元器件库,可为用户提供常用的信号源、电阻电容、门电路、各种集成电路和一些
指示部件、控制部件等。基本EWB的元器件库不仅提供了数千种电路元器件供选用,而且还提供了各种元器件的理想值,因此,仿真的结果就是该电路的理论值,这对于验证电路的原理和电子类课程的教学与实验极为方便。
电子工作平台为用户造就了一个集成一体化的设计试验环境,建立电路、实验分析和结果输出在一个集成菜单系统中可全部完成。该软件的分析功能十分强大,可进行直流工作点分析、暂态和稳态分析,还可以进行傅立叶变换分析、噪声及失真度分析、参数扫描和温度扫描分析、直流和交流灵敏度分析、零极点和蒙特卡罗等多项分析。
3、EWB在教学中的应用
3.1、进行教学演示,加深理论理解
在电子类课程的教学中,有了EWB仿真工作平台,在多媒体教室里结合PPT课件,老师就可以稻方便地进行教学演示,使学生能清楚地观察到电路工作情况,了解不同结构的电路功能、元件参数改变对电路工作性能的影响及方便地改变测试点。例如,一个简单的RC桥式振荡电路(如图2),电路振荡的条件无外乎两个:一要保证相位平衡;二要保证幅值平衡。其中第一个条件容易满足,只要电路构成正反馈即可,电路直观,学生较易理解。但是第二个条件(AF≥1,即电路要求电阻R2和R1的取值应满足R2≥2R1的关系)要想解释清楚,必须要进行繁琐的公式推导,也很难从理论上讲清楚振荡电路中放大器的要求、电路参数的变化对输出振荡信号的性能的影响。只要通过改变图中R1和R2的值,在面板中观察信号波形,将这些不易理解的内容形象地展现在学生面前,教学效果大大增强。
3.2、先做仿真实验,再做传统实验
目前大多数学校现有实验室的管理基本上是封闭式的,实验室仅仅是在开实验课时使用,其余时间基本处于闲置状态,学生不能自由地进入实验室。加上实验室投入不够,实验设备老化,实验技术落后,跟不上专业发展的需求。实验仍处于验证性阶段,造成的结果只能是从书本到书本,做几个简单的实验只不过是应付教学的需要,把书本上抽象符号物理化、实物化而已,这对培养学生的实际动手能力十分不利。
为了解决这种现状,我们利用EWB对电工电子课程实验进行了改革,学生在实际动手进入真实环境实验之前,先进入计算中心的EDA机房,在EWB仿真环境中先模拟实验,要求自己搭建电路、调试电路、改变参数、假想故障、观察结果并进行分析,之后再去做实物实验,尽管与模拟仿真有所差别,但学生无论是从理论上,还是对故障的分析上都有了质的飞跃,实验成功的效率比以往高出许多,实验损耗大大降低。
3.3、应用于课程设计
在实际教学中,为了加强学生的综合实践能力,有不少专业都有一周的课程设计。课程设计要求学生根据课题的要求自行设计电路,再进行实际制作和调试。在实际操作中,往往因为元器件有限,给了学生诸多的限制。而且,学生设计出自己的电路后,只有制作出电路板后才能知道自己设计的电路是否可行。甚至要经过多次调试才有可能成功,既浪费了时间,又浪费了材料。如果运用EWB软件进行课程设计,一直到时调试完毕都在计算机上进行,待调试成功后(图3给出的是电子技术课程设计中的交通灯电路),再制作出电路板。即使方案有误,也可推倒重来,非常方便。这样的训练有助于提高学生的动手、观察、思维、创新等诸多方面的能力。
图3 交通灯仿真电路设计
4、结束语
4.1.由于EWB的电路形式、测试方法都十分贴近真实的实验,形象直观,学得容易且有兴趣,学生真正地感受到现代计算机技术带给人们的鼓舞和激励。确实是一种行之有效的现代化教学辅助手段。
4.2.使用EWB,即可克服实验元器件、品种、规格、数量上不足的限制,避免了使用中元件、仪器损坏的不利因素,又可通过验证、测试、设计、纠错和创新等不同形式的针对性训练,培养学生分析、应用和创新能力,可以实现实验以学生为中心的开放模式。
4.3.EWB不能完全代替实验教学,因此要精心策划好哪些内容用计算机仿真解决,哪些内容由实验室完成,将各个环节统一规划,合理安排,奇妙配合,才能取得最佳的教学效果。
参考文献:
[1]秦曾煌.电工学[M].北京:高等教育出版社,1999.
