在线客服

量子场论和量子力学关系实用13篇

引论:我们为您整理了13篇量子场论和量子力学关系范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

量子场论和量子力学关系

篇1

下图是目前物理学的四个“基本理论”所统治的区域,它是一个普遍的力学系统,用一个数学模型来描述物质、时间和空间,以及他们之间的关系。这四个“基本理论”是人类几百年来“纵向深入”所得到的四个核心物理模型。

一、经典力学(Classical Mechanics)

图中左下区域是“宏观低速”区域,称为经典力学(Classical Mechanics)领域,即最早的牛顿力学及其后续发展的拉格朗日力学,哈密顿力学等。在中学物理课程中主要涉及的部分是牛顿力学。这里基本的数学模型是:空间是最简单的欧几里得几何的三维空间,时间是另外一个和空间维完全无关的维度。物质是质点,或者是有限体积的质点集合(刚体,流体),或者是遍布全空间无限体积的质点集合(场,如电磁场)。质点在空间中的运动符合伽利略变换。

这个领域孕育了第一次工业革命和第二次工业革命。它的“纵向深入”突破点是麦克斯韦的电动力学,并由此导致量子力学和相对论力学领域的出现。

二、相对论力学(Relativistic Mechanics)

图中的右下区域是纵向深入到“宏观高速”的区域,即爱因斯坦的相对论力学(Relativistic Mechanics)领域。

这里基本的数学模型是:狭义相对论(Special Relativity)时空是闵可夫斯基四维时空,即一维时间和三维空间由光速不变原理紧密联系,组成一个平直的四维时空背景。广义相对论(General Relativity)的时空是黎曼时空,即一个弯曲的四维时空。相对论力学里物质依然是经典力学里的质点、体或场,但是它会直接影响时空背景。质点在四维时空中的运动符合洛仑兹变换。

这个模型揭示了时间和空间不再是经典力学中和物质运动独立无关的背景,而是与物质的质量、能量和运动紧密联系。

三、量子力学(Quantum Mechanics)

图中左上区域是纵向深入到“微观低速”的区域,即量子力学(Quantum Mechanics)的地盘。它的建立以普朗克、爱因斯坦、波尔、德布罗意等物理学家的工作为先导,以海森堡、薛定谔、狄拉克、泡利等物理学家的工作为主体。

这里基本的数学模型是:时空还是经典力学中欧几里得的三维空间加上独立的一维时间,物质运动还是符合伽利略变换,但物质本身却不再是质点或者质点的集合,而是分布在全空间的波函数。一切物理量的取值都要靠它与波函数在全空间的积分才能得到。

这个模型揭示了真实的微观物质不是只具备粒子性的质点,而是同时具有波动性,即分布在全空间的波。

这个领域是现代物理学最大的领域,它孕育了20世纪后半叶的高新技术产业革命,使人类全面步入信息时代。

四、量子场论(Quantum Field Theory)

图中右上区域便纵向深入到“微观高速”区域,即量子场论(Quantum Field Theory)领域。它是量子力学和狭义相对论的结合。从量子力学的几位创始人到标准模型的建立者,诸多20世纪物理学家们的工作完成了这个建立过程,其中包括杨振宁教授和李政道教授的贡献。

这里基本的数学模型是:物质的基本粒子是分布在完全的闵可夫斯基四维时空的波动场的激发态,场的基态是能量不为零的真空态。一个基本粒子的出现和消失(产生和湮灭)是它的场在该模式上的跃迁。场用量子化的拉格朗日密度来描述。

这个模型揭示了真实的物质不仅是量子力学中分布在全空间的波,还和狭义相对论中的时空背景紧密相连。

从各个区域所建立起来的基本数学模型来看,量子场论区域是目前描述自然界最精确的模型,量子力学区域是描述自然界的低速近似,相对论力学区域是描述自然界的宏观近似,经典力学是描述自然界的宏观低速近似(显然关系已经不大了)。

在这我们只能用“近似”两个字,因为人类在了解和认识自然界的过程中是一个不断深入的渐进的认识过程,一个不断积累的认识过程,这个过程将永远不断地有新的发现,就像我们观赏大自然的美景一样,没有终极,越看越美丽,越看越新奇。

横向世界

一、经典力学(Classical Mechanics)

经典力学模型应用到具体的物质运动形式上就可建立刚体力学、流体力学、声学,以及经典的光学、电学、热力学、磁学等学科。现在的物理学家已经很少涉及这个领域,因为在这个领域里基本的模型早已建立完毕并经受住了时间的考验,物理学家也早已把这个地盘交到工程师的手上了,研究的主流变成是对这些规律的应用,这个领域与人类日常生活关系最近。

对于有志于从事机械、建筑、汽车、航天、热能动力等专业的学子来说,牛顿力学和热力学等是必须要掌握的物理基础,这些物理基础引发了人类第一次工业革命。对于有志于从事电力、通讯、电子工程等专业的学子来说,经典电磁学和电动力学是必须要掌握的物理基础,这些基础引发了人类第二次工业革命。

学好这些基础,能让你轻快地进入到这些实用的领域中发展。

二、相对论力学(Relativistic Mechanics)

相对论力学模型应用到具体的物质运动形式上就可建立天体物理学、宇宙学等学科方向,研究宇宙大尺度物理现象,如引力等,从业人数在物理学界占较小的部分。

对于有志于研究天文学和恒星、地外行星、黑洞等各种天体以及宇宙奥秘的学子来说,这个领域便是其归宿。这个领域的实验主要以望远镜观测为主。相对论力学领域是人类认识宇宙和了解宇宙的最前沿,它是人类了解太空的一扇窗口,但是离人类日常生活较远。工作单位一般是各个天文台、大型的地面观测站和太空观测站等科研部门。

三、量子力学(Quantum Mechanics)

量子力学模型应用到具体的物质运动形式上就可建立原子物理学、分子物理学、量子光学、量子电子学,以及凝聚态物理学等学科。物理学家中在这个领域的人数最多,仅凝聚态物理专业的人数就要占所有物理学家的三分之一以上,是物理学最大的分支。保守估计以量子力学为基础理论的这个区域中的物理学家人数应该超过所有物理学家总人数的一半。近十年的诺贝尔物理学奖有6次颁给了这个领域的科学家。

这个领域的特点是基础理论模型完善,计算方便。实验规模小,可在实验室桌面上进行。理论和实验课题数量多且分散,而且作为研究物质结构的基础领域,和化学与生物学等其他学科联系紧密,因此它横向扩张的速度最快,成果也远多于物理学其他三个区域。

这个领域孕育了20世纪的现代科技革命,如半导体元件的发明、激光器的诞生、磁存储介质、液晶,以及最热门的纳米材料、超导体等都是拜他它所赐。因此这个领域不但适合想从事物理研究的学子加入,而且也适合想从事微电子学、纳米材料、量子信息技术等新兴专业的学子们学习。

四、量子场论(Quantum Field Theory)

量子场论模型应用到具体的物质运动形式上建立了量子电动力学(QED),电弱统一理论,量子色动力学(QCD)等理论,作为粒子物理(高能物理)的基础理论,同时研究基本粒子的束缚态如重子、介子和原子核结构等。这个领域是向物质奥秘探索的最前沿,基本理论内容最深奥、计算难度大,但是横向扩张的工作很多。实验需要在大型的粒子加速器上进行,规模庞大,课题集中,成果多是十年磨一剑,因此进展缓慢。

对于有志于探索物理最前沿的学子来说,这个领域最适合,但更需要具备耐得住寂寞和世俗诱惑的能力。这个领域风光无限,魅力无限。

篇2

1 有效场论思想的提出分析

一般意义的有效场论指的是某一个研究领域事物内在机制理论问题,也就是用粒子物理学家话来说就是有效理论对于物理参数空间物理实体描述,从物理学看,很多物理学理论都是随着不断变化而形成了多样性,也就是同一物理实体中的粗放型和精致形理论,这就构成了物理学参数空间唯像学理论研究。不需要费心去寻找一个物理终极理论,只要能够恰当的描述一切现象就可以了,从本质上讲也就是说对于物理具有本身局限性,是反映物理世界信息模型问题。

为了能够很好协调量子力学和相对论之间量子场论,就应该考虑到二次量子化,也就是一种包含粒子生产的基本粒子问题,在数学中量子场论系统拥有无穷自由度,数学中对于理论有很多新的要求,对于重整化问题解释争论也是突出表现了场论思想提出,从历史发展来看,重整化理论是具有一定场论理论依据的。对于有效场论思想提出都有一定追溯作用。

从重整化方法发展历史看,有效思想在建立量子场论中是非常富有启发作用的,量子场论语言的作用是非常恰当描述依赖作用的,本质就是能够超级力量。有效理论思想可以很好推动量子场论深入发展,也就是说基础物理学家说的基础物理学问题,本质上就是高能物理学和低能物理学之间相互隔离和各个击破研究问题。如何划分物理现象标准能否跨度,形式随着精度分化不断变化,也就是在重整化基础上能够实现对于理论重整。能够就会出现很多处理重整化物理学理论发展的初始阶段是处理量子电动力学发散引进方法,对于物理学家首先应该引起截至作用,将发散部分吸收,然后再进行重新定义理论参数问题,在这个过程就会出现很多处理方法问题,重整方法从此就会成功开始。随着测试现象尺度变化物理学作用和结构也会发生变化,接着人们就会缓慢减小截至思想指导,运用重整化参数变化情况进行更深度分析和研究,有效的将参数和分数关系用数学方式描述出来。能够在群方程参数变化中,降低重整化的有限维子丛。有效的低能理论有别于高能的情形,不同的高能日量可能 会产生相同低能日量,事实上在数众多不同质量粒子共存体系中,系统能量远会小于粒子质量,这时质量扮演截至就可以近似重整化有效场论,质量的影响也会相互作用不可重整化,一种新的可重整化量子场论理论广泛应用自然会导致人们对于基础物理学看法,这种观点的转变结果是量子场论的标准模型问题。

2有效场论引发的争论问题

人们认为基础物理学研究宇宙物质基础结构和物质运动规律的学科,所以说近代自然科学追求的确定性和必然性,根据这个观点对于高能物理学享有的基础地位和粒子物理学的终极理论都是有一定领地的。从弱点理论到量子色动力学发展起来的标准模型,在基础物理研究中都具有里程碑意义和作用,根据标准模型可以看出,物质有夸克和轻子组成,他们之间相互作用可以用一个统一规场论来完成,量子场论这种进展就是重整化方法更加深入人心。

重整化概念对于标准模型哲学基础构成需要更加深入分析和研究,在理论早起时候,重整化的概念在处理微饶问题时,物理学家对于突现驾驶主要是纠缠于两种备选方案,就是前面提及到的还原论和反还原论述,分别指的是高能物理学和凝聚态物理学问题。粒子高能物理学的科学家以高能物理学基础来辩护,就是粒子物理学提升了人们对于物理世界的认识,引领人们一步步走到宇宙绝对性结构面前,在还原论中也有很多关键性词语,所以说凝聚物理学家工作和粒子物理学家工作是一样的基础性。

还原重整化概念建立的历史进行实证分析,确实是可以提供理论之间相关性依据问题,但是这种论证本身没有坚实基础。理论之间联系建立只是局限于特定语境,另外理论之间是否存在基础性问题,也只是局限于各种文化层次之间,理论是否具有一定基础性争论,将是未来人类文明发展的重要问题。也就是理论之间存在内在很多联系,反还原阶段基于突现事实理论之间联系,量子场确实恰当又方面的描述了特定精度物理现象问题。根本上依赖于特定语境中和物理相对应的世界,其中包括主观意向、理论背景和实验测量问题等,所以要不断结合各种综合要素进行分析和科学解释人类现象。

3结语

粒子物理中物理场论等多个理论之间相互竞争并存在很多现象,有效的微观世界信息,可以反映客观理论语境,这样就会避免工具主义无法解释参量问题,和实在主义经验数据问题,总之就是客观事物本身是非常丰富多彩和复杂多变的,一种语言描述复杂事物行不通,对于还原论和反还原论争论,问题不是一方压倒另一方,而是要相互之间能够互补,全面客观的把两者进行相互结合起来,做到最大限度的兼收并蓄、取长补短和综合统一。

参考文献:

[1] 王博涛,舒华英.基于自组织理论的信息系统演化研究[J];北京邮电大学学报(社会科学版),2006年01期.

[2] 林祯祺.从量子论到玻色-爱因斯坦统计[J];重庆师范大学学报(自然科学版),2006年04期.

篇3

2 拉格朗日量的特点

对于这种系统的量子化和正则对称性质的分析,目前已经有了比较完整的阐述[4]。从狄拉克对动力学齐次变量的分析开始,Bergmann等人阐述了约束和不变性关系。他们的研究为约束系统的量子化奠定了基础。Shanmugadhasan和Kamimura分别探究了奇异性对拉格朗日方程的影响和拉格朗日约束与哈密顿约束的关系。而Sudarshan和Mukunda等人,也曾经从数学的角度出发,分析了狄拉克括号的结构。现代物理学中的约束正则系统在现代量子场论中起到了很重要的作用。

3对拉格朗日量的分析

对于我们前面得到两个的拉氏量,我们不能采取传统或者简单的高阶微商拉氏量的量子化方法。因为这个拉氏量中含有矢势的一次项和二次项,是一个一般的二阶拉氏量。传统的正则量子化方法中,需要通过线性组合获得最大数目的第一类约束,这种方法在这里不能使用。因为通过这个方法获得的第一类约束形式可变,数目不能确定,会干扰我们在量子化中得到的结果。而一般的高阶微商场论的量子化方法是针对时间的高阶项进行的,与我们的拉格朗日量中含有的对矢势的二阶项有很大不同。通过正则动量的定义,我们可以得到系统的初级约束,然后我们根据初级约束的自洽性条件,可以得到与一般约束系统不同的次级约束。

篇4

1.对称美

由于物理学揭示了自然界物质的存在、构成、运用及其转化等规律的对称性而产生的美感,称为物理学的对称美。

物理学中的对称主要表现为时空对称、数学对称和抽象对称。

时空对称有空间对称、时间对称、时间和空间同时对称三种类型。时空对称表示物理现象在时空变换下的不变性。如杠杆的平衡、平面镜成像、磁体的两极、电荷的正负表现了物质的直观形象在空间上的对称;匀速运动的速率在运动过程中的任一点都相等,相干光在干涉空间任一区域都保持相等的条纹宽度等表现了物质在运动变化过程中的空间对称;周期、节奏、频率等表示了时间对称;不随时间变化的匀强电场、匀强磁场表现出既具有时间对称,又具有空间对称等等。

数学对称表示物理内容在教学形式(图与式)上的对称性。如简谐振动的振动图线、简谐波的波形图线具有对称性。这种对称性表示了物理内容在数学图形形式上的对称。万有引力定律、库仑定律与距离之间都具有对称性,这些对称性表示了物理内容在数学表达式上的对称。

抽象对称表示以抽象的方式所反映出的物理内容的对称。由于在无穷大或无穷小的尺度上研究物理问题,很难具有直观性,故很多物理形象及物理内容所呈现的对称具有抽象性。如处于平衡态的气体对容器壁的压强处处相等;处于平衡态的气体分子的热运动在三维空间各个自由度上发生的几率相等,这些都体现了物理内容的抽象对称美。

2.简洁美

由于物理学揭示了自然界物质的存在、组成、运动及其转化等规律的简单性而产生的美感,称为物理学的简洁美。

从物理理论的整体来看,在形形的物理世界中,各种物理现象和过程千差万别,但在本质上却可逻辑地归结为为数不多的若干基本概念和原理。例如,宇宙中纷乱的种种作用力,在本质上可归结为四种:万有引力、电磁力、强相互作用力、弱相互作用力;牛顿定律将宏观低速条件下各种机械运动的现象都置于其统治之下;麦克斯韦方程组使复杂的电磁运动形成了一个和谐美满的家庭;量子力学理论使行踪飘忽的微观粒子眉目清晰……F=ma,E=mc2等等,其形式是多么的简洁而优美。这些都体现了物理学理论整体的简洁美。

物理学中的理想化方法是从多维的具体形象中,抓住最具有本质特征的主要形象,舍弃一些次要形象,建立起一个轮廓清晰、主题突出的新形象,从而简化物理问题。显然,具有简洁美。