[2]冯春杨等.谈高职教育中的多媒体教学[J].辽宁高职学报,2004,(4):155-156.
[3]孙怀东.开展电子技术虚拟实验的做法与体会[J].实验室研究与探索,2006.10,Vol25,(10).
[4]刘雅琴.利用虚拟电子工作台进行电工和电子实验教学初探[J].长春大学学报,2007.6,Vol17,(3).
[5]冼凯仪.基于EWB软件设计电子技术电路[J].仪器仪表与分析监测,2006,(03)
[6]战崇玉.仿真软件EWB在电子测量技术中的应用[J].电子制作,2007,(02).
篇12
电工学是一门非电专业的技术基础课程,其基本内容是电工技术和电子技术,主要任务是为学生学习专业知识和从事工程技术工作打好基础,并使他们受到必要的基本技能的训练。集成运算放大器(简称集成运放)是模拟电子技术中的重要器件,是几乎目前所有的电子设备中都要用到的基本器件。集成运放是电工学中的重点知识,且种类繁多,从而对课堂教学提出了较高的要求。本文结合电工学课程教学实践,探讨基尔霍夫电流定律(简称KCL)在集成运放课程教学中的应用。
一、集成运放
运算放大器(简称运放)是一种直流耦合、差模(差动模式)输入、通常为单端输出的高增益电压放大器,因为刚开始主要用于加法、减法等模拟运算电路中,因而得名。集成运算放大器(简称集成运放)是用集成电路工艺制成的运算放大器,与分立元件组成的放大电路相比,集成运放具有体积小、质量轻、功耗低、工作可靠、安装方便、价格便宜等众多优势,因而在模拟运算、信号处理等领域都有着广泛的用途。虚短、虚断是模拟电路中理想集成运放的两个重要概念。集成运放工作在线性区时,由于运放的开环电压放大倍数很大,运放的差模输入电压通常不足1mV,可以认为两个输入端的电位相等u+=u-,即反相与同相输入端之间相当于短路,但事实上并没有短路,称为“虚短”;由于运放的差模输入电阻很大,一般集成运放的输入电阻都在1MΩ以上,因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流,故通常认为反相与同相输入端之间相当于断路,i+=i-≈0,但事实上并没有断路,称为“虚断”。
二、基尔霍夫电流定律
基尔霍夫定律概括了电路中电流和电压分别遵循的基本规律,是分析和计算电路的基本依据。基尔霍夫电流定律(简称KCL)是用来确定连接在同一结点上的各支路电流间关系的。由于电流的连续性,电路中任何一点(包括结点在内)均不能堆积电荷。因此,在任一瞬间,流入某一结点的电流之和应该等于由该结点流出的电流之和。
三、利用基尔霍夫电流定律分析运算电路
本论文基于秦曾煌主编的第七版《电工学》教材[1],从基尔霍夫电流定律(KCL)出发,分析了反相比例、同相比例、加法、减法等四种由集成运放组成的运算电路,均采用相同的电路分析步骤:(1)应用KCL和虚断条件i+=i-≈0列结点电流方程;(2)应用欧姆定律将电流方程转换成电压方程;(3)应用虚短条件u+=u-简化电压方程;(4)得到输出电压u■和输入电压u1二者之间的关系。
(一)反相比例运算电路
反相比例运算电路如图1所示,输入信号u1经输入端电阻R1接到反相输入端,而同相输入端通过电阻R2接地,反馈电阻RF连接在输出端和反相输入端之间。
根据i+=i-≈0,可以得到结点a处的电流关系:iI=iF,根据欧姆定律可以得到:
■=■,
上式中除了输入电压u■和输出电压u■之外,还有一个未知量u■,根据u■=u+=-i+R2=0,可以将上式简化为:
■=■,
即可得到输出电压u■和输入电压u■二者之间的关系:
u■=-■uI。
(二)同相比例运算电路
同相比例运算电路如图2所示,输入信号u■经电阻R2接到同相输入端u+,而反相输入端通过输入端电阻R1接地,反馈电阻RF连接在输出端和反相输入端之间。
根据i+=i-≈0,可以得到结点a处的电流关系:iI=iF,根据欧姆定律可以得到:
■=■,
上式中除了输出电压u■之外,还有一个未知量u■,根据u■=u+=u■-i+R2=u■,可以将上式简化为:
■=■,
即可得到输出电压u■和输入电压u■二者之间的关系:
u■=1+■u■。
(三)加法运算电路
反相加法运算电路如图3所示,输入信号u■1、u■2分别经输入端电阻R11、R12接到反相输入端,而同相输入端通过R2接地,反馈电阻RF连接在输出端和反相输入端之间。
根据i+=i-≈0,可以得到结点a处的电流关系:i■1+i■2=iF,根据欧姆定律可以得到:
■+■=■,
上式中除了输入电压u■1、u■2和输出电压u■之外,还有一个未知量u■,根据u■=u+=-i+R2=0,可以将上式简化为:
■+■=■,
即可得到输出电压u■和输入电压u■1、u■2二者之间的关系:
u■=-■u■+■u■。
(四)减法运算电路
减法运算电路如图4所示,输入信号u■经输入端电阻R1接到反相输入端,u■经电阻R2、R3接到同相输入端,反馈电阻RF连接在输出端和反相输入端之间。
根据i+=i-≈0,可以得到结点a处的电流关系:iI=iF,根据欧姆定律可以得到:
■=■,
上式中除了输入电压u■1和输出电压u■之外,还有一个未知量u■,u■和u■之间满足关系:u■=u+=■u■,
即可得到输出电压u■和输入电压u■1、u■二者之间的关系:u■=-■u■+1+■u■。
四、结论
综上所述,本文从基尔霍夫电流定律(KCL)出发,分析了反相比例、同相比例、加法、减法等四种由集成运放组成的运算电路,该方法具有简单可行、可操作性强等优点。此外,KCL还可以应用在基本放大电路的动态分析中,例如输入、输出电阻。实践证明,该方法可以提高课堂教学效果和学生的学习兴趣,调动学生的主观能动性,学生评价较好。
参考文献:
篇13
电子产品装配完成之后,必须通过调试才能达到规定的技术要求。装配工作仅仅是把电子元器件按照电路要求连接起来,由于电路设计的近似性、元器件的离散性,在装配过程中产生的各种参数的影响,使整机电路的各项技术指标达不到设计要求,因此,在电子产品的生产过程中,调试是一个非常重要的环节。调试既是保证并实现电子设备功能和质量的重要工序,又是发现电子设备的设计、工艺缺陷和不足的重要环节。
2.电子产品调试设备与内容
2.1 电子产品调试的仪器选用原则
(1)在保证产品调整、测试性能指标范围前提下,应选用要求低、结构简单、通用性强的仪器仪表,这样既可以降低生产成本,又可操作简单,提高调整、测试效率。
(2)测量仪器的工作误差应远小于被测参数所要求的误差,一般误差要求仪器误差小于被测参数要求的1/10。
(3)仪器的测量范围和灵敏度,应符合被测电量的数值范围。
(4)调试仪器量程的选择,应满足测量精度的要求。指针式仪表选择量程时,应使被测量值指在满刻度的2/3以上的位置;数字式仪表选择量程时,应使其测量值的有效数字位数尽量等于所指示的数字位数。
(5)测试仪器输入阻抗的选择,要求在接入被测电路后,应不改变被测电路的工作状态,或者接入电路后所产生的测量误差在允许范围内。
(6)测试仪器的测量频率范围(或频率响应),应符合被测电量的频率范围(或频率响应)。
2.2 电子产品的调试设备配置方案
常规的电子产品调试可配置下列仪器设备:
(1)信号发生器,用于各种测试信号,根据工作性质选频率及档次。
(2)电压测量仪器,用电压表进行电压测量时,要根据被测信号的特点和被测电路的状态正确选择电压表。