3.和谐美

和谐是指由于组成整体的各个要素相互间恰到好处而在整体上显现出协调。和谐给人以一种恰如其分、浑然一体、轻松自如的美感。物理学的和谐美,主要是指由于物理理论揭示了自然界物质的存在、构成、运动及其转化等整体上的和谐性而产生的美感。它主要表现在自洽、对应和互补三个方面。

自洽,与其基本含义一致,即自身内不存在不可统一的矛盾。物理学中的自洽和谐美,主要体现在物理学各分支理论内部以及各分支理论之间在现象、概念、规律等方面都是互不矛盾的。

对应和谐美是指由物理学不同理论间的对应关系而展现的物理学和谐美。对应是高级理论对低级理论的包容,或者是说低级理论是与高级理论在某一特定条件下的结论相一致。具体地说,对某领域正确的物理理论,在新的、更加普遍的理论出现时,并不作为错误的东西被抛弃,而是作为新理论的极限形式和局部情况,在新理论中保持原有的意义。如当v

互补和谐美是由物理学各部分之间的互补关系而展现出的物理学和谐美。所谓互补,就指彼此间弥补、相辅相成。物理学中的互补主要表现在不同的、甚至是相互排斥的物理理论,从不同的侧面描述物理学的研究对象。如光的波动性与粒子性、微观粒子的波动性与粒子性,都分别从不同的侧面反映了光与微观粒子的本质。在这里,波动性与粒子性既互斥,又互补。

4.多样统一美

篇5

本书是一部关于经典哈密顿动力学的教科书,其对象主要为刚刚进入研究生学习的物理领域学生。本书目的在于以一种相对简洁而又不失知识连贯性和概念准确性,阐述相关内容所涉及的全部论题。

本书作者John H. Lowenstein是纽约大学荣誉教授,从事非线性动力学研究20多年。在那之前,他的研究重点是量子场论,特别是可解模型和可重整微扰理论。他在纽约大学同事的鼓励下,决心撰写一部用于21世纪学生的教科书。为此,作者立足于假定学生们已经系统学过牛顿力学(包括拉格朗日形式以及一些标准应用实例)的课程,对本书所涵盖的内容范围做了严格的筛选,忽略了耗散系统、非完整约束、以及狭义和广义相对论、连续体力学和经典场论,并限制了高等微分几何的应用。

作者认为对于21世纪的学生,优势之一是熟悉计算机的使用以及软件知识,因此具有摆脱冗长繁琐的代数与分析计算的基础。写这本书时作者假定读者熟悉初等的科学编程并愿意和能够用这种能力解决遇到的实际问题。他发现,MATHEMATICA软件最适合做本课程所需要的一些小规模的计算。因此本书自始至终提供了许多把解析推导、数值计算和图形处理结合起来的MATHEMATICA具体的例子。

本书内容分为6章。开始的1章标题为“经典动力学基础”,在其中作者非常简略地评述了经典力学。第2-6章内容:2.引入哈密顿形式的核心概念,特别强调了以某种方式平行于量子力学正则对易关系的代数方法进行阐述;3.一种极为重要类型的动力学系统的细致处理,即具有完备的守恒量集合的“可积系统”的介绍;4.非可积系统的正则摄动理论;5.讨论了KAM理论和哈密顿动力学系统中有序与混沌之间迷人的相互作用;6.把前面几章所发展的概念和方法综合应用与详细地处理弹性三维摆,即所谓的“摆动弹簧”,它提供了二氧化碳分子的某种激发的非常好的模型。书末有一个附录,给出了几个用MATHEMATICA软件编写的样本程序。并提示读者,可以在网上找到本书习题的解题手册以及对于MATHEMATICA软件的介绍。网址为/lowenstein。

经典力学是物理学、工程科学和应用数学高等教育的基石之一,它的应用范围极为广泛。在本书中,作者以一种简洁的教学风格涵盖了哈密顿方法动力学研究生课程所必须的所有论题。向读者介绍了20世纪后半叶该领域取得的令人印象深刻的进展。对于已经熟悉经典力学的牛顿和拉格朗日处理的研究生和高年级本科生,本书无疑是一本理想的教材。

篇6

量子力学是近代物理学的基础,并且其应用领域已延伸至化学、生物等许多交叉学科当中,这一课程已成为当今大学生物理教学中一个极为重要的组成部分.由于量子力学主要是描述微观世界结构、运动与变化规律的学科,微小尺度下的许多自然现象与人们日常生活经验相距甚远,量子力学的概念有悖于人们的直觉,难以被初学者接受.如果在教学中能够结合具体的物理实验,从现象到本质引导学生思考,就可以使抽象的量子概念落实到对具体实验现象的归纳总结上来.偏振光实验是一个现象直观而且学生容易操作的普通物理实验,在学生掌握的已有知识基础上,进行新内容的教学,符合初学者的认知规律.利用光的偏振现象来阐述量子力学基本概念已被一些国内外经典教材采纳,如物理学大师狄拉克所著的《量子力学原理》[1],费因曼所著的《费因曼物理学讲义》[2],曾谨言教授所著的《量子力学卷1》[3],赵凯华、罗蔚茵教授合著的《量子物理》[4]等教材.在本文中,笔者结合自己的教学体验,着重从可观测量和测量的角度来考虑问题,在以上经典教材的基础上,进一步整理和挖掘光子偏振所能体现的量子力学基本概念.从量子力学的角度对偏振实验现象进行分析,使同学们对态空间、量子力学表象、波函数统计解释、态叠加原理等量子力学概念有一个直观形象的认识,领会量子力学若干基本假定的内涵思想.最后,从量子角度分析了一个有趣的偏振光实验,加深学生对量子力学基本概念的理解,并展示了量子力学的奇妙特性.

1偏振光实验的经典解释

如图1(a)所示,沿着光线传播的方向,顺次摆放两个偏振片P1、P2.光束经过P1后变为与其透振方向一致且光强为I0的偏振光.两偏振片P1和P2的透振方向之间夹角为θ,由马吕斯定律可知,透过偏振片P2的光的强度为I0cos2θ.按照经典的光学理论,此现象可理解如下:在一个与光传播方向垂直的平面内选定一个xy平面直角坐标系,这里为了描述问题的方便,选定x轴沿P2的透振方向.如图1(b)所示,透过偏振片P1的光电场矢量E可分解为两个分量:沿x方向振动的电场矢量Ex和沿y方向振动的电场矢量Ey.偏振光照射到P2偏振片时,投影到y方向的电场矢量被吸收,投影到x方向的电场矢量透过,振幅增加了一个常数因子cosθ,因而强度变为原来的cos2θ倍,这正是马吕斯定律所给出的结果.

2偏振光实验体现的量子力学概念

下面我们由偏振光的实验现象出发,引出量子态、态空间等量子概念,并用量子力学的语言来描述单个光子与偏振片发生相互作用的过程,讨论在多个光子情况下的量子行为与马吕斯定律的一致性.

2.1量子态

从实验得知,当线偏振光用于激发光电子时,激发出的光电子分布有一个优越的方向(与光偏振方向有关),根据光电效应,每个电子的发射对应吸收一个光子,可见,光的偏振性质是与它的粒子性质紧密联系的,人们必须把线偏振光看成是在同一方向上偏振的许多光子组成,这样我们可以说单个光子处在某个偏振态上.沿x方向偏振的光束里,每个光子处在|x〉偏振态,沿y方向偏振的光束中,每个光子处在|y〉偏振态.假设我们在实验中把光的强度降到足够低,以至于光子是一个一个到达偏振片的.在图1所示的例子中,通过P1偏振片的光子处在沿P1透振方向的偏振态上,如果P2与P1透振方向一致(θ=0),则此光子完全透过P2,如果P2与P1透振方向正交(θ=π/2),则被完全吸收.如果P1与P2透振方向之间角度介于两者之间,会是一种什么样的情形,会不会有部分光子被吸收,部分光子透过的情况发生,但是实验上从来没有观察到部分光子的情形,只存在两种可能的情况:光子变到量子态|y〉,被整个吸收;或变到量子态|x〉,完全透过.下面我们用量子力学的语言来描述单个光子与偏振片发生相互作用的过程,引入量子测量、态空间、表象、态叠加原理、波函数统计解释等量子概念.

2.2量子测量、态空间、表象

单个光子与偏振片发生相互作用的过程,可以看成是一个量子测量的过程,偏振片作为一个测量装置,迫使光子的偏振态在透振方向和与其相垂直的方向上作出选择,测量的结果只有两个,透过或被吸收,透过光子的偏振方向与透振方向一致,被吸收光子的偏振方向与透振方向垂直,可见光子经过测量后只可能处在两种偏振状态,这正是量子特性的反应.在量子力学中,针对一个具体的量子体系,对某一力学量进行测量,测量后得到的值是这一力学量的本征值,我们称它为本征结果,相应的量子态坍缩到此本征结果所对应的本征态上,所有可能的本征态则构成一组正交、规一、完备的本征函数系,此本征函数系足以展开这个量子体系的任何一个量子态.很自然,我们在这里把经过偏振片测量后,所得到的两种可能测量结果(透过或吸收)作为本征结果,它们分别对应的两种偏振状态,此两种偏振状态可以作为正交、规一、完备的函数系,组成一个完备的态空间,任何偏振态都可以按照这两种偏振态来展开,展开系数给出一个具体的表示,这就涉及到量子力学表象问题.在量子力学中,如果要具体描述一个量子态通常要选择一个表象,表象的选取依据某一个力学量(或力学量完备集)的本征值(或各力学量本征值组合)所对应的本征函数系,本征函数系作为正交、规一、完备的基矢组可以用来展开任何一个量子态,展开系数的排列组合给出某一个量子态在具体表象中的表示.结合我们的例子,组成基矢组的两种偏振状态取决于和光子发生相互作用的偏振片,具体说来是由偏振片的透振方向决定.在具体分析问题时,为了处理问题的方便,光子与哪一个偏振片发生相互作用,在数学形式上,就把光子的偏振状态按照此偏振片所决定的基矢组展开,这涉及到怎么合理选择表象的问题.

2.3态叠加原理、波函数统计解释

以上简单的试验也可以作为一个形象的例子来说明量子力学中的态叠加原理.态叠加原理的一种表述为[5]:设系统有一组完备集态函数{φi},i=1,2,...,t,则系统中的任意态|ψ〉,可以由这组态函数线性组合(叠加)而成(1)另一种描述为:如果{φi},i=1,2,...,t是体系可以实现的状态(波函数),则它们的任何线性叠加式总是表示体系可以实现的状态.在我们的例子中,任何一个偏振片所对应的透振态和吸收态构成完备集态函数,任何一个偏振态都能够在以此偏振片透振方向所决定的基矢组中展开,参照图1所示,通过偏振片P1的偏振态可以在以偏振片P2透振方向所决定的基矢组{|x〉,[y)}中表示为(2)相反,|x〉、|y〉基矢的任意叠加态也都是光子可能实现的偏振态.量子力学还假定,当物理体系处于叠加态式(1)时,可以认为体系处于φi量子态的概率为|ci|2.从前面的分析我们知道,当用偏振片P2对偏振态|P1〉进行测量时,此状态随机地坍缩到|x〉偏振态或|y〉偏振态,坍缩到|x〉偏振态的概率为cos2θ,也就是单个光子透过偏振片的概率,多次统计的结果恰好与马吕斯定律相对应,这充分体现了波函数的概率统计解释.

3典型例子

在教学中我们可以引入一个有趣形象的例子,进一步加深对量子力学基本概念的理解.如图2(a)所示,一束光入射到两个顺序排列的偏振片上,偏振片P3的透振方向相对于偏振片P1的透振方向顺时针转过90°角,我们不妨在一个与光传播方向垂直的平面内选定一个xy平面直角坐标系,P1的透振方向沿x轴,P3的透振方向沿y轴.光通过偏振片P1后变成光强为I0的偏振光,偏振方向与偏振片P1透振方向平行,但与P3的透振方向垂直,则光完全被偏振片P3吸收,不能透过.下面我们将看到一个有趣的现象,在偏振片P1和偏振片P3间插入一个偏振片P2,其透振方向在P1和P3之间,这时光竟可以透过P3偏振片.对此试验,我们可由马吕斯定律给出经典的解释.我们不妨设P2的透振方向相对于P1顺时针转过45°角,通过偏振片P1后,变为光强是I0的偏振光,且偏振方向与P1透振方向一致;再通过偏振片P2后,光强变为I0/2,偏振方向沿顺时针转过45°角,与偏振片P2透振方向一致;最后通过偏振片P3后,光强进一步减弱为I0/4,偏振方向又沿顺时针改变45°角,与偏振片P3透振方向一致.可以看到一个有趣的现象,虽然介于偏振片P1和P2间的光束其偏振方向与偏振片P3的透振方向正交,但最后透过偏振片P3的光束其偏振方向却恰恰沿偏振片P3的透振方向,这正是中间偏振片P2所起的作用.下面用我们前面分析偏振光与偏振片相互作用过程中,所建立起来的量子概念给出具体解释.取直角坐标系xy,x轴沿偏振片P1的透振方向,基矢组为{|x〉,[y)};由偏振片P2的透振方向所决定的基矢组为{|x'〉,[y')},其透振方向沿x'方向,如图3所示,两组基矢之间的关系可表示为(3)由偏振片P3所决定的基矢组仍为{|x〉,|y〉},不过透过的光子处在|y〉基矢态.光子透过偏振片P1后,其偏振状态处在|x〉态,由式(3),此状态可以按P2的基矢组展开为(4)根据式(4),经过P2偏振片的测量,光子有1/2的概率坍缩到|x'〉态,光子透过P2,有1/2的概率坍缩到|y'〉态,光子被吸收.由式(3),|x'〉态在由偏振片P3所决定的基矢组同样展开为3的测量下,偏振状态发生改变,有1/2的概率坍缩到|y〉态,透过偏振片,有1/2的概率坍缩到|x〉态,被偏振片吸收,总体来说透过偏振片P1的光子有1/4的概率透过偏振片P3,与经典的马吕斯定律相一致.特别注意到光子透过偏振片P1后,状态为|x〉态,与|y〉态正交,没有|y〉态的组分,但光子透过偏振片P3后却正处在|y〉态,这充分体现了测量可以使量子态改变的量子假定,展示了量子测量的奇妙特性.

4总结

结合对偏振光实验的量子解释,我们分析了若干重要的量子力学概念.但严格说来,光子的问题不属于量子力学问题,只有在量子场论中才能处理.采用光子的偏振情形来讨论某些量子概念,理论上虽稍欠严谨,但如上文所述,确实能够直观形象地反映量子力学中的若干基本假定,使抽象的量子力学概念落实到对具体实验的分析中来,易于被初学者接受,我们不妨在学生开始学习量子力学时引入此例,有助于学生理解抽象的量子概念,领会量子力学的思维方式.

参考文献:

[1]狄拉克.量子力学原理[M].北京:科学出版社,1966.

[2]费因曼.费因曼物理学讲义[M].上海:上海科学出版社,2005.

[3]曾谨言.量子力学卷1.[M].北京:科学出版社,2006.

篇7

一相对论、宇宙学和量子引力哲学概要

巴特菲尔德在引言中指出,数学的相对论者在不断深化我们对广义相对论基础的理解。大卫•马拉蒙特的“经典相对论”[1]一文就明显具有这样的特点,并不讨论经典相对论的历史发展及其实验依据,而是以微分几何的语言,从概念和形式化的角度对相对论的结构以及相对论引发的一些基础问题进行了分析和讨论。首先从描述相对时空的结构开始,相对论的弯曲时空是一类几何模型(M,gab)表示的相对时空,其中M为一个平滑的连续的四维流形,gab是M中的一个平滑的半黎曼度规。其中每个模型都代表一个与理论的约束条件相容的可能世界。M可以解释为世界中点事件的流形,而gab的解释则关乎四个物理学解释性原理,由点粒子和光线的行为决定,由此把引力和时空几何效应等同起来。当粒子只受到引力作用时,它的轨迹为弯曲时空的测地线。而任何质量粒子的加速度即偏离测地线的轨迹,由引力以外的力决定。马拉蒙特详细地描述了gab的解释性原理和限定条件。在此基础上分析了本征时间、某一点的空间时间分解及粒子动力学、物质场、爱因斯坦方程、类时曲线的汇与“公共空间”、基灵场与守恒量等内容。经典相对论中所有发生的事件都可以用物质场F表示,为时空流形M中的一个或者多个平滑张量或旋量,满足包含gab的场方程。Tab为与F相关的能量-动量场,时空的弯曲受物质分布的影响,任意区域的时空度规和物质场会发生动力学相互作用,遵循爱因斯坦方程。在专题讨论部分,关于闵可夫斯基时空中的相对同时性的地位,试图还原爱因斯坦定义同时性对标准关系选择的特定背景;关于牛顿引力理论的几何化,将引力化的牛顿理论与爱因斯坦相对论进行了结构上的对比;关于时空的整体“因果结构”,关注了什么程度上时空的整体几何结构能够从其“因果结构”中得到。“宇宙哲学中的问题”[2]的作者是乔治•F.R.埃利斯。宇宙学哲学的部分在书中起着承上启下的作用,因为一方面,宇宙学哲学的研究基于爱因斯坦广义相对论引力理论时空曲率和宇宙的演化由物质决定的思想,用广义相对论描述宇宙远古时期之后的演化;另一方面,由于在黑洞以及宇宙大爆炸初期物质高密度状态下无法忽略引力问题,因而无法避免引力理论。总的来说,整篇文章把当代宇宙学看作是观测宇宙学、物理宇宙学、天文宇宙学与各种形式的量子宇宙学共生共长、互惠互补的综合理论系统,想要给出一个“描绘真实宇宙起源和演化的理论”。主要内容分为两大部分,第一部分为宇宙学概论,包括基本理论、热大爆炸、宇宙观测、因果和可视世界、理论的发展、暴胀、极早期宇宙、一致性模型等内容,并澄清了关于宇宙暴胀和超光速等问题的一些误解。在埃利斯看来,“宇宙学正在由一种猜测性的事业向真正的科学转变,这不仅带来了与科学革命相近的多种哲学问题,也使得其他哲学问题更加紧迫,例如关于宇宙学中的说明和方法等问题。”因此文章第二部分进行的问题讨论围绕这些说明和方法问题展开,讨论了宇宙的唯一性、宇宙在空间和时间上的巨大尺度、早期宇宙中的无约束能量、宇宙起源的解释问题、作为背景存在的宇宙、宇宙学明确的哲学基础、有关人类的问题:生命的精细调节、多元宇宙存在的可能性和存在的本质等九大问题。在此过程中,埃利斯提出了34个论点,关涉到这9个问题的方方面面,包括人择原理和多重宇宙存在的可能性等。这些论述关乎几何学、物理学和哲学,它们构成了宇宙学面面临的哲学问题的环境及其与局域物理学之间的关系。埃利斯期望通过这一系列讨论改变人们认为宇宙学只不过是确定一些物理参数的简单看法。“量子引力”[3]一文的作者是卡罗尔•罗韦利,内容大致可分为四个方面。第一,量子引力的研究方法,包括早期的历史和方向、目前的主要尝试性理论等。量子引力的早期思想可以概括为“用一个理论来描述引力的量子特性”。期间出现的第一种方法是罗森菲尔德等人的“协变化”方法,通过引入一个虚构的“平坦空间”来考虑周围度规的微小涨落,并且运用电磁场中的方法来对这些波进行量子化;第二种是伯格曼等人的“正则化”方法,研究和量子化整个广义相对论的哈密顿函数,而不只是量子化其围绕平坦空间的线性化函数;第三种是米斯纳等人的路径积分方法。目前主要的尝试性理论主要介绍了基于协变化方法发展起来的弦理论和基于正则化方法发展起来的圈量子引力理论以及它们之间的争论。第二,关于量子引力研究方法论问题。指出量子引力研究的理由包括经验数据的缺乏和对引力是否应当量子化的思索。分析了当前量子引力研究中的各种态度以及科学知识的累积性和科学哲学的影响。第三,空间和时间的本质,包括广义相对论的物理意义、背景无关性、时间的本质等。第四,与其他未决问题之间的关系,包括统一、量子引力学的解释宇宙学常数、量子宇宙学等等。这些章节的详细内容不是本文的重点,我们想要做的,是分析作者的研究方式所代表的当代物理学哲学研究的视野和方法的转变。本书的研究方式明显地具有两个特征:第一个特征关乎物理学概念的解释:物理学的概念解释脱离不开数学形式化下的整体系统;第二个特征关乎新的物理学理论的理解:在理论的发展中处处显示物理学和形而上学的交织统一。这两个特征与这些物理学研究领域实验检验的缺乏以及理论构造的特征密切相关。

二物理学概念解释的新特征:数学形式化整体系统中的关联解释

巴特菲尔德相信当前基本物理学中的基础问题会为物理学哲学提供从最为有趣且最为重要的问题,而我们关注的是本书处理这些基础问题的方式。虽然从章节上来看,物理哲学的论题被划分为若干个领域,但从内容上,完全可以看到作者的用心,站在当代数学物理学发展的高度用整体微分几何等数学语言对物理学系统进行重新形式化和解释,每一章节的紧密联系使得物理学作为一个整体系统得以呈现。其中对每一个物理概念解释的细节,正是物理学哲学追求的基础问题的答案。可以说,概念解释居于本书的核心地位,物理学哲学解释问题的最重要的方式就是处理当代物理学中的概念和解释问题。

(一)物理学概念的解释:我们理解世界的基础

物理学的发展时时刻刻影响着人们对世界的理解方式,其途径就是物理学概念的解释。经典物理学、相对论和量子力学曾极大地改变我们对世界的看法,它们在经验上的有效性曾经强化过我们对科学理论客观性和真理性的观点,也曾让很多物理学家追求理论的实用性而认为有些基础性的问题毫无意义。但当前宇宙学和量子引力理论的提出,使人们重新注视广义相对论和量子力学的不相容性的时候,从广义相对论以来的一些基础性问题和哲学问题得以重新复兴。相对论为我们宇宙的时空结构确定了一类几何模型,其中每个模型都代表了一个与理论的约束条件相融的可能世界或区域。而我们对时空的理解涉及整体时空结构和爱因斯坦方程的约束条件等等。宇宙学和量子引力的研究则让我们明白,改变我们对空间和时间的理解的广义相对论是在可以忽略引力的量子特性时对引力进行描述的场理论,那么真正的空间和时间的本质又是如何呢?我们对宇宙起源的理解绕不开量子引力方法的尝试,但这种尝试要受到很多约束,比如成熟量子引力理论的缺乏、量子力学基础问题,比如测量问题、波函数的塌缩问题等。现在人们期望得到的成功量子引力的路径基于目前理论的发展,比如惠勒-德维特方程和宇宙波函数思想、来自弦论思想的高维时空方法,或者圈量子引力的应用等。但这些问题是否能真正解决宇宙起源的问题却并没有确切的答案,比如维兰金的创生虚无的真理论的理解要依赖于量子场论的精致框架和粒子物理学标准模型等很多结构,而这些基础本身也是需要解释的。可以说,我们理解世界的基础就在于我们用于理解它的那些概念的意义。

(二)概念解释的新特点:数学形式化下整体系统中的关联解释

巴特菲尔德在经典力学的辛约化中指出,经典力学的核心理论原理已经被欧拉、拉格朗日、哈密顿和雅可比等改写,“我们已经认不出来了,因此对它们的哲学反思也发生了变化。”因此引入辛几何、李代数等语言对理论进行形式化,旨在利用辛约化理论使连续对称和守恒量之间产生联系的特征,从理论结构上显现经典力学与量子物理学的联系,这是运用数学形式化系统展现物理学理论的对称性本质。相对论、宇宙学和量子引力哲学部分,情况也是如此。整本书是站在当代数学发展的高度,运用拓扑学、群理论和微分几何等重新形式化物理学的整个体系,并对其概念进行剖析的一个过程。而对基本问题的理解,则建立在概念剖析的基础之上。在这些文章中,理论发展的历史状况和实验成果,只是系统阐释整个理论概念和解释的背景而已。作者们的重点则放在用数学领域的发展和物理学理论形式化的诉求,促进对物理学理论结构的探索,进而把论题转化为对其哲学问题的探讨。理论的形式化体系、概念结构和物理学解释是有机地结合在一起的。在牛顿引力的几何化中,也是站在当代物理学和数学发展的高度,重新形式化作为相对论弱场近似的牛顿理论,得到与广义相对论类似的数学结构,正是在这个意义上,才能够好地发现两个理论在何种条件和何种程度上是相符的,又在何种条件和何种程度上是区别的。在这个形式化的整体系统中,对于物理概念的解释不再是孤立的解释,而是站在理论的数学结构的高度,成为一个整体系统中的关联解释。这在很大程度上突出了物理学哲学中语义分析方法的重要性,因为没有完全独立的概念,物理学的概念定义之间互相依赖,只有在一个系统的语义结构中才能理解概念的意义。如普斯洛斯在这套爱思唯尔哲学手册的《一般科学哲学》一书中所言:“理论解释的唯一方式就是把它嵌入到同类概念的框架中,并尝试着解开它们的相互关联。”[4]

(三)旧概念重新解释的意义:还原理论创立过

程中概念选择的特定背景在物理学的发展中,每一次理论创新和进步都伴随着新概念的提出或旧概念的重新解释,站在理论发展的角度考虑,这样的解释会让我们更好地理解物理学理论的提出、发展和变迁的合理性。比如蒙特在经典相对论一文中对闵可夫斯基时空环境下相对同时性关系的重新考虑。蒙特指出,当相对于一个四维速度矢量将一点上的矢量分解为“时间”和“空间”分量进行讨论时,我们理所当然地相信包含正交性的相对同时性的标准认同。在解释这种认同的理由时,根据方便在闵可夫斯基时空结构即狭义相对论体系下进行分析。他援引霍华德•斯坦的论述,指出采用相对同时性的标准(ε=1/2)的惯例是需要特定背景的。在他们看来,爱因斯坦是为了解决我们无法检测到地球相对于以太的运动而采取的解决方案,以一种特定的方式(ε=1/2)来思考同时性,但如果并非从爱因斯坦最初的思路来考虑,而是从一个成功理论的高度来理解它,把相对论视为是针对时空结构不变性的论述时,其意义就完全不同了。这在很大程度上还原了爱因斯坦对同时性做出的“定义”中挑选出来的这种标准关系的实质,它可能并非一种自然的存在,而是理论选择的特定需要,还原这个过程,对我们更好地理解理论和概念的本质有着重要的意义。

(四)新理论的概念澄清:科学进步的必然现象

物理学史上每一个新理论的诞生都会引起旧的概念的澄清,量子引力就是个很典型的例子。量子引力是对空间和时间本质的探索,它引导我们重新思考关于时间、空间、“在某处”、运动和因果观测者的地位等很多问题。作为试图把广义相对论和量子理论结合的理论,我们需要以历史的眼光重新追问。我们都知道,广义相对论改变了我们对牛顿独立于物质运动的绝对空间和时间的理解。量子力学则用我们关于运动的一般性理论替代了经典力学,并改变了物质、场和因果性的观念。但量子力学的外在时间变量和量子场论静止的背景时空都是和广义相对论不相容的。而广义相对论中引力场被假设为一个经典决定论的动力学场,无法处理小尺度引力的量子特性。因此,想要把二者进行结合的量子引力就遇到了困难。正因为如此,罗韦利直言尽管基础物理学在经验上有效,但它正处于一种深刻的概念混乱的状态。虽然20世纪后半叶,物理学注重实用而忽略了这些基本问题,但量子引力告诉我们这些基本问题必须得到新的答案。但问题的澄清并没有一条唯一明确的路可以走,超弦理论和圈量子引力在假设、成就、具体结果以及概念框架上都有着显著的不同,但它们都有自己的代价,弦理论的思想基础是为了消除广义相对论的微扰量子化的困难,保留了量子场论的基本概念结构,其代价之一是放弃广义相对论的广义协变性。圈量子引力植根于描述广义相对论的协变性,但它的代价是忽略了理论的不完备性,放弃了幺正性、时间演化、基本层次上的庞加莱不变性以及物理学对象是在空间中局域化的且在时空中演化的概念。可以看出的是,新理论澄清概念的过程是科学理论进步的必然现象,而这一过程是通过分析在描述世界结构时所产生的概念上的困难来对以往科学的研究框架予以质疑或辩护,这涉及的是对世界本质更深刻的哲学和形而上的思考。

篇8

一、历史的回顾

十九世纪末二十世纪初,经典物物学的各个分支学科均发展到了完善、成熟的阶段,随着热力学和统计力学的建立以及麦克斯韦电磁场理论的建立,经典物理学达到了它的顶峰,当时人们以系统的形式描绘出一幅物理世界的清晰、完整的图画,几乎能完美地解释所有已经观察到的物理现象。由于经典物理学的巨大成就,当时不少物理学家产生了这样一种思想:认为物理学的大厦已经建成,物理学的发展基本上已经完成,人们对物理世界的解释已经达到了终点。物理学的一些基本的、原则的问题都已经解决,剩下来的只是进一步精确化的问题,即在一些细节上作一些补充和修正,使已知公式中的各个常数测得更精确一些。

然而,在十九世纪末二十世纪初,正当物理学家在庆贺物理学大厦落成之际,科学实验却发现了许多经典物理学无法解释的事实。首先是世纪之交物理学的三大发现:电子、X射线和放射性现象的发现。其次是经典物理学的万里晴空中出现了两朵“乌云”:“以太漂移”的“零结果”和黑体辐射的“紫外灾难”。[1]这些实验结果与经典物理学的基本概念及基本理论有尖锐的矛盾,经典物理学的传统观念受到巨大的冲击,经典物理发生了“严重的危机”。由此引起了物理学的一场伟大的革命。爱因斯坦创立了相对论;海林堡、薛定谔等一群科学家创立了量子力学。现代物理学诞生了!

把物理学发展的现状与上一个世纪之交的情况作比较,可以看到两者之间有相似之外,也有不同之处。

在相对论和量子力学建立起来以后,现代物理学经过七十多年的发展,已经达到了成熟的阶段。人类对物质世界规律的认识达到了空前的高度,用现有的理论几乎能够很好地解释现在已知的一切物理现象。可以说,现代物理学的大厦已经建成。在这一点上,目前有情况与上一个世纪之交的情况很相似。因此,有少数物理学家认为今后物理学不会有革命性的进展了,物理学的根本性的问题、原则问题都已经解决了,今后能做到的只是在现有理论的基础上在深度和广度两方面发展现代物理学,对现有的理论作一些补充和修正。然而,由于有了一百年前的历史经验,多数物理学家并不赞成这种观点,他们相信物理学迟早会有突破性的发展。另一方面,虽然在微观世界和宇宙学领域中有一些物理现象是现代物理学的理论不能很好地解释的,但是这些矛盾并不是严重到了非要彻底改造现有理认纱可的程度。在这方面,目前的情况与上一个世纪之交的情况不同。在上一个世纪之交,经典物理学发生了“严重的危机”;而在本世纪之交,现代物理学并无“危机”。因此,我认为目前发生现代物理学革命的条件似乎尚不成熟。

虽然在微观世界和宇宙学领域中有一些物理现象是现代物理学的理论不能很好地解释的,但是这些矛盾并不是严重到了非要彻底改造现有理认纱可的程度。在这方面,目前的情况与上一个世纪之交的情况不同。在上一个世纪之交,经典物理学发生了“严重的危机”;而在本世纪之交,现代物理学并无“危机”。因此,我认为目前发生现代物理学革命的条件似乎尚不成熟。客观物质世界是分层次的。一般说来,每个层次中的体系都由大量的小体系(属于下一个层次)构成。从一定意义上说,宏观与微观是相对的,宏观体系由大量的微观系统构成。物质世界从微观到宏观分成很多层次。物理学研究的目的包括:探索各层次的运动规律和探索各层次间的联系。

回顾二十世纪物理学的发展,是在三个方向上前进的。在二十一世纪,物理学也将在这三个方向上继续向前发展。

1)在微观方向上深入下去。在这个方向上,我们已经了解了原子核的结构,发现了大量的基本粒子及其运规律,建立了核物理学和粒子物理学,认识到强子是由夸克构成的。今后可能会有新的进展。但如果要探索更深层次的现象,必须有更强大得多的加速器,而这是非常艰巨的任务,所以我认为近期内在这个方向上难以有突破性的进展。