(3)示波器,通过将被测信号的时间波形显示出来的同时,实现对被测信号的时间参数和电平参数的测量,具有直观性。
(4)频率测量仪器,如扫频测量仪,用于测量网络(电路)的频率特性。
(5)信号分析仪器,用于测量信号非线性失真度、信号频谱特性等的仪器。
2.3 特定电子产品所需要的检测仪器
对于特定电子产品的调试,又可分为两种情况:
(1)小批量多品种,一般以通用或专用仪器组合,再加上少量自制接口、辅助电路构成,即可以完成对产品的调试工作。
(2)大批量生产,应以专用和自制设备为主,强调高效和操作简单。
专用调试仪器是为一个或几个电子产品进行调试而专门设计的,其功能单一,可检测产品的一项或几项参数,如电冰箱测漏仪等。
通用调试仪器是针对电子设备的一项电参数或多项电参数的测试而设计的,可检测多种产品的参数,例如示波器、函数发生器等。
2.4 电子产品的调试内容
调试工作包括调整和测试两个部分。调整主要是指对电路参数的调整。即对整机内可调元、器件及电气指标有关的调谐系统、机械传动部分进行调整,使之达到预定的功能和性能要求。测试是在调整的基础上,对整机的各项技术指标进行系统地测试,使电子产品各项技术指标符合规定的要求。调试工作的内容有以下几点:
(1)明确电子产品调试的目的和要求。
(2)正确合理地选择和使用测试仪器仪表。
(3)按照调试工艺对电子产品进行调整和测试。
(4)运用电路和元器件的基础理论知识去分析和排队调试中出现的故障。
(5)对调试数据进行分析和处理。
(6)编写调试工作报告,提出改进意见。
调试是对装配技术的总检查,装配质量越高,调试的直通率就越高,各种装配缺陷和错误都会在调度中暴露。调试又是对设计工作的检验,凡是在设计时考虑不周或存在工艺缺陷的地方,都可以通过调试来发现,并为改进和完善产品质量提供依据。
简单的小型整机,比如我们后续要调试的半导体收音机,调试工作简便,一般在装配完成之后,可直接进行整机调试。而复杂的整机,调试工作较为繁重,通常先对单元板或分机进行调试,达到要求后,进行总装,最后进行整机总调。
调试工作一般在装配车间进行,严格按照调试工艺文件进行调试。比较复杂的大型产品,根据设计要求,可在生产厂进行部分调试工作或粗调,然后,在安装场地或试验基地,按照技术的要求进行最后安装及全面调试工作。
2.5 电子产品的调试程序
调试程序大致如下:
(1)通电前的检查工作
对照原理图对装接好的整机再次进行检查,检查插件是否正确,焊接是否虚焊和短路,各仪器连接及工作状态是否正确,从而有效地减小元件损坏,提高调试效率。首次调试,还要检查各仪器能否正常工作,验证其精确度。
(2)通电检查
先置电源开关于“关”位置,检查电源变换开关是否符合要求(是交流220V还是110V)、熔丝是否装入,输入电压是否正确,然后插上电源开关插头,打开电源开关通电。
接通电源后,电源指示灯亮,此时应注意有无放电、打火、冒烟现象,有无异常气味,手摸电源变压器有无过热现象,若有这些异常现象,应立即停电检查,直到排除故障后方能重新通电。另外,还应检查各种保险、开关、控制系统是否起作用,各种风冷水准系统能否正常工作。
(3)电源调试
电子产品中大都具有电源电路,调试工作首先要进行电源部分的调试,才能顺利进行其他项目的调试。电源调试通常分为两个步骤:
(a)电源空载粗调。电源电路的调试,通常先在空载状态下进行,切断该电源的一切负载进行调试。其目的是避免因电源电路未经调试而加载,引起部分元器件的损坏。
(b)电源加负载时的细调。在粗调正常的情况下,加上额定负载,再测量各项性能指标,观察是否符合额定的设计要求,当达到要求的最佳值时,选定有关调试元件,锁定有关电位器等调整元器件,使电源电路具有加载时所需的最佳功能状态。
3.电子产品的检测方法
3.1 观察法