2)在宏观方向上拓展开去。1948年美国的伽莫夫提出“大爆炸”理论,当时并未引起重视。1965年美国的彭齐亚斯和威尔逊观测到宇宙背景辐射,再加上其他的观测结果,为“大爆炸”理论提供了有力的证据,从此“大爆炸”理论得到广泛的支持,1981年日本的佐藤胜彦和美国的古斯同时提出暴胀理论。八十年代以后,英国的霍金[2,3]等人开始论述宇宙的创生,认为宇宙从“无”诞生,今后在这个方向上将会继续有所发展。从根本上来说,现代宇宙学的继续发展有赖于向广漠的宇宙更遥远处观测的新结果,这需要人类制造出比哈勃望远镜性能更优越得多的、各个波段的太空天文望远镜,这是很艰巨的任务。

我个人对于近年来提出的宇宙创生学说是不太信的,并且认为“大爆炸”理论只是对宇宙的一个近似的描述。因为现在的宇宙学研究的只是我们能观测到的范围以内的“宇宙”,而我相信宇宙是无限的,在我们这个“宇宙”以外还有无数个“宇宙”,这些宇宙不是互不相干、各自孤立的,而是互相有影响、有作用的。现代宇宙学只研究我们这个“宇宙”,当然只能得到近似的结果,把他们的延伸到“宇宙”创生了初及遥远的未来,则失误更大。

3)深入探索各层次间的联系。

这正是统计物理学研究的主要内容。二十世纪在这方面取得了巨大的成就,先是非平衡态统计物理学有了得大的发展,然后建立了“耗散结构”理论、协同论和突变论,接着混沌论和分形论相继发展起来了。近年来把这些分支学科都纳入非线性科学的范畴。相信在二十一世纪非线性科学的发展有广阔的前景。

上述的物理学的发展依然现代物理学现有的基本理论的框架内。在下个世纪,物理学的基本理论应该怎样发展呢?有一些物理学家在追求“超统一理论”。在这方面,起初是爱因斯坦、海森堡等天才科学家努力探索“统一场论”;直到1967、1968年,美国的温伯格和巴基斯坦的萨拉姆提出统一电磁力和弱力的“电弱理论”;目前有一些物理学家正在探索加上强力的“大统一理论”以及再加上引力把四种力都统一起来的“超统一理论”,他们的探索能否成功尚未定论。

爱因斯坦当初探索“统一场论”是基于他的“物理世界统一性”的思想[4],但是他努力探索了三十年,最终没有成功。我对此有不同的观点,根据辩证唯物主义的基本原理,我认为“物质世界是既统一,又多样化的”。且莫论追求“超统一理论”能否成功,即便此理论完成了,它也不是物理学发展的终点。因为“在绝对的总的宇宙发展过程中,各个具体过程的发展都是相对的,因而在绝对真理的长河中,人们对于在各个一定发展阶段上的具体过程的认识只具有相对的真理性。无数相对的真理之总和,就是绝对的真理。”“人们在实践中对于真理的认识也就永远没有完结。”[5]

现代物理学的革命将怎样发生呢?我认为可能有两个方面值得考试:

1)客观世界可能不是只有四种力。第五、第六……种力究竟何在呢?现在我们不知道。我的直觉是:将来最早发现的第五种力可能存在于生命现象中。物质构成了生命体之后,其运动和变化实在太奥妙了,我们没有认识的问题实在太多了,我们今天对于生命科学的认识犹如亚里斯多德时代的人们对于物理学的认识,因此在这方面取得突破性的进展是很可能的。我认为,物理学业与生命科学的交叉点是二十一世纪物理学发展的方向之一,与此有关的最关于复杂性研究的非线性科学的发展。

2)现代物理学理论也只是相对真理,而不是绝对真理。应该通过审思现代物理学理论基础的不完善性来探寻现代物理学革命的突破口,在下一节中将介绍我的观点。

三、现代物理学的理论基础是完美的吗?

相对论和量子力学是现代物理学的两大支柱,这两大支柱的理论基础是否十全十美的

呢?我们来审思一下这个问题。

1)对相对论的审思

当年爱因斯坦就是从关于光速和关于时间要领的思考开始,创立了狭义相对论[1]。我们今天探寻现代物理学革命的突破口,也应该从重新审思时空的概念入手。爱因劳动保护坦创立狭义相对论是从讲座惯性系中不同地点的两个“事件”的同时性开始的[4],他规定用光信号校正不同地点的两个时钟来定义“同时”,这样就很自然地导出了洛仑兹变换,进一步导致一个四维时空(x,y,z,ict)(c是光速)。为什么爱因劳动保护担提出用光信号来校正时钟,而不用别的信号呢?在他的论文中没有说明这个问题,其实这是有深刻含意的。

时间、空间是物质运动的表现形式,不能脱离物理质运动谈论时间、空间,在定义时空时应该说明是关于什么运动的时空。现代物理学认为超距作用是不存在的,A处发生的“事件”影响B处的“事件”必须通过一定的场传递过去,传递需要一定的时间,时间、空间的定义与这个传递速度是密切相关的。如果这种场是电磁场,则电磁相互作用传递的速度就是光速。因此,爱因斯坦定义的时空实际上是关于由电磁相互作用引起的物质运动的时空,适用于描述这种运动。

爱因斯坦把他定义的时间应用于所有的物质运动,实际上就暗含了这样的假设:引力相互作用的传递速度也是光速c.但是引力相互作用是否也是以光速传递的呢?令引力相互作用的传递速度为c'。至今为止,并无实验事实证明c'等于c。爱因斯坦因他的“物质世界统一性”的世界观而在实际上假定了c=c'。我持有“物质世界既统一,又多样化的”以观点,再加之电磁力和引力的强度在数量级上相差太多,因此我相相信c'可能不等于c。工样,关于由电磁力引起的物质运动的四维时空(x,y,z,ict)和关于由引力引起的运动的时空(x',y',z',ic't')是不同的。如果研究的问题只涉及一种相互作用,则按照现在的理论建立起来的运动方程的形式不变。例如,爱因斯坦引力场方程的形式不变,只需把常数c改为c'。如果研究的问题涉及两种相互作用,则需要建立新的理论。不过,首要的事情是由实验事实来判断c'和c是否相等;如果不相等,需要导出c'的数值。

我在二十多年前开始形成上述观点,当时测量引力波是众所瞩目的一个热点,我曾对那些实验寄予厚望,希望能从实验结果推算出c'是否等于c。令人遗憾的是,经过长斯的努力引引力波实验没有获得肯定的结果,随后这项工作冷下去了。根据爱国斯坦理论预言的引力波是微弱的,如果在现代实验技术能够达到的测量灵敏度和准确度之下,这样弱的引力波应该能够探测到的话,长期的实验得不到肯定的结果似乎暗示了害因斯坦理论的缺点。应该从c'可能不等于c这个角度来考虑问题,如果c'和c有较大的差异,则可能导出引力波的强度比根据爱因劳动保护坦理论预言的强度弱得多的结果。

弱力、强力与引力、电磁力有本质的不同,前两者是短程力,后两者是长程力。不同的相互作用是通过传递不同的媒介粒子而实现的。引力相互作用的传递者是引力子;电磁相互作用的传递者是光子;弱相互作用的传递者是规范粒子(光子除外);强相互作用的传递者是介子。引力子和光子的静质量为零,按照爱因斯坦的理论,引力相互作用和电磁相互作用的传递速度都是光速。并且与传递粒子的静质量和能量有关,因而其传递速度是多种多样的。

在研究由弱或强相互作用引起的物质运动时,定义惯性系中不同的地点的两个“事件”的“同时”,是否应该用弱力或强力信号取代光信号呢?我对核物理学和粒子物理学是外行,不想贸然回答这个问题。如果应该用弱力或强力信号取代光信号,那么关于由弱力或强力引起的物质运动的时空和关于由电磁力引起的运动的时空(x,y,z,ict)及关于由引力引起的运动的时空(x',y',z',ic't')

有很大的不同。设弱或强相互作用的传递速度为c'',c''不是常数,而是可变的,则关于由弱或强力引起的运动的时空为(x'',y'',z'',Ic''t''),时间t''和空间(x'',y'',z'')将是c'的函数。然而,很可能应该这样来考虑问题:关于由弱力引起的运动的时空,在定义中应该以规范粒子的静质量取作零时的速度c1取代光速c。由于“电弱理论”把弱力和电磁力统一起来了,因此有可能c1=c,则关于由弱力引起的运动的时空和关于由电磁力引起的运动的时空是相同的,同为(x,y,z,ict)。关于由强力引起的运动的时空,在定义中应该以介子的静质量取作零(在理论上取作零,在实际上没有静质量为零的介子)时的速度c''取代光速c,c''可能不等于c。则关于由强力引起的运动的时空(x'',y'',z'',Ic''t'')不同于(x,y,z,ict)或(x',y',z',ic't')。无论上述两种考虑中哪一种是对的,整个物质世界的时空将是高于四维的多维时空。对于由短程力(或只是强力)引起的物质运动,如果时空有了新的一义,就需要建立新的理论,也就是说需要建立新的量子场论、新的核物理学和新的粒子物理学等。如果研究的问题既清及长程力,又涉及短程力(尤其是强力),则更需要建立新的理论。

1)对量子力学的审思

从量子力学发展到量子场论的时候,遇到了“发散困难”[6]。1946——1949年间,日本的朝永振一郎、美国的费曼和施温格提出“重整化”方法,克服了“发散困难”。但是“重整化”理论仍然存在着逻辑上的缺陷,并没有彻底克服这一困难。“发散困难”的一个基本原因是粒子的“固有”能量(静止能量)与运动能量、相互作用能量合在一起计算[6],这与德布罗意波在υ=0时的异性。

现在我陷入一个两难的处境:如果采用传统的德布罗意关系,就只得接受不合理的德布罗意波奇异性;如果采纳修正的德布罗意关系,就必须面对使新的理论满足相对论协变性的难题。是否有解决问题的其他途径呢?我认为这个问题或许还与时间、空间的定义有关。现在的量子力学理论中时宽人的定义实质上依然是决定论的定义,而不确定原理是微观世界的一条基本规律,所以时间、空间都不是严格确定的,决定论的时空要领不再适用。在时间或空间的间隔非常小的时候,描写事情顺序的“前”、“后”概念将失去意义。此外,在重新定义时空时还应考虑相关的物质运动的类别。模糊数学已经发展得相当成熟了,把这个数学工具用到微观世界时空的定义中去可能是很值得一试的。

1)在二十一世纪物理学将在三个方向上继续向前发展(1)在微观方向上深入下去;(2)在宏观方向上拓展开去;(3)深入探索各层次间的联系,进一步发展非线性科学。

篇9

一、历史的回顾

十九世纪末二十世纪初,经典物物学的各个分支学科均发展到了完善、成熟的阶段,随着热力学和统计力学的建立以及麦克斯韦电磁场理论的建立,经典物理学达到了它的顶峰,当时人们以系统的形式描绘出一幅物理世界的清晰、完整的图画,几乎能完美地解释所有已经观察到的物理现象。由于经典物理学的巨大成就,当时不少物理学家产生了这样一种思想:认为物理学的大厦已经建成,物理学的发展基本上已经完成,人们对物理世界的解释已经达到了终点。物理学的一些基本的、原则的问题都已经解决,剩下来的只是进一步精确化的问题,即在一些细节上作一些补充和修正,使已知公式中的各个常数测得更精确一些。

然而,在十九世纪末二十世纪初,正当物理学家在庆贺物理学大厦落成之际,科学实验却发现了许多经典物理学无法解释的事实。首先是世纪之交物理学的三大发现:电子、X射线和放射性现象的发现。其次是经典物理学的万里晴空中出现了两朵“乌云”:“以太漂移”的“零结果”和黑体辐射的“紫外灾难”。[1]这些实验结果与经典物理学的基本概念及基本理论有尖锐的矛盾,经典物理学的传统观念受到巨大的冲击,经典物理发生了“严重的危机”。由此引起了物理学的一场伟大的革命。爱因斯坦创立了相对论;海林堡、薛定谔等一群科学家创立了量子力学。现代物理学诞生了!

把物理学发展的现状与上一个世纪之交的情况作比较,可以看到两者之间有相似之外,也有不同之处。

在相对论和量子力学建立起来以后,现代物理学经过七十多年的发展,已经达到了成熟的阶段。人类对物质世界规律的认识达到了空前的高度,用现有的理论几乎能够很好地解释现在已知的一切物理现象。可以说,现代物理学的大厦已经建成。在这一点上,目前有情况与上一个世纪之交的情况很相似。因此,有少数物理学家认为今后物理学不会有革命性的进展了,物理学的根本性的问题、原则问题都已经解决了,今后能做到的只是在现有理论的基础上在深度和广度两方面发展现代物理学,对现有的理论作一些补充和修正。然而,由于有了一百年前的历史经验,多数物理学家并不赞成这种观点,他们相信物理学迟早会有突破性的发展。另一方面,虽然在微观世界和宇宙学领域中有一些物理现象是现代物理学的理论不能很好地解释的,但是这些矛盾并不是严重到了非要彻底改造现有理认纱可的程度。在这方面,目前的情况与上一个世纪之交的情况不同。在上一个世纪之交,经典物理学发生了“严重的危机”;而在本世纪之交,现代物理学并无“危机”。因此,我认为目前发生现代物理学革命的条件似乎尚不成熟。

虽然在微观世界和宇宙学领域中有一些物理现象是现代物理学的理论不能很好地解释的,但是这些矛盾并不是严重到了非要彻底改造现有理认纱可的程度。在这方面,目前的情况与上一个世纪之交的情况不同。在上一个世纪之交,经典物理学发生了“严重的危机”;而在本世纪之交,现代物理学并无“危机”。因此,我认为目前发生现代物理学革命的条件似乎尚不成熟。客观物质世界是分层次的。一般说来,每个层次中的体系都由大量的小体系(属于下一个层次)构成。从一定意义上说,宏观与微观是相对的,宏观体系由大量的微观系统构成。物质世界从微观到宏观分成很多层次。物理学研究的目的包括:探索各层次的运动规律和探索各层次间的联系。

回顾二十世纪物理学的发展,是在三个方向上前进的。在二十一世纪,物理学也将在这三个方向上继续向前发展。

1)在微观方向上深入下去。在这个方向上,我们已经了解了原子核的结构,发现了大量的基本粒子及其运规律,建立了核物理学和粒子物理学,认识到强子是由夸克构成的。今后可能会有新的进展。但如果要探索更深层次的现象,必须有更强大得多的加速器,而这是非常艰巨的任务,所以我认为近期内在这个方向上难以有突破性的进展。

2)在宏观方向上拓展开去。1948年美国的伽莫夫提出“大爆炸”理论,当时并未引起重视。1965年美国的彭齐亚斯和威尔逊观测到宇宙背景辐射,再加上其他的观测结果,为“大爆炸”理论提供了有力的证据,从此“大爆炸”理论得到广泛的支持,1981年日本的佐藤胜彦和美国的古斯同时提出暴胀理论。八十年代以后,英国的霍金[2,3]等人开始论述宇宙的创生,认为宇宙从“无”诞生,今后在这个方向上将会继续有所发展。从根本上来说,现代宇宙学的继续发展有赖于向广漠的宇宙更遥远处观测的新结果,这需要人类制造出比哈勃望远镜性能更优越得多的、各个波段的太空天文望远镜,这是很艰巨的任务。

我个人对于近年来提出的宇宙创生学说是不太信的,并且认为“大爆炸”理论只是对宇宙的一个近似的描述。因为现在的宇宙学研究的只是我们能观测到的范围以内的“宇宙”,而我相信宇宙是无限的,在我们这个“宇宙”以外还有无数个“宇宙”,这些宇宙不是互不相干、各自孤立的,而是互相有影响、有作用的。现代宇宙学只研究我们这个“宇宙”,当然只能得到近似的结果,把他们的延伸到“宇宙”创生了初及遥远的未来,则失误更大。

3)深入探索各层次间的联系。

这正是统计物理学研究的主要内容。二十世纪在这方面取得了巨大的成就,先是非平衡态统计物理学有了得大的发展,然后建立了“耗散结构”理论、协同论和突变论,接着混沌论和分形论相继发展起来了。近年来把这些分支学科都纳入非线性科学的范畴。相信在二十一世纪非线性科学的发展有广阔的前景。

上述的物理学的发展依然现代物理学现有的基本理论的框架内。在下个世纪,物理学的基本理论应该怎样发展呢?有一些物理学家在追求“超统一理论”。在这方面,起初是爱因斯坦、海森堡等天才科学家努力探索“统一场论”;直到1967、1968年,美国的温伯格和巴基斯坦的萨拉姆提出统一电磁力和弱力的“电弱理论”;目前有一些物理学家正在探索加上强力的“大统一理论”以及再加上引力把四种力都统一起来的“超统一理论”,他们的探索能否成功尚未定论。

爱因斯坦当初探索“统一场论”是基于他的“物理世界统一性”的思想[4],但是他努力探索了三十年,最终没有成功。我对此有不同的观点,根据辩证唯物主义的基本原理,我认为“物质世界是既统一,又多样化的”。且莫论追求“超统一理论”能否成功,即便此理论完成了,它也不是物理学发展的终点。因为“在绝对的总的宇宙发展过程中,各个具体过程的发展都是相对的,因而在绝对真理的长河中,人们对于在各个一定发展阶段上的具体过程的认识只具有相对的真理性。无数相对的真理之总和,就是绝对的真理。”“人们在实践中对于真理的认识也就永远没有完结。”[5]

现代物理学的革命将怎样发生呢?我认为可能有两个方面值得考试:

1)客观世界可能不是只有四种力。第五、第六……种力究竟何在呢?现在我们不知道。我的直觉是:将来最早发现的第五种力可能存在于生命现象中。物质构成了生命体之后,其运动和变化实在太奥妙了,我们没有认识的问题实在太多了,我们今天对于生命科学的认识犹如亚里斯多德时代的人们对于物理学的认识,因此在这方面取得突破性的进展是很可能的。我认为,物理学业与生命科学的交叉点是二十一世纪物理学发展的方向之一,与此有关的最关于复杂性研究的非线性科学的发展。

2)现代物理学理论也只是相对真理,而不是绝对真理。应该通过审思现代物理学理论基础的不完善性来探寻现代物理学革命的突破口,在下一节中将介绍我的观点。

三、现代物理学的理论基础是完美的吗?

相对论和量子力学是现代物理学的两大支柱,这两大支柱的理论基础是否十全十美的

呢?我们来审思一下这个问题。

1)对相对论的审思

当年爱因斯坦就是从关于光速和关于时间要领的思考开始,创立了狭义相对论[1]。我们今天探寻现代物理学革命的突破口,也应该从重新审思时空的概念入手。爱因劳动保护坦创立狭义相对论是从讲座惯性系中不同地点的两个“事件”的同时性开始的[4],他规定用光信号校正不同地点的两个时钟来定义“同时”,这样就很自然地导出了洛仑兹变换,进一步导致一个四维时空(x,y,z,ict)(c是光速)。为什么爱因劳动保护担提出用光信号来校正时钟,而不用别的信号呢?在他的论文中没有说明这个问题,其实这是有深刻含意的。

时间、空间是物质运动的表现形式,不能脱离物理质运动谈论时间、空间,在定义时空时应该说明是关于什么运动的时空。现代物理学认为超距作用是不存在的,A处发生的“事件”影响B处的“事件”必须通过一定的场传递过去,传递需要一定的时间,时间、空间的定义与这个传递速度是密切相关的。如果这种场是电磁场,则电磁相互作用传递的速度就是光速。因此,爱因斯坦定义的时空实际上是关于由电磁相互作用引起的物质运动的时空,适用于描述这种运动。

爱因斯坦把他定义的时间应用于所有的物质运动,实际上就暗含了这样的假设:引力相互作用的传递速度也是光速c.但是引力相互作用是否也是以光速传递的呢?令引力相互作用的传递速度为c'。至今为止,并无实验事实证明c'等于c。爱因斯坦因他的“物质世界统一性”的世界观而在实际上假定了c=c'。我持有“物质世界既统一,又多样化的”以观点,再加之电磁力和引力的强度在数量级上相差太多,因此我相相信c'可能不等于c。工样,关于由电磁力引起的物质运动的四维时空(x,y,z,ict)和关于由引力引起的运动的时空(x',y',z',ic't')是不同的。如果研究的问题只涉及一种相互作用,则按照现在的理论建立起来的运动方程的形式不变。例如,爱因斯坦引力场方程的形式不变,只需把常数c改为c'。如果研究的问题涉及两种相互作用,则需要建立新的理论。不过,首要的事情是由实验事实来判断c'和c是否相等;如果不相等,需要导出c'的数值。

我在二十多年前开始形成上述观点,当时测量引力波是众所瞩目的一个热点,我曾对那些实验寄予厚望,希望能从实验结果推算出c'是否等于c。令人遗憾的是,经过长斯的努力引引力波实验没有获得肯定的结果,随后这项工作冷下去了。根据爱国斯坦理论预言的引力波是微弱的,如果在现代实验技术能够达到的测量灵敏度和准确度之下,这样弱的引力波应该能够探测到的话,长期的实验得不到肯定的结果似乎暗示了害因斯坦理论的缺点。应该从c'可能不等于c这个角度来考虑问题,如果c'和c有较大的差异,则可能导出引力波的强度比根据爱因劳动保护坦理论预言的强度弱得多的结果。

弱力、强力与引力、电磁力有本质的不同,前两者是短程力,后两者是长程力。不同的相互作用是通过传递不同的媒介粒子而实现的。引力相互作用的传递者是引力子;电磁相互作用的传递者是光子;弱相互作用的传递者是规范粒子(光子除外);强相互作用的传递者是介子。引力子和光子的静质量为零,按照爱因斯坦的理论,引力相互作用和电磁相互作用的传递速度都是光速。并且与传递粒子的静质量和能量有关,因而其传递速度是多种多样的。

在研究由弱或强相互作用引起的物质运动时,定义惯性系中不同的地点的两个“事件”的“同时”,是否应该用弱力或强力信号取代光信号呢?我对核物理学和粒子物理学是外行,不想贸然回答这个问题。如果应该用弱力或强力信号取代光信号,那么关于由弱力或强力引起的物质运动的时空和关于由电磁力引起的运动的时空(x,y,z,ict)及关于由引力引起的运动的时空(x',y',z',ic't')

有很大的不同。设弱或强相互作用的传递速度为c'',c''不是常数,而是可变的,则关于由弱或强力引起的运动的时空为(x'',y'',z'',Ic''t''),时间t''和空间(x'',y'',z'')将是c'的函数。然而,很可能应该这样来考虑问题:关于由弱力引起的运动的时空,在定义中应该以规范粒子的静质量取作零时的速度c1取代光速c。由于“电弱理论”把弱力和电磁力统一起来了,因此有可能c1=c,则关于由弱力引起的运动的时空和关于由电磁力引起的运动的时空是相同的,同为(x,y,z,ict)。关于由强力引起的运动的时空,在定义中应该以介子的静质量取作零(在理论上取作零,在实际上没有静质量为零的介子)时的速度c''取代光速c,c''可能不等于c。则关于由强力引起的运动的时空(x'',y'',z'',Ic''t'')不同于(x,y,z,ict)或(x',y',z',ic't')。无论上述两种考虑中哪一种是对的,整个物质世界的时空将是高于四维的多维时空。对于由短程力(或只是强力)引起的物质运动,如果时空有了新的一义,就需要建立新的理论,也就是说需要建立新的量子场论、新的核物理学和新的粒子物理学等。如果研究的问题既清及长程力,又涉及短程力(尤其是强力),则更需要建立新的理论。

1)对量子力学的审思

从量子力学发展到量子场论的时候,遇到了“发散困难”[6]。1946——1949年间,日本的朝永振一郎、美国的费曼和施温格提出“重整化”方法,克服了“发散困难”。但是“重整化”理论仍然存在着逻辑上的缺陷,并没有彻底克服这一困难。“发散困难”的一个基本原因是粒子的“固有”能量(静止能量)与运动能量、相互作用能量合在一起计算[6],这与德布罗意波在υ=0时的异性。

现在我陷入一个两难的处境:如果采用传统的德布罗意关系,就只得接受不合理的德布罗意波奇异性;如果采纳修正的德布罗意关系,就必须面对使新的理论满足相对论协变性的难题。是否有解决问题的其他途径呢?我认为这个问题或许还与时间、空间的定义有关。现在的量子力学理论中时宽人的定义实质上依然是决定论的定义,而不确定原理是微观世界的一条基本规律,所以时间、空间都不是严格确定的,决定论的时空要领不再适用。在时间或空间的间隔非常小的时候,描写事情顺序的“前”、“后”概念将失去意义。此外,在重新定义时空时还应考虑相关的物质运动的类别。模糊数学已经发展得相当成熟了,把这个数学工具用到微观世界时空的定义中去可能是很值得一试的。

1)在二十一世纪物理学将在三个方向上继续向前发展(1)在微观方向上深入下去;(2)在宏观方向上拓展开去;(3)深入探索各层次间的联系,进一步发展非线性科学。

篇10

把物理学发展的现状与上一个世纪之交的情况作比较,可以看到两者之间有相似之外,也有不同之处。

在相对论和量子力学建立起来以后,现代物理学经过七十多年的发展,已经达到了成熟的阶段。人类对物质世界规律的认识达到了空前的高度,用现有的理论几乎能够很好地解释现在已知的一切物理现象。可以说,现代物理学的大厦已经建成。在这一点上,目前有情况与上一个世纪之交的情况很相似。因此,有少数物理学家认为今后物理学不会有革命性的进展了,物理学的根本性的问题、原则问题都已经解决了,今后能做到的只是在现有理论的基础上在深度和广度两方面发展现代物理学,对现有的理论作一些补充和修正。然而,由于有了一百年前的历史经验,多数物理学家并不赞成这种观点,他们相信物理学迟早会有突破性的发展。另一方面,虽然在微观世界和宇宙学领域中有一些物理现象是现代物理学的理论不能很好地解释的,但是这些矛盾并不是严重到了非要彻底改造现有理认纱可的程度。在这方面,目前的情况与上一个世纪之交的情况不同。在上一个世纪之交,经典物理学发生了“严重的危机”;而在本世纪之交,现代物理学并无“危机”。因此,我认为目前发生现代物理学革命的条件似乎尚不成熟。

虽然在微观世界和宇宙学领域中有一些物理现象是现代物理学的理论不能很好地解释的,但是这些矛盾并不是严重到了非要彻底改造现有理认纱可的程度。在这方面,目前的情况与上一个世纪之交的情况不同。在上一个世纪之交,经典物理学发生了“严重的危机”;而在本世纪之交,现代物理学并无“危机”。因此,我认为目前发生现代物理学革命的条件似乎尚不成熟。客观物质世界是分层次的。一般说来,每个层次中的体系都由大量的小体系(属于下一个层次)构成。从一定意义上说,宏观与微观是相对的,宏观体系由大量的微观系统构成。物质世界从微观到宏观分成很多层次。物理学研究的目的包括:探索各层次的运动规律和探索各层次间的联系。

回顾二十世纪物理学的发展,是在三个方向上前进的。在二十一世纪,物理学也将在这三个方向上继续向前发展。

1)在微观方向上深入下去。在这个方向上,我们已经了解了原子核的结构,发现了大量的基本粒子及其运规律,建立了核物理学和粒子物理学,认识到强子是由夸克构成的。今后可能会有新的进展。但如果要探索更深层次的现象,必须有更强大得多的加速器,而这是非常艰巨的任务,所以我认为近期内在这个方向上难以有突破性的进展。

2)在宏观方向上拓展开去。1948年美国的伽莫夫提出“大爆炸”理论,当时并未引起重视。1965年美国的彭齐亚斯和威尔逊观测到宇宙背景辐射,再加上其他的观测结果,为“大爆炸”理论提供了有力的证据,从此“大爆炸”理论得到广泛的支持,1981年日本的佐藤胜彦和美国的古斯同时提出暴胀理论。八十年代以后,英国的霍金[2,3]等人开始论述宇宙的创生,认为宇宙从“无”诞生,今后在这个方向上将会继续有所发展。从根本上来说,现代宇宙学的继续发展有赖于向广漠的宇宙更遥远处观测的新结果,这需要人类制造出比哈勃望远镜性能更优越得多的、各个波段的太空天文望远镜,这是很艰巨的任务。

我个人对于近年来提出的宇宙创生学说是不太信的,并且认为“大爆炸”理论只是对宇宙的一个近似的描述。因为现在的宇宙学研究的只是我们能观测到的范围以内的“宇宙”,而我相信宇宙是无限的,在我们这个“宇宙”以外还有无数个“宇宙”,这些宇宙不是互不相干、各自孤立的,而是互相有影响、有作用的。现代宇宙学只研究我们这个“宇宙”,当然只能得到近似的结果,把他们的延伸到“宇宙”创生了初及遥远的未来,则失误更大。

3)深入探索各层次间的联系。

这正是统计物理学研究的主

要内容。二十世纪在这方面取得了巨大的成就,先是非平衡态统计物理学有了得大的发展,然后建立了“耗散结构”理论、协同论和突变论,接着混沌论和分形论相继发展起来了。近年来把这些分支学科都纳入非线性科学的范畴。相信在二十一世纪非线性科学的发展有广阔的前景。

上述的物理学的发展依然现代物理学现有的基本理论的框架内。在下个世纪,物理学的基本理论应该怎样发展呢?有一些物理学家在追求“超统一理论”。在这方面,起初是爱因斯坦、海森堡等天才科学家努力探索“统一场论”;直到1967、1968年,美国的温伯格和巴基斯坦的萨拉姆提出统一电磁力和弱力的“电弱理论”;目前有一些物理学家正在探索加上强力的“大统一理论”以及再加上引力把四种力都统一起来的“超统一理论”,他们的探索能否成功尚未定论。

爱因斯坦当初探索“统一场论”是基于他的“物理世界统一性”的思想[4],但是他努力探索了三十年,最终没有成功。我对此有不同的观点,根据辩证唯物主义的基本原理,我认为“物质世界是既统一,又多样化的”。且莫论追求“超统一理论”能否成功,即便此理论完成了,它也不是物理学发展的终点。因为“在绝对的总的宇宙发展过程中,各个具体过程的发展都是相对的,因而在绝对真理的长河中,人们对于在各个一定发展阶段上的具体过程的认识只具有相对的真理性。无数相对的真理之总和,就是绝对的真理。”“人们在实践中对于真理的认识也就永远没有完结。”[5]

现代物理学的革命将怎样发生呢?我认为可能有两个方面值得考试:

1)客观世界可能不是只有四种力。第五、第六……种力究竟何在呢?现在我们不知道。我的直觉是:将来最早发现的第五种力可能存在于生命现象中。物质构成了生命体之后,其运动和变化实在太奥妙了,我们没有认识的问题实在太多了,我们今天对于生命科学的认识犹如亚里斯多德时代的人们对于物理学的认识,因此在这方面取得突破性的进展是很可能的。我认为,物理学业与生命科学的交叉点是二十一世纪物理学发展的方向之一,与此有关的最关于复杂性研究的非线性科学的发展。

2)现代物理学理论也只是相对真理,而不是绝对真理。应该通过审思现代物理学理论基础的不完善性来探寻现代物理学革命的突破口,在下一节中将介绍我的观点。

三、现代物理学的理论基础是完美的吗?