观察法是通过人感官的感觉对故障原因进行判断的方法。这是一种最简单、最安全的方法,也是各种仪器设备通用的检测过程的第一步。观察法又可分为静态观察法和动态观察法两种。
3.1.1 静态观察法
静态观察法又称为不通电观察法。静态观察,要先外后内,循序渐进。在不通电的情况下,仪器设备面板上的开关、旋钮、刻度盘、插口、接线柱、探测器、指示电表、显示装置、电源插线和熔丝管插塞等都可以用观察法来判断有无故障。对仪器的内部元器件、零部件、插座、电路连线、电源变压器和排气风扇等也可以用观察法来判断有无故障。观察元器件有无烧焦、变色、漏液、发霉、击穿、松脱、开焊和短路等现象,一经发现,应立即予以排除,通常就能修复设备。
3.1.2 动态观察法
动态观察法也称通电观察法。即在设备通电的情况下凭感官的感觉对故障部位及原因进行判断,是查找故障的重要检测方法。通电观察法特别适用于检查元器件跳火、冒烟、有异味、烧熔丝等故障。为了防止故障的扩大,以及便于反复观察,通常要采用逐步加压法来进行通电观察。
3.2 测量电阻法
测量电阻法是在设备不通电的情况下,利用万用表的电阻档对设备进行检查,测量电子元器件或电路各点之间电阻值来判断故障的方法。
对电路中的晶体管、场效应晶体管、开关、接插件、导线、印制板导电图形的通断及电阻器的变质,电容器短路,电感线圈断路等故障都可以用测量电阻法进行判断。维修时,先采用“测量电阻法”,对有疑问的电路元器件进行电阻检测,可以直接发现损坏和变值的元器件,对元器件和导线虚焊等故障也是非常有效而且快捷的检测方法。
采用“测量电阻法”时,可以用万用表的Rx1档检测通路电阻,必要时应将被测点用小刀刮干净后再进行检测,以防止因接触电阻过大造成错误判断。
采用“测量电阻法”时应注意以下情况:
(1)不能在仪器设备接退电源的情况下检测各种电阻。
(2)检测电容器时应先对电容进行放电,然后脱开电容的一端再进行检测。
(3)测量电阻元件时,如电阻和其他电路连通的情况下,应脱开被测电阻的一端,然后再进行检测。
(4)对于电解电容和晶体管的检测,应注意测试表笔的极性,不能搞错。
(5)万用表电阻档的档位选择要适当,否则不但检测结果不正确,甚至会损坏被测元器件。
3.3 测量电压法
测量电压法是指用万用表的电压档测量被修仪器的各部分电路电压、元器件的工作电压并与设备正常运行时的电压值进行比较,以判断故障所在部位的检测方法。
检查电子设备的交流供电电源电压和内部的直流电源电压是否正常,是分析故障原因的基础,所以在检修电子仪器设备时,应先测量电源电压,往往会发现问题,查出故障。
对于已确定电路故障的部位,也需要进一步测量应电路中的晶体管、集成电路等各管脚的工作电压,或测量电路中主要节点的电压,看数据是否正常,也有利于发现故障和分析故障原因。因此,当被修仪器设备的技术说明书呀,附有电路工作电压数据表、电子元器件引脚的对地电压值、电路上重要节点的电压值等维修资料时,应先采用测量电压法进行检测。
3.4 波形观察法
对于直流状态正常而交流状态不正常的电子设备,采用示波器观察信号通路各点的波形,以此来判断电路中各元器件是否损坏和变质是最直观、最有效的故障检测方法。
波形法能够检测电路的动态是否正常。用波形法检测振荡电路时不需要外加任何信号,而检查放大、整形、变频、调制和检波等有源电路时,则需要把信号源的标准信号反馈到电路的输入端。通过波形法检查多级放大器的增益下降、波形失真、波形参数等找出故障原因。用扫频仪来观察频率特性也可以归属为波形法。
应用波形观察法要注意:
(1)对电路高压和大幅度脉冲部位一定要注意不能超过示波器的允许电压范围,必要进采用高压探头或对电路观测点采用分压取样等措施。