相对论和量子力学是现代物理学的两大支柱,这两大支柱的理论基础是否十全十美的

呢?我们来审思一下这个问题。

1)对相对论的审思

当年爱因斯坦就是从关于光速和关于时间要领的思考开始,创立了狭义相对论[1]。我们今天探寻现代物理学革命的突破口,也应该从重新审思时空的概念入手。爱因劳动保护坦创立狭义相对论是从讲座惯性系中不同地点的两个“事件”的同时性开始的[4],他规定用光信号校正不同地点的两个时钟来定义“同时”,这样就很自然地导出了洛仑兹变换,进一步导致一个四维时空(x,y,z,ict)(c是光速)。为什么爱因劳动保护担提出用光信号来校正时钟,而不用别的信号呢?在他的论文中没有说明这个问题,其实这是有深刻含意的。

时间、空间是物质运动的表现形式,不能脱离物理质运动谈论时间、空间,在定义时空时应该说明是关于什么运动的时空。现代物理学认为超距作用是不存在的,A处发生的“事件”影响B处的“事件”必须通过一定的场传递过去,传递需要一定的时间,时间、空间的定义与这个传递速度是密切相关的。如果这种场是电磁场,则电磁相互作用传递的速度就是光速。因此,爱因斯坦定义的时空实际上是关于由电磁相互作用引起的物质运动的时空,适用于描述这种运动。

爱因斯坦把他定义的时间应用于所有的物质运动,实际上就暗含了这样的假设:引力相互作用的传递速度也是光速c.但是引力相互作用是否也是以光速传递的呢?令引力相互作用的传递速度为c'。至今为止,并无实验事实证明c'等于c。爱因斯坦因他的“物质世界统一性”的世界观而在实际上假定了c=c'。我持有“物质世界既统一,又多样化的”以观点,再加之电磁力和引力的强度在数量级上相差太多,因此我相相信c'可能不等于c。工样,关于由电磁力引起的物质运动的四维时空(x,y,z,ict)和关于由引力引起的运动的时空(x',y',z',ic't')是不同的。如果研究的问题只涉及一种相互作用,则按照现在的理论建立起来的运动方程的形式不变。例如,爱因斯坦引力场方程的形式不变,只需把常数c改为c'。如果研究的问题涉及两种相互作用,则需要建立新的理论。不过,首要的事情是由实验事实来判断c'和c是否相等;如果不相等,需要导出c'的数值。

我在二十多年前开始形成上述观点,当时测量引力波是众所瞩目的一个热点,我曾对那些实验寄予厚望,希望能从实验结果推算出c'是否等于c。令人遗憾的是,经过长斯的努力引引力波实验没有获得肯定的结果,随后这项工作冷下去了。根据爱国斯坦理论预言的引力波是微弱的,如果在现代实验技术能够达到的测量灵敏度和准确度之下,这样弱的引力波应该能够探测到的话,长期的实验得不到肯定的结果似乎暗示了害因斯坦理论的缺点。应该从c'可能不等于c这个角度来考虑问题,如果c'和c有较大的差异,则可能导出引力波的强度比根据爱因劳动保护坦理论预言的强度弱得多的结果。

弱力、强力与引力、电磁力有本质的不同,前两者是短程力,后两者是长程力。不同的相互作用是通过传递不同的媒介粒子而实现的。引力相互作用的传递者是引力子;电磁相互作用的传递者是光子;弱相互作用的传递者是规范粒子(光子除外);强相互作用的传递者是介子。引力子和光子的静质量为零,按照爱因斯坦的理论,引力相互作用和电磁相互作用的传递速度都是光速。并且与传递粒子的静质量和能量有关,因而其传递速度是多种多样的。

在研究由弱或强相互作用引起的物质运动时,定义惯性系中不同的地点的两个“事件”的“同时”,是否应该用

弱力或强力信号取代光信号呢?我对核物理学和粒子物理学是外行,不想贸然回答这个问题。如果应该用弱力或强力信号取代光信号,那么关于由弱力或强力引起的物质运动的时空和关于由电磁力引起的运动的时空(x,y,z,ict)及关于由引力引起的运动的时空(x',y',z',ic't')

有很大的不同。设弱或强相互作用的传递速度为c'',c''不是常数,而是可变的,则关于由弱或强力引起的运动的时空为(x'',y'',z'',Ic''t''),时间t''和空间(x'',y'',z'')将是c'的函数。然而,很可能应该这样来考虑问题:关于由弱力引起的运动的时空,在定义中应该以规范粒子的静质量取作零时的速度c1取代光速c。由于“电弱理论”把弱力和电磁力统一起来了,因此有可能c1=c,则关于由弱力引起的运动的时空和关于由电磁力引起的运动的时空是相同的,同为(x,y,z,ict)。关于由强力引起的运动的时空,在定义中应该以介子的静质量取作零(在理论上取作零,在实际上没有静质量为零的介子)时的速度c''取代光速c,c''可能不等于c。则关于由强力引起的运动的时空(x'',y'',z'',Ic''t'')不同于(x,y,z,ict)或(x',y',z',ic't')。无论上述两种考虑中哪一种是对的,整个物质世界的时空将是高于四维的多维时空。对于由短程力(或只是强力)引起的物质运动,如果时空有了新的一义,就需要建立新的理论,也就是说需要建立新的量子场论、新的核物理学和新的粒子物理学等。如果研究的问题既清及长程力,又涉及短程力(尤其是强力),则更需要建立新的理论。

1)对量子力学的审思

从量子力学发展到量子场论的时候,遇到了“发散困难”[6]。1946——1949年间,日本的朝永振一郎、美国的费曼和施温格提出“重整化”方法,克服了“发散困难”。但是“重整化”理论仍然存在着逻辑上的缺陷,并没有彻底克服这一困难。“发散困难”的一个基本原因是粒子的“固有”能量(静止能量)与运动能量、相互作用能量合在一起计算[6],这与德布罗意波在υ=0时的异性。

现在我陷入一个两难的处境:如果采用传统的德布罗意关系,就只得接受不合理的德布罗意波奇异性;如果采纳修正的德布罗意关系,就必须面对使新的理论满足相对论协变性的难题。是否有解决问题的其他途径呢?我认为这个问题或许还与时间、空间的定义有关。现在的量子力学理论中时宽人的定义实质上依然是决定论的定义,而不确定原理是微观世界的一条基本规律,所以时间、空间都不是严格确定的,决定论的时空要领不再适用。在时间或空间的间隔非常小的时候,描写事情顺序的“前”、“后”概念将失去意义。此外,在重新定义时空时还应考虑相关的物质运动的类别。模糊数学已经发展得相当成熟了,把这个数学工具用到微观世界时空的定义中去可能是很值得一试的。

1)在二十一世纪物理学将在三个方向上继续向前发展(1)在微观方向上深入下去;(2)在宏观方向上拓展开去;(3)深入探索各层次间的联系,进一步发展非线性科学。

2)可能应该从两方面去控寻现代物理学革命的突破口。(1)发现客观世界中已知的四种力以外的其他力;(2)通过审思相对论和量子力学的理论基础,重新定义时间、空间,建立新的理论

篇11

范拉姆斯东克和他的同事们认为,物理学如不能解释时空是如何以及从哪里产生的,它的任务就不算完成。时空可能从某种更基本的东西产生,这种东西尚未命名,至少需要构造一个像“全息”那样大胆的概念。他们认为,这种从根本上对现实的重新定义,是解释黑洞核心那个无限致密的“奇点”怎样扭曲了时空构造的唯一方式,这超越了所有的认知。或者说,研究人员怎样才能把原子尺度的量子理论和行星尺度的广义相对论统一起来,有一个东西长期阻碍了理论学家的构建工作。

“所有的经验都告诉我们,我们对现实不该有两种显著不同的构想,它必然是一个庞大的包含所有的理论。”美国宾夕法尼亚大学物理学家阿贝・阿什特卡说。

找到一个庞大的理论是一项艰巨挑战。为此,《自然》杂志探索了现代几种较有前途的前进路线――一些新兴的观点以及对它们的检验。

热力学万有引力

人们可能会问的一个最明显的问题是,这种努力是否徒劳?是否真的有某种东西比时空更基本?证据何在?一个令人兴奋的线索来自上世纪70年代早期取得的一系列不寻常的发现。当时,量子力学和万有引力与热动力学开始紧密结合在一起,这一趋势日益明显。

1974年,英国剑桥大学的斯蒂芬・霍金证明,黑洞周围空间存在着量子效应,这使得黑洞向外发出辐射,就好像它很热一样。其他物理学家也很快得出结论,这种现象在宇宙中其实相当普遍。即使在真空里,正在加速的宇航员会感到他自己像是被包围在热水浴中。虽然对目前火箭可达到的加速而言,这种效应太微弱了而无法被觉察到,但这或许是个基本原理。如果量子理论和广义相对论是正确的――这二者都已被众多实验所证实――那霍金辐射的存在似乎是理所当然。

第二个重要发现也与此密切相关。根据标准热力学理论,一个物体要辐射出热量必须降低熵值,这也是检测其内部量子状态的一种数量方法。所以黑洞也是如此:甚至早在霍金1974年发表其论文之前,现在以色列耶路撒冷希伯来大学任职的雅各布・贝肯斯坦就曾证明了黑洞拥有熵值。但二者之间还是有差异的。对于大部分物体来说,它们的熵与物体所含原子数目成比例,也就是和体积成比例;但黑洞的熵却与其事件视界的表面积成比例。事件视界是光无法逃逸的界限,这就好像黑洞的表面是其内部信息的某种编码,正像以二维全息编码的形式来表现三维图像那样。

1995年,美国马里兰大学物理学家泰德・雅各布森将二者的发现结合起来提出一种假设:空间中的每个点上都有一个微小的“黑洞视界”,并服从熵与面积关系。结果他发现,这样在数学上就变成了爱因斯坦的广义相对论方程――只用了热力学概念,而没有用时空弯曲理论。

“这好像涉及某种深入万有引力起源的东西。”雅各布森说。尤其是,热力学定律的本质是一种统计表现,即大量原子和分子运动在宏观上的平均,所以该计算结果也意味着,万有引力也是统计上的表现,是对时空的某种看不见的成分的一种宏观近似。

2010年,荷兰阿姆斯特丹大学的弦理论学家埃里克・韦林德证明了时空成分的统计热力学――无论它们最终是什么,都会自动产生牛顿的万有引力定律。

而在另一项独立研究中,印度浦那校际中心天文与天体物理学中心的宇宙学家萨努・帕德曼纳班指出,爱因斯坦方程可以改写成另一种等同于热力学定律的形式――就像万有引力的许多其他替换理论一样。帕德曼纳班最近正在扩展热力学方法,试图以此解释暗能量的起源及其在宇宙中的量级。暗能量是推动宇宙加速膨胀的一种神秘力量。

要想用实验来验证这些想法是非常困难的。就好像水看起来是光滑完美的流体,但如果用显微镜深入观察到能看见水分子的程度,也就是不到1纳米,情况就会完全不同。据此人们估计,时空虽然看起来是连续的,但如果小到普朗克级别,大致是10的负35次方米,比一个质子还小约20个数量级,情况也可能完全不同。

但这并非不可能。人们经常提到一种方法可以检验时空的结构是否为离散的,就是寻找高能光子延迟。在遥远的宇宙角落,由某个宇宙事件(比如超新星爆发)抛射出大量γ射线,这些高能光子到达地球可能会产生时间上的延迟。事实上,这些波长最短的光子能感觉到它们所穿越的太空旅途是由某种微小的、崎岖不平的成分构成,正是这种崎岖不平略微延缓了它们的行程。

2013年4月,意大利罗马大学量子-引力研究员乔瓦尼・阿麦利诺-卡梅利亚和同事在一次γ射线爆发记录中,发现了这种光子延迟的线索。阿麦利诺-卡梅利亚说,这些结果还不是最后定论,他们打算进一步扩展研究,观察宇宙事件中产生的高能中微子的旅行时间。他说,如果这些理论无法被检验,“那么对于我来说,它们就不是科学,而是,我对此并无兴趣。”

其他物理学家也在寻求实验的证明。比如在2012年,奥地利维也纳大学和英国伦敦帝国学院的科学家提出了一项“桌面实验”,实验中用到一种能在激光驱动下来回运动的显微镜。他们认为,当光从镜面反射时,普朗克尺度的时空间隔会产生能探测得到的变化。

圈量子引力

即使这种理论是正确的,从热力学的角度来看,时空的基本构成也可能什么都不是。姑且这么说,如果时空由某种东西编织而成的,那织造它的“线”又是什么?

目前一个还算实际的答案就是圈量子引力(loop quantum gravity)理论。该理论是上世纪80年代中期由阿什特卡等人发展而来,将时空构造描述为就像一张展开的蜘蛛网,网线上携带着它们所通过区域的量子化的面积和体积信息。每根网线的末端最终一定会连在一起而形成圈状――正如该理论的名字――但这与更著名的弦理论的“弦”没什么关系。弦理论的“弦”在时空中来回运动,而圈量子引力的“网线”则构成了时空本身:它们携带的信息定义了周围时空构造的形状。

由于这种圈是量子的,所以该理论也定义了一个最小面积单位,非常类似于在普通量子力学中,对氢原子一个电子的最小基本能量态的定义。这种面积量子是大约一个普朗克单位那么大的一个面。要想再插入一根面积更小的“线”,它就会跟其余的“网线”断开。它不能与任何其他东西连接,只好从时空中退出。

定义了最小面积带来了一个令人欣慰的结果,就是圈量子引力不能被无限挤压到一个无限小的点。这意味着在大爆炸瞬间以及在黑洞中心,它不会产生那种打破爱因斯坦广义相对论方程的奇点。

2006年,阿什特卡和同事报告他们利用这一优势进行了一系列模拟,他们用爱因斯坦方程的圈量子引力版本反演了时钟倒转,以可视化形式展示了大爆炸之前发生了什么:宇宙如预期那样反向演化,回溯到大爆炸时。但在它接近由圈量子引力决定的基本大小极限时,一股斥力进入奇点迫使其打开,成为一个隧道,通向另一个先于我们宇宙之前而存在的宇宙。

今年,乌拉圭大学物理学家鲁道夫・甘比尼和美国路易斯安那大学的乔奇・普林也报告了相似的黑洞模拟。他们发现,当一个观察者深入到黑洞核心时,遭遇到的不是奇点,而是一条狭窄的时空隧道,通向空间的另一部分。

“排除了奇点问题是一项重大成就。”阿什特卡说,他正和其他研究人员一起辨认那些留在宇宙微波背景上的特征标志。宇宙微波背景是宇宙在婴儿时期迅速膨胀残留的辐射。那些标志则可能是由一次反弹留下来的,而不是爆炸。

圈量子引力论还不是一个圆满统一的理论,因为它没有包括任何其他的力,而且物理学家们也还没能说明,正常时空是怎样从这种信息网中出现的。对此,德国马克思・普朗克万有引力物理学研究所的丹尼尔・奥利提希望在凝聚体物理学中寻找灵感。他在物质的过渡阶段生成了一种奇异相态,这种相态可以用量子场论来描述。宇宙可能也经过类似的变化阶段,奥利提和同事正在寻找公式来描述这一过程:宇宙怎样从一系列离散的圈过渡到光滑而连续的时空。“我们的研究还处在初期阶段,还很困难。我们就像是鱼,游在难以理解的时间之流的最上游。”奥利提说。探索的艰难使一些研究人员转而追求另一种更抽象的过程,由此提出了著名的因果集合论(causal set theory)。

因果集合论

因果集合论由加拿大周界研究所物理学家拉斐尔・索尔金创立。该理论提出,构成时空的“基本之砖”是简单的数学上的点,各点之间由关系(links)连接,每个关系指示着从过去到未来。这种关系是因果性表现的本质,意味着前一个点会影响后一个点,但反过来不行。最终的因果网就像一棵不断生长的树,逐渐形成了时空。“你可以想象为,时空是由于这些点而出现的,就像温度是由于原子而出现的那样。”索尔金说,“但要问‘一个原子的温度是多少?’是没有意义的,要有一个整体的概念才有意义。”

上世纪80年代末时,索尔金用这一框架估算了可见宇宙可能包含的点的数量,推导出它们应该能产生一种小的内在能量,从而推动宇宙加速膨胀。几年后,人们发现宇宙中存在一种暗能量,证实了他的猜想。“通常人们认为,从量子引力做出的预测是不可检验的,但这种情况却可以。”伦敦帝国学院量子引力研究员乔・汉森说,“如果暗能量的值更大,或是零,因果集合论就成为不可能。”

虽然很难找到支持证据,因果集合论还是提供了其他一些可检验的预测,一些物理学家利用计算机模拟得到了更多结果。其中一种理论观点可追溯到上世纪90年代初,大致上认为,普通时空由某种未知的基本成分构成,这些成分是微小的块体,淹没在混乱的量子涨落的海洋中,随后这些时空块自发地黏合在一起而形成更大的结构。

最早的研究是较令人失望的,荷兰内梅亨大学物理学家雷内特・罗尔说。时空的“基本之砖”是一种简单的超级金字塔,即三维四面体的四维形式。通过模拟的黏合规则让它们自由结合,结果就成了一系列奇幻的“宇宙”,有的有太多维度而有的太少,它们自己会折叠起来或破成碎片。“就像是一场自由混战,任何东西无法恢复原状,类似于我们周围所看到的一切。”罗尔说。

但是,像索尔金、罗尔他们的发现增加了改变一切的因果性。毕竟时间维度与三维的空间维度不同,罗尔说,“我们不能在时间中来回旅行。”所以她的研究小组对模拟做了改变,以保证后果不会跑到原因的前面。然后他们发现,时空小块开始持续地自行组装,成为光滑的四维宇宙,其性质正和我们所在的宇宙类似。

有趣的是,这一模拟还暗示了在大爆炸之后不久,宇宙在婴儿期时只有二个维度:一维空间和一维时间。还有其他尝试推导量子引力方程的实验也得到了同样预测,甚至还有人提出,暗能量的出现是我们的宇宙正在发展出第四空间维度的一个信号。其他人还证明了,在宇宙早期的二维阶段可能形成一些花纹,类似于我们在宇宙微波背景上所看到的那样。

全息论

篇12

夸克理论和标准模型

构成自然界的基本组元有夸克和轻子;夸克和轻子被认为是物质世界,包括人类自身的最小构成元素。由夸克和轻子作为物质的基本组元而建立的粒子物理标准模型取得了极大的成功,堪称20世纪物理学最重大的成就之一。

“夸克(quark)”一词是由美国人默里・盖尔曼改编自詹姆斯・乔斯的小说《芬尼根守灵夜》中的诗句:“三个夸克才顶得上一个马克”。1962年,他仿佛教八正道提出了粒子分类的“八重法”,把全部粒子归划为简单有序的族类系统,成为粒子系统的“元素周期表”,1964年建立了关于强子结构的夸克模型,提出了中子、质子这一类强子是由更基本的单元――夸克组成的。这位粒子及其相互作用分类的创立者,获1969年物理学奖。。

夸克理论认为,所有的重子(如质子、中子)都是由三个夸克组成的,反重子则是由三个相应的反夸克组成的。电子和中微子是最轻的轻子。夸克是具有分数电荷,是电子电量的2/3或-1/3倍。最初解释强相互作用粒子的理论需要三种夸克,分别是上夸克、下夸克和奇异夸克。1974年发现了J/ψ粒子,要求引入第4种夸克――粲夸克。1975年发现了T粒子,要求引入第5种夸克――底夸克。1995年美国费米实验室宣布发现发现第6种夸克一顶夸克,人们相信这是最后一种夸克。顶、底、奇、粲夸克由于质量太大,很短的时间内就会衰变成上夸克或下夸克。

诺贝尔奖与标准模型

探索微观世界奥秘的粒子物理学创建了夸克理论和标准模型,成为获得诺贝尔物理学奖最多的学科一竟占到全部奖项的四分之一。

英国人狄拉克1928年把爱因斯坦相对论引入量子力学,创立了电子波动方程,1930年提出空穴理论,预言正电子的存在,获1933年奖。

美国人维格纳1928年提出宇称守恒原理,1936年提出中子吸收理论和核力的概念,获1963年奖。

美国人鲍林(1954年化学奖得主)1936年研究衰变的B能谱,提出中微子假设。

美籍意大利人费米1933年提出原子核B衰变理论,首先描述了弱相互作用,获1933年奖。

日本人汤川秀树根据中国道家思想提出传递核力的介子理论,认为核力是由于核子之间交换某种粒子(介子)而产生的,获1935年奖,。

英国人鲍威尔根据汤川的预言,在宇宙线中发现了π介子的存在,获1950年奖。

美国人施温格、费恩曼和日本人朝永振一郎将量子电动力学中出现的无穷大归并入物理质量和物理电荷中,提出重正化方案,使其爱因斯坦狭义相对论完全符合,获1965年奖。

美国人莱因斯1955年在实验中首次发现了中微子,证实了鲍林的预言;佩尔1974年发现了一种比电子重3700倍,带负电的重轻子一t轻子。他们的发现证明,自然界存在着第三代夸克和轻子,获1995年奖。

美籍华人李政道和杨振宁1956年提出θ介子和t介子实际上是同一种K介子,并推导出弱相互作用中宇称不守恒定律,获1957年奖。1965年奖得主施温格1957年提出弱相互作用是由光子和两个矢量玻色子传递的。

美籍华人丁肇中和美国人里克特1974年同时发现了J/ψ粒子,为具有粲(charm)特性的第4种夸克,获1976年奖。

美国人弗里德曼、肯德尔和加拿大人泰勒1968年用电子一质子非弹性散射实验,首次证实了夸克的存在,获1990年奖。

美国人格拉肖、温伯格和巴基斯坦人萨拉姆1970年提出弱电相互作用理论及模型,获1979年奖。他们为实现爱因斯坦设想的自然界中存在的4种基本力(引力、电磁力、强相互作用力、弱相互作用力)的统一场理论迈出了重要一步。

荷兰人范德梅尔和意大利人鲁比亚1984年1月用自己设计的高能物理加速器,发现了传递场粒子w±Z°,从而最终验证了弱电统一场理论,获1984年奖。

美国人克罗宁和菲奇1964年从长寿命的K°介子的衰变实验中发现CP不守恒的事例,获1980年奖。这个发现意味着时间反演、物质与反物质在微观过程是不对称的,可以解释宇宙形成极早期粒子生成这个悬而未决的问题。

荷兰人霍夫特1971年证明无质量的规范场的量子化方法,可以直接推广到有自发破缺机制的情况,这对弱电理论的量子化至关重要;霍夫特与其师韦尔特曼1972年提出弱电统一理论的量子结构,证明弱电统一理论可重正化,从而为建立包括强、弱电相互作用理论的标准模型奠定了基础。师徒二人因此荣膺了1999年奖。

美国人格罗斯、维尔切克和波利策1973年提出粒子相互作用的“渐近自由”理论:强作用力会随夸克彼此距离增大而增大,因此没有夸克可以从原子核里外迁的自由;强作用力会随夸克的距离变小而减弱,这就意味着约束在原子内部的夸克,可以自由的运动。夸克渐近自由的发现,确立了粒子物理学的标准模型,获2004年奖。

标准模型不是终结

“标准模型”是目前描述粒子之间相互作用的最佳理论。标准模型的主要内容有以下几点:物质的基本组成单元是三代带色夸克和三代轻子,它们之间作用着四种基本相

互作用一强相互作用,电磁相互作用、弱相互作用和引力相互作用。除了可以忽略的引力作用外,其他三种作用的媒介场都是规范场。传递强相互作用的是胶子,传递电磁相互作用的是光子,传递弱相互作用的是中间玻色子w+、w-和Z°。在现有实验条件下,标准模型能解释粒子世界的主要规律,而且提出了一系列重要预言,有待进一步探索求证。

标准模型是将自然界4种基本力中的3种以及所有物质的基本粒子都统一到一套理论之中,非常成功的理论,但可能不是粒子物理学的最终理论。

标准模型中至少包括19个待定参数,像粒子的质量、相互作常数及混合角等。这些参数该取多大值,不能从基本原理中推导出来,而必须径由实验数据来确定,这就使理论的简洁性、确定性和预言能力大打折扣,难以其他物理基本理论媲美。此外,标准模型中还有许多有待进一步确认的问题。

标准模型有个致命缺陷,那就是无法解释物质质量的来源。有科学家认为,其中奥妙可能在于自发对称性破缺机制。根据有关理论,在宇宙大爆炸时存在一种处于完全对称状态的“希格斯场”,其中所有粒子都不存在质量。但“希格斯场”就像笔尖直立的铅笔一样并不稳定,随着宇宙逐渐冷却,它的对称性被破坏,一些基本粒子在这一过程中产生不同的质量。谁来解决标准模型的致命缺陷呢?2008年奖的获得者回答了这一问题。

阐明“对称破缺”的真谛

南部阳一郎因发现亚原子物理学的自发性对称破缺机制而获奖。所谓自发对称性破缺,是指一个物理系统的拉格朗日量(概括整个系统动力状态的函数)具有某种对称性,而基态(系统的最低能阶)却不具有该对称性。他的理论涉及广泛领域,今年9月欧洲核子研究中心启动“大型强子对撞机”实验,就和自发对称破缺机制密切相关,其基本理论模型―“标准模型”就包括南部的研究,对撞机实验的主要目的是寻找质量的起源。“真空”并不完全是空的,有人假设其中存在着一种叫玻色子的粒子。根据自发性对称破缺机制真空中有并非玻色子的物质,它和粒子发生作用产生了质量。因此南部的研究奠定了“对称破缺”理论基础。

什么是“对称破缺”呢?瑞典皇家科学院用一个形象的类比来解释什么是自发对称性破缺:一支以笔尖直立于水平面上的铅笔,可以被看成是完全对称的,任何方向对它来说都没有区别;但如果这支铅笔倒在水平面上,它的对称性就被“打破”了,而它也同时达到了自己的基态或者说最低能阶,此时它的状态最为稳定。诺贝尔奖评委拉斯?布林克用一只普通的橘子深入浅出的解释了这三位科学家的重要成就世界万物并不存在完美的对称,就像看上去对称的橘子在显微镜下会呈现出对称性的偏离。

自发对称性破缺的概念最早出现在凝聚态物理中,20世纪60年代被南部阳一郎引入量子场论。他的理论某种程度上揭示出在大自然混乱的表面下所隐藏着的对称性。目前,有关基本粒子物理学标准模型的所有理论中,几乎都渗入了南部的成果。

我们的世界并非以一种完美对称的方式运行,这归因于微观层面上对称性的“偏离”。早在1960年,南部就给出了基础粒子物理中的对称性自发破缺的数学描绘。根据他的有关理论,大自然显然很混乱的表面下隐藏着秩序。目前,有关基本粒子物理学标准模型的所有理论中,几乎都渗入了南部的成果。标准模型将自然界4种基本力中的3种以及组成所有物质的基本粒子都统一到一套理论之中。

南部所研究的对称性自发破缺与小林、益川所描述的对称性破缺存在不同。这些自发事件看起来在宇宙开始出现就存在,当这一现象1964年首次出现在小林、益川的粒子实验时,人们对此感到非常震惊。小林和益川于1972年在标准模型的框架下,就特定对称性破缺的起源给出了解释。但根据他们的预言,标准模型中必须包括一些当时还未发现的夸克。他们在标准模型的框架下对对称破缺进行了解释,但是需要将模型扩展至三个夸克家族。他们所预言的这些夸克最近才在物理实验中出现。2001年和2004年,美国斯坦福实验室和日本高能加速器研究机构的粒子探测器分别独立实现了对称性破缺。“结果与小林、益川30年前的预测一致,”诺贝尔委员会的评语特意点出。

3名物理学家分别在上世纪60年代和70年代通过数学模型“预言”了量子世界自发性对称破缺现象的存在机制和根源。然而,这些预言直到本世纪初才能通过高能粒子实验验证。今年9月11日启动的世界最大强子对撞机探索的粒子世界正是这些科学家的“领地”。南部因发现亚原子物理学中的自发性对称破缺机制而获奖;小林和益川则因有关对称性破缺起源的发现而获奖。

对称破缺是量子场论的重要概念,对探索宇宙的本原有重要意义。它包含“自发对称破缺”和“动力学对称破缺”两种情形。

根据已知理论,大约137亿年前,宇宙在“大爆炸”中诞生。之后,夸克、电子等粒子和同样数量质量但电荷相反的反粒子构成物质。粒子和反粒子一旦碰撞,将在释出光后“同归于尽”。因此,如果两者始终并存,宇宙中的物质最终将消失殆尽,但是,现在的宇宙中只有粒子“幸存”,没有发现反粒子。

科学家认为,反粒子幸存率不如粒子,是因为除电荷相反外,还存在其他微小的差异,这种粒子和反粒子的性质差异被称为“自发对称破缺”,它的机制是亚原子物理学的一大谜团。因此,南部对自发性对称破机制的研究奠定了亚原子物理学的“标准理论”基础。对称破缺产生根源是什么昵?小林和益川1972年,解释了对称破缺的起源。

预言六种夸克的存在

南部对自发性对称破缺机制的研究奠定了亚原子物理学的“标准理论”基础。

“早在1960年,南部阳就阐明了基本粒子物理中自发对称破缺的数学描述。”瑞典皇家科学院在授奖评语写道,“自发对称破缺机制隐藏着表面上杂乱无序的自然秩序。它被证明极其有用,南部的理论奠定了基本粒子物理学的标准模型。这一模型融合了所有物质最微小的组成部分,使4种自然力量即电磁力、强核力、弱核力和引力中的3种在同一理论中得到解释。”

小林和益川的贡献体现在他们“在标准模型的框架内解释了对称破缺机制”,并据此“预言”了3种夸克的存在。他们早在1973年就提出了“小林一益川理论”,认为造成宇宙中粒子多于反粒子的原因是夸克的反应衰变速率不同。他们还预言存在6种夸克。另外3种夸克分别发现于1974、1977和1995年。

在小林和益川提出预言之初,科学家只发现了3种夸克,因此一直难以证明他们的理论。1995年,6种夸克都被发现。2001年,日

本和美国科学家确认了由夸克构成的正反粒子―B介子和反B介子的“CP对称性破缺”现象,从而证明了“小林一益川理论”。现在,“小林-益川理论”已得到全球基本粒子物理学家的普遍认可。

授奖评语说,自发对称破缺似乎早在宇宙诞生时就存在,但直到小林和益川于1964年通过粒子试验才向世人证实了这一“神秘存在”。“小林一益川理论”也因此成为支撑亚原子物理学标准理论的重要支柱。

探索物质世界存在之谜

现代物理学理论认为,宇宙大爆炸时应产生同等数量的粒子,二者相遇会湮灭,同时释放能量。如果真如此,整个的物质世界、包括人类自身都将不会存在。

物质为何会多出反物质?对称性破缺是背后的关键原因。据测算,宇宙中物质粒子的数量只要比反物质粒子多出百亿分之一,就足以形成我们今天的物质世界。但为什么会出现这种对称性的微小“偏离”,一直是科学家未能揭开的一个重大谜团。三位获奖者提出的有关理论,为解释宇宙的构成提供了重要线索。

到目前为止,人们仍无法解释一种同类型的对称破称,它是140亿年前宇宙大爆炸时宇宙起源的幕后力量。如果宇宙大爆炸产生了相同的物质和反物质,它应当互相抵消,但这并没有发生,每100亿个反物质粒子就有一个额外的物质粒子发生了微小的偏移。这种对称破缺可能是使我们宇宙得以幸存的原因。这究竟是如何发生的仍待探索,也许日内瓦的欧洲核子研究中心的新型粒子加速器将帮助解开这个谜。

标准模型永不终结

几乎四分之一的诺贝尔奖的研究成果都与粒子物理学标准模型相关。然而标准模型还有许多进一步确认的和尚待探明的问题。例如:

希格斯粒子是否存在?1964年,美国学者希格斯提出用自发破损机制使矢量玻色子获得质量。尽管希格斯机制是挽救弱电统一理论的关键,然而这个理论所预言的“希格斯粒子”至今还没有找到。也许这就是为什么这位希格斯机制创立者为什么至今还没获诺贝尔奖的原因吧!

中微子质量否为零?日本神岗的物理学家已于本世纪初宣布探测到表明中微子质量不等于零的中微子振荡现象,但还需最后确认。如果中微子质量不是“零”,那么仅从弱相互作用宇称不守恒就推不出存在右旋中微子的结论,理论上必须作出相应的修正才能说明为什么观测不到右旋中微子。谁能解决右旋中微子这个难题呢?这个智慧者必定获诺贝尔奖。

CP破坏的根源是什么?在强相互作用方面,虽然从表面上看,有了量子色动力学就可以解释夸克的相互作用过程了,但是实际上问题不那么简单。比如我们知道,夸克总是呆在强子里面,不能独立存在,所以强子里面的任一个夸克在与外面的其他粒子发生相互作用时,强子里面别的夸克不会一点也不受影响。而恰恰对于这一块,目前还没有好的办法去精确处理。这个精确处理者,必将荣获诺贝尔奖。

所以,标准模型的建立并不说明粒子物理的研究任务已基本完成,前面还有许多领域等着人们去开拓,比如:

沿着寻找构成物质量基本组分的研究思路,,对于标准模型中的25种粒子(6种轻子,6种夸克,1种光子,3种中间玻色子,8种胶子和1种希格斯粒子),我们能在更基本组分和更基本过程中统一描述它们的性质吗还存在其他粒子和相互作用吗?