(2)示波器接入电路时本身输入阻抗对电路也有一定的影响,特别在测量脉冲电路时,要采用有补偿作用的10:1探头,否则观测的波形与实际不符。
3.5 替代法
替代法是指对可疑的元器件、部件、插板、插件等用同类型的部件通过替换来查找故障的检测方法。
在检修电子仪器设备时,如果怀疑某个元器件有问题但又不能通过检测给出明确的判断,就可以使用与被怀疑器件同型号的元器件,暂时替代有疑问的元器件。若设备的故障现象消失,说明被替代元器件有问题。若替换的是某一个部件或某一块电路板,则需要再进一步检查,以确定故障的原因和元器件。替代法对于缩小检测范围和确定元器件的好坏很有效果,特别是对于结构复杂的电子仪器设备进行检查时最为有效。
替代法比较适用于电容器失效及参数下降、晶体管性能变坏、电阻器变值及电感线圈Q值下降等故障的排除。
随着电子仪器设备所用元器件的集成度增大,智能化仪器设备迅速增多,使用替代法进行检查越来越具有重要的地位。在进行具体操作时,要脱开有疑问的有源元器件,使用好的元器件来替代,然后开机观察仪器的反应。对于开路有疑问的电阻和电容等元件,可使用好的元器件直接在板上进行并联焊接,以确定该元件的好坏。
在进行元器件替代后,若故障现象仍存在,说明被替代的元器件或单元部件没有问题,这也是确定某个元器件或某个部件正常的一种方法。
在进行替代元器件的过程中,要切断仪器设备的电源,严禁带电进行操作,以免发生危险。
3.6 信号注入法
信号注入法是将一定频率和幅度的信号逐级输入到被检测的电路中,或注入仪器设备到可能存在故障的有关电路中,然后利用自身的指示器或外接示波器、电压表等测出输出的波形或数据,作出逻辑判断的一种检测方法。在检测中哪一级没有通过信号,故障就在该级单元电路中。
对于本身不带信号产生电路或信号产生电路有故障的信号处理电器,采用信号注入法是有效的检测方法。
用信号注入法检测故障时有两种检测方法:
(1)顺向注入法,它是将信号从电路的输入端输入,然后用示波器、电压表逐级进行检测,测量出各级电路的输出波形和输出电压,从而判断出故障部位。
(2)逆向注入法,它是将信号从后级逐级往前输入,示波器、电压表接在输出端,从而查出故障部位。
在检测故障的过程中,有时只用一种方法不能解决问题,要根据具体情况采用不同的检测方法。无论采用哪种方法,都应遵循以下的顺序原则:先外后内、先粗后细、先易后、先常见后稀少。
4.电子产品静态调试
测量静态工作点就是测量各级直流工作电压和电流。
4.1 供电电源静态电压调试
电源电压是各级电路静态工作点是否正常的前提,若电源电压偏高或偏低都不能测量出准确的静态工作点。电源电压若可能有较大起伏,最好先不要接入电路,测量其空载和接入假负载时的电压,待电源电压输出正常后再接入电路。
4.2 晶体管静态工作点的调整
调整晶体管的静态工作点就是调整它的偏置电阻,使它的集电极电流达到电路设计要求的数值。调整一般是从最后一级开始,逐级往前进行。调试是要注意静态工作点的调整应在无信号输入时进行,特别是变频级,为避免产生误差,可采取临时短路振荡的措施。各级调整完毕后,接退所有各级的集电极电流检测点,即可用电流表检测整机静态电流。
集电极静态电流的测量方法有两种:
(1)直接测量法
把集电极焊接铜皮断开,然后串入万用表,用电流档测量其电流。
(2)间接测量法
通过测量晶体管集电极电阻或发射极电阻的电压,然后根据欧姆定律I=U/R,计算出集电极静态电流。
4.3 集成电路静态的调整
由于集成电路本身的特点,其“静态工作点”与晶体管不同,一般情况下,集成电路各脚对地电压反映了其内部工作状态是否正常,因此只要测量各脚对地电压值,与正常数值进行比较,就可判断其“工作点”是否正常。有时还需要对整个集成块的功耗进行测试,除判断其能否正常工作外,还能避免可能造成电路元器件的损坏,需要测量其静态工作电流。测量时可断开集成电路供电引脚铜皮,串入万用表,使用电流档来测量出电流值,计算所出耗散功率。若集成块用双电源供电(即正负电源),则应分别进行测量,得出总的耗散功率。
对于数字集成电路往往还要测量其输出电平的大小,来判断其性能的好坏。
模拟集成电路种类繁多,调整方法不一,以使用最广泛的集成运放为例,除一般直流电压测试外,使用中还要进行零位调整。
5.电子产品动态调试
5.1 测试电路动态工作电压
测试晶体管b、e、c极和集成电路各引脚对地的动态工作电压,动态电压与静态电压同样是判断电路是否正常工作的重要依据,例如有些振荡电路,当电路起振时测量Ube直流电压,万用表指针会出现反偏现象,利用这一点可判断振荡电路是否起振。
5.2 波形的观察与测试
波形的测试与调整是电子产品调试工作的一项重要内容。各种整机电路中都有波形产生、变换和传输的电路。通过对波形的观测来判断电路工作是否正常,已成为测试与维修中的主要方法。观察波形使用的仪器是示波器。通常观测的波形是电压波形,有时为了观察电流波形,可通过测量其限流电阻的电压,再转成电流的方法来测量或使用电流探头。
利用示波器进行调试的基本方法,是通过观测各级电路的输入端和输出端或某些点的信号波形,来确定各级电路工作是否正常。若电路对信号变换处理不符合技术要求的,则要通过调整电路元器件的参数,使其达到预定的技术要求。
这里需要注意的是,电路在调整过程中,相互之间是有影响的。例如在调整静态电流时,中点电位可能会发生变化,这就需要反复调整,以求达到最佳状态。
示波器不仅可以观察各种波形,而且还可以测试波形的各项参数,如幅度、周期、频率、相位、肪冲信号的前后沿时间、脉冲宽度以及调幅信号的调制等。
用示波器观测波形时,示波器上限频率应高于测试波形的频率。对于脉冲波形,示波器的上升时间还必须满足要求。
5.3 频率特性的测试与调整
频率特性的测试是整机测试中的一项主要内容,如收音机中频放大器频率特性测试的结果反映收音机选择性的好坏。电视机接收图像质量的好坏主要取决于高频调谐器及中放通道频率特性。所谓频率特性是指一个电路对于不同频率、相同幅度的输入信号(通常是电压)在输出端产生的响应。
测试电路频率特性的方法一般有两种:一是点频法(又称插点法),二是扫频法。
5.3.1 点频法
就是通过逐点测量一系列规定频率点上的网络增益(或衰减)来确定幅频特性曲线的方法。测试时宝石输入电压不变,逐点改变信号发生器的频率,并记录个点对应输出的数值。点频法的优点是准确度高,缺点是繁琐费时,而且可能因频率间隔不够密,儿漏掉被测频率中某些细节。
5.3.2 扫频法
利用一个扫频信号发生器取代了点频法中的正弦信号发生器,用示波器取代了点频法中的电压表而组成的。扫频测量法简单、速度快,可以实现频率特性测量的自动化。由于扫频信号的频率变化是连续,不会象点频法由于测量的频率点不够密而遗漏某些被测特性的细节。反映的是被测网络的动态特性。测量的准确度比点频法低。
6.结语
综上所述,我们即可对于电子设备等进行调试,通过调试过程,使电路的各项性能指标达到要求,使系统能够正常的工作。
参考文献
[1]李雪东.电子产品制造技术[M].北京:北京理工大学出版社,2011.
[2]王川,施亚齐,龙芬.电子测量技术与仪器[M].北京:北京理工大学出版社,2011.
[3]付桂翠.电子元器件使用可靠性保证[M].北京:国防工业出版社,2011.
[4]薛文,华慧明.电子元器件检测与使用速成[M].福建:福建科学技术出版社,2005.
[5]付桂翠,陈颖,张素娟.电子元器件可靠性技术教程[M].北京:北京航空航天大学出版社,2011.