电与磁是统一的;电磁与弱力是统一的;那么,弱电磁、强相互作用是否也是统一的?

篇13

主要分两方面来说明:

1、关于自然宇宙和认知思维

东方宇宙观的基本要素:宇宙是对立统一的和固有的动态性质看成是一切自然现象和一切人类境遇的本质。包含着时间与变化为其基本特征,认为天地万物都是宇宙整体中相互依赖不可分割的部份。“对立物是互补的”,古代东方的智慧与现代西方的科学之间多么深刻地和谐一致:近代物理认为对立统一是微观世界的波和粒子的二重性;光以光子的形式发射或吸收,以电磁波的形式在空间传播,既是粒子又是波。

系统论的研究方法有力地强调近代物理与东方哲学之间的相似性,不仅在物理学中,而且在生物学、心理学和其他学科中存在着相似。

中国哲学中的“气”所表达的思想与近代物理学中的“场”极其相似;古代中国哲学认为“空”、“无”或“道”是产生一切有形实体的基础。“气”:古代的中国用它来表示生命的气息;或表示使宇宙具有生气的能量。武术太极拳流畅的动作的依据也是“气”的流通。“气”有节奏地聚和散,产生了一切形体,最终又散归于“空”。“空”、“无”:不能把“无”当作只是空无一物。相反,它是一切形式的本质,是一切生命的泉源,是一种具有无限创造潜力的“空”。“空”可被感知的表现不是静止和永久的,而是动态和暂时的。《管子》中说:“虚而无形谓之道”。在量子场论中“场”或者说“气”,不仅是一切有形物体的潜在本质,而且还以波的形式载带着它们的相互作用。近代物理学的量子场论的概念为这一古老的问题找到了一种出人意料的答案。近代物理学的主要理论所导致的宇宙观与中国古代哲理观点有内在的一致性,并且完全互相协调。

人类精神的两个方面:一种是理性的能力,一种是直觉的能力。两者即不同又互补,只有互相补充,才能更全面地认识世界。察知近代物理学的宇宙观与东方哲理观点之间深刻地和谐一致,是一个广泛得多的文化变革中不可缺乏的一部份。

东方哲学的知识严格地以经验为基础:道家哲学成为中国科学和技术的认知基础,于是有:“为学日益,为道日损,损之又损,以至于无为”《老子》,“圣人之心静乎,天地之鉴也,万物之镜”、“堕肢体、黜聪明,离形去知,同于大道,此谓坐忘”《庄子》。与之相对立,科学知识严格地以实验为基础,科学实验似乎可以在任何时候由任何人来重复;东方哲学的经验似乎仅限于少数人在特定场合下才能获得。然而直觉常给科学家以新的领悟,并使之富有创造性,研究工作的理性部分如果得不到直觉的补充将会是难展身手。爱因斯坦广义相对论的提出,首先通过直觉和领悟,得到天文物理学家爱丁顿对日食的观察中证实,充分说明了问题。

2、关于天人合一和时空渗透

东方哲学认为:排除世事的骚扰,把自己看作自然界的一物,达到天人合一的境界。近代物理学认为宇宙是一个动态的不可分割的整体,观察者总是必不可少地包括在这个整体之中。而在量子理论和相对论中这种相似性显得更明显了。

“互相渗透的空间和时间”,东方的“时一空”哲学:道家认为,“静中静,非真静,动处静得来 ,才是性天之真境”、“人法地,地法天,天法道,道法自然”其直觉常常十分接近于近代相对论所含有的自然观,即空间与时间的统一,意味着物质不能与它的能动性相分离,空间与时间也是相互渗透的。量子场论认为:物质从不静止,而总是处于一种运动的状态,一切相互作用都与粒子的产生和消灭有关,粒子与反粒子之间基本对称性,物质在本质上是永不静止的,这也是亚原子世界的特点。爱因斯坦的狭义相对论,以物体运动速度不能超过光速为前提,指出时间与空间都不是绝对的,时间与空间不是单独存在的单位,而是一个因观测者的情况而不同的连续的时空;时间也不是绝对的,时间的快慢决定于运动的速度。从这一理论中,爱因斯坦得出了质量守恒律E=mc2,这公式最终导致了原子弹的产生。在广义相对论中提出时间与空间的存在不能独立于宇宙,也不能相互独立。从最小的夸克到最大的宇宙,爱因斯坦使我们对世界有了全新的看法,我们的宇宙像一张有了弹性的膜,在某些地方伸展,而另一些地方卷曲。而时间不是绝对的,它的消逝完全取决于我们的运动速度。自然界不是处于一种静态的平衡,而是处于一种动态的平衡中。近代天文学的重要发现,世界在膨胀,整群的星系在膨胀, 并以非常协调一致的方式在膨胀。宇宙的基本统一性不仅表现在非常小的微观世界,而且也表现在非常大的宏观世界里;同时也表现在太极拳的内涵中,以“一动一太极,处处皆太极”、“静动全身、意在蓄神”、“渐至懂劲,阶及神明”,领悟“空”、“意”、“精”、“气”、“神”以求虚无、松静、柔化、整合、霹雷的生克转换,对自身、对手、时际、空间、场合、趋势等等审时度势,把握战机、运用谋略,得心应手地达到“法”、“术”、“道”的最佳耦合,抓住对方的缺陷处,兵贵神速以迅雷不及掩耳之势,用突发性脉冲波形式将能量从零点骤然升到极大,在不知不觉中以雷霆万钧之势制服对方,达到“出手不见手,出劲不见劲,眼前一片空,轰然如惊雷”的神妙地步,使拳艺渐入“太极”之境,真正获得养生健身和技击制敌的精髓。

有机宇宙观虽在原子和亚原子层次上极为有用,但对于人类尺度上的科学与技术层面来说意义不大,对于建造机械和解决建设、优化生活问题等没有帮助。东方了解“道”的根本而不是它的枝节,科学家则了解它的枝节,而不是它的根本, 欲使兼而有之并根深叶茂就需要多方面作出努力。

四、继承弘扬传统文化,渗透现代科学精粹,创新奋进,中国文化必将再显辉煌

中国古代自然哲学没有能产生向近代科学转化的革命,不管是内在的机制或者是外在的环境因素,都是我们应该正视的问题。弘扬和继承中华文化,不断创新推进,在传统文化哲理的基础上,循着机械论的自然观走向近代科学,再将循着现代科学走向新的有机宇宙论,找准传统文化与现代科学相贯通的脉络,同步进行科学的现代化和文化的现代化,包括发展武术太极拳。

1、不断创新

应该说,创新是的本质特征。“创新是一个民族进步的灵魂,是一个国家兴旺发达的不竭动力”()。爱因斯坦“最看不起那些只知夸耀前人而不思进取的人。”树立全民族的创新意识,对于我们二十一世纪的发展至关重要。武术太极拳走向世界也绝对不能例外。改革与现代化建设一刻不能没有创新思维,改革已经极大地改变了并正在迅速地深刻地改变着以往阻碍中华民族理性思维发展的那些社会条件,引起思维特征的革命性变革。通过思维特征的革命,我们的民族成为一个崇尚理性的民族之后,一定能使中国的现代化建设进行得更快更好,我们伟大的祖国一定能在新的世纪里再创辉煌,其中包括武术太极拳的发展,实现伟大的复兴。世界必须继承、保存中华文明中的人类学术的传统;中国更需要弘扬人类的创新精神。

2、一点尝试

武术太极拳同样要在继承、发扬的基础上结合现代科学的成就和优势,在传授培训方法上、养生健身机理研究上,以及攻防技击的发展上都应不断创新、不断前进。中国科学院武术协会在大力发展太极拳运动的基础上,运用传统哲理和现代科学相结合,对太极拳健身机理进行微观定量测试,以揭开太极拳优化生命质量的奥秘作出一点尝试,测试发现并证实了许多“阴阳转化”、“五行相克”、“守中和谐”、“相互依存”、“相互消长”以及与医学、生命科学的紧密联系。今举述一二,以此抛砖引玉。

(1)一对神经与两个心脏

一对神经,指的是人体植物神经即交感神经与副交感神经。不同于手脚运动,心脏的跳动、肺的呼吸、肝及胃的活动不受人主观因素控制,服从于植物神经系统的指挥。内脏器官的工作节律是这一系统负责的,它专门控制着人体心率、血压和呼吸的功能,植物神经分为交感神经和副交感神经(又叫迷走神经)其作用与分工是:

这个系统共同指挥着人体内最基本的生命活动,两个系统之间的相互制约、相互促进,形成一种动态平衡。

通过初步科学测试,武术太极拳锻炼者,其心律变异(体现上述两个系统功能运作的比值 )较一般其他运动者得到良好比值,甚至达到“七十岁的人,三十岁的心脏”。显然,这与太极拳“意、气、神”的锻炼密不可分,也与医学上的“情致”攸然有关。紧张、焦虑、抑郁、恐惧这些不良情绪持续发展,就导致植物神经系统处于紧张状态,形成紊乱,最终失调;功能的改变,导致严重疾病,引发甲亢、糖尿糖、神经性皮炎、溃疡等不同症状。另一方面,脑血管、帕金森症、甲亢、糖尿病等身体症状也导致焦虑、抑郁等不良情绪,使病难以诊断或久治不愈。

所说两个心脏,那就是主循环和微循环。人体是一个复杂而又奇妙的机体,遍布全身的血液是从心脏的舒张、收缩把血液泵到动脉中去,然后再从静脉回流到心脏,这叫主循环。可是怎么从动脉过渡到静脉,而又如何将氧气与养料带给每个细胞,并将二氧化碳和废料带出来的呢?这就要说到微循环了。这也就是人体新陈代谢的内环境,是生命机体的基本保证,即“生命的源泉”。全身微血管长度达96,500公里,相当绕地球一周半,仅靠心脏有限的收缩力难以将血液输送到每个细胞并带回二氧化碳和废料,还必须靠微血管的节律运动(与心跳并不同步),起到了第二项调节供血的辅助作用,成为“第二心脏”,亦即传统医学上的气血运行。

正常情况下,微循环血流量与人体组织器官代谢水平相适应,使人体内各器官生理功能得以正常进行,微循环功能良好就会健康长寿。早衰或患病引起微循环功能障碍,难以满足组织氧化代谢的需要,造成组织器官功能的不全或衰竭,是许多疾病发生和发展的主要原因。现代医学证明,人体的衰老、高血压、糖尿病以及许多心脑血管疾病都与微循环有密切关系,微循环的功能正常与否是人体健康状态的重要标志。通过科学测试,得知太极拳锻炼极大地改善了微循环状态。

正确地把握意念、放松和安定,所谓“松静平和、意念导引气血”起到调动微循环的主要效应,有效地改善了人体不同部位的微循环状态,并有效地改善人体末端微循环状态,提高人体对外界气候变化的适应能力,符合医学中所谓气血运用,增强营卫的道理。

交感神经和迷走神经,第一心脏和第二心脏各是一对矛盾的两个方面,是生命结构中相辅相成而又相克相生的“阴”和“阳”,太极拳“阴平阳秘”的锻炼要领既强化了交感神经、第一心脏的主循环,也调动了迷走神经、第二心脏的微循环,致使肢体神经系统的信息传递和每个细胞营养丰富、排泄顺畅、气血调和、生态旺盛,使生命生生不息、颐养天年。

(2)一组脑波和两个大脑

一组脑波指的是脑电α波与δ波。武术太极拳中的“松静自然”和中医养生学的“药补不如食补,食补不如神补”,使大脑产生一种持久快乐的“内啡肽”物质,即脑内吗啡。其最有效物质,即β-内啡肽,促进大脑进入α波(α、δ与β、θ波是两对矛盾的脑电波,即清醒波8-13Hz与睡眠波1-3.5Hz,兴奋波14-30 Hz与抑制波4-7 Hz)为主导的同步化有序状态。通过科学测试,太极拳锻炼使α波功率增强几倍,也即大脑活动进入一种高度宁静的觉醒状态,对中枢神经系统一种特殊有意识的训练,有效地解除人体因高节奏工作所引起的紧张状态。医学上证明:这种状态对人体内脏生理机能及免疫功能起到重要促进。我们把这种状态起名叫它为“太极态”。

人体有两个大脑:一个在颅内,另一个却在肚子里,又被称为“腹部神经系统”,是原始的神经系统的直接产物,只在物种进行的最初阶段出现过。但腹部神经系统并没有消失,留存在某些哺乳动物体内,以帮助母体中胚胎的发育,在某一发育阶段,胚胎中会出现两个脑。起初,两者的发育是完全独立的,到后来它们通过独特的缆索--迷走神经相连。观察到两个脑子在节奏上存在相似之处,一个出了毛病,另一个就受到影响,也跟着出现问题,成相互因果。对于两神经系统间相互关联的研究,促成了一门新兴学科“神经元胃肠学科”的产生,这一领域的研究目前已取得了重大进展。当头部大脑遇到危急时,迅速分泌激素,使人体作好应战或回避的准备;同时胃部的敏感神经也随着兴奋起来,神经与肠道之间存在特殊的联系,因而有时食不甘味,惊吓过度或激动万分时,腹部容易产生痉挛。这个内在联系即两个脑子在节奏上存在相似而且相互联系、相互因果,就像一对连体婴儿。

武术太极拳锻炼和传统医学中所说的上丹田(在颅内)和下丹田(在腹内),即“神”与“气”的相互联系与相互因果关系,拳论上有“气沉丹田”、“气宜鼓荡”、“尾闾中正神贯顶”、“腹内松静气腾然”,对头部和腹部的要求,为两个脑子的沟通与反馈创造了条件,使大脑对腹脑产生了有效的调节;腹脑也对大脑起到一种功能的反馈,消除了逆向效果:即肠胃部位的不适导致神经衰弱、记忆力减弱和影响睡眠,使大脑处于更加发挥优势的地位。可以设想,通过传统医学的脏腑学说、经络理论和武术太极拳意、精、气、神的锻炼,培养脑的思维能力,使之人类具有两套思维器官,产生第二智慧,“肚子一鼓,计上心来”,将是对人类智慧的重大突破和飞跃,使中华民族领先进入一个高度智能的新时代。

3、升华文化

东方哲理的体验对于认识事物最深刻的本质来说是必要的;而现代科学则对于当代生活和社会建设来说是必要的。在宇宙整体中不仅包含着我们的自然环境,而且也包含着人类自己。近代物理学所含有的宇宙观与我们当前的社会是不协调的,这种社会并没有反映出我们在自然界中观察到的那种和谐的相互关系,未来的理论完全可能从它们的汇合中产生。

把世界看作一个整体,而不是相互分离为局部的集合,也即是生态学的世界观,一种新生的世界观。认知所有现象之间根本的相互依存,以及个体和社会都包含在自然界周而复始的过程中,由客观的科学向认知的科学转变,对认识过程的理解必须被明确地包括在对自然现象的描述中。自然界被看作是相互关联的动态关系网,它把观察者作为构成整体所必要的组成部分包括在内,改变构成科学和技术的基础方法和价值观的情况下,人类才有可能生存。从主宰和控制包括人类在内的自然界的态度,转变为一种合作的态度,从认识自然、融入自然、改造自然、回归自然到人与自然共荣。即一种极为生态学的态度,通过太极拳的发展使人类健康智慧尽享天年。归于《老子》:“故从事于道者,同于道”和《庄子》:“天地与我并生,万物与我为一”。遵从自然规律,人随着“道”而“回归自然、与之并生”。物理学家们借助于复杂仪器探索着物质,古哲们借助于微妙的沉思探索着精神。物理学家们以微观图像相互关联方式反映着古哲们以宏观图像相互关联方式投身“升华的文化”,使传统中华文化再现辉煌!

认识到人的意识和它与宇宙其余部分之间的关系,是一切古哲学家体验的起点,如果物理学家们真想把人类意识的本质纳入自己研究的范围,那么对东方思想的研究完全有可能为科学家们提供起激励作用的新观点。