引论:我们为您整理了13篇人工智能课程教学范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。
篇1
[6] 徐新黎,王万良,杨旭华.“人工智能导论”课程的教学与实践改革探索[J]. 计算机教育,2009(11):129-132.
[7] 李竹林,郝继升,马乐荣. 人工智能双语教学体系结构的探索与实践[J]. 计算机教育,2010(12):81-83.
[8] 冀俊忠. 落实科学发展观,深化“人工智能”课程的教学改革[J]. 计算机教育,2009(24):105-107.
[9] 朱映辉. 基于导向驱动的《人工智能》课程教学改革研究[J]. 现代计算机:专业版,2009(5):94-96.
Research on Artificial Intelligent Series Courses of Graduate Students
REN Xiao-ping1,2, REN Qing-xiong3, GUO Fan2
篇2
1 引言
人工智能是计算机科学的一个重要分支,是当前科学技术发展中的一门前沿科学,它的出现及所取得的成就引起了人们的高度重视,被认为是计算机发展的一个根本目标。
人工智能课程作为计算机科学与技术专业课程体系中的核心课程之一,其地位正在随着该技术的不断发展和广泛应用而得到迅速提高。目前,国内外重点大学都非常重视该门课程的教学和研究,许多重点大学都有自己独立的人工智能研究所。
本文通过多年的人工智能教学实践,对人工智能教学的方法进行了初步的实践和探索。中央民族大学在人工智能课程建设和教学过程中,针对计算机学科的发展趋势,提出摈弃传统讲、学、考模式,注重学生能力培养的措施。在教学和实践过程中,不断进行探索,既从计算机学科本科的教学理念出发,从人工智能这门学科特点出发,以计算机学科分支的角度认知人工智能,组织教材的知识架构并进行教学。用计算机学科的观点分析人工智能的基本原理与方法时,重点强调的是这些基本原理与方法与其他的计算机分支的共同点和不同点。共同点是强调计算机学科的本质,不同点是强调人工智能的本质。本文就针对我校人工智能课程教学的一些基本问题加以初步总结。
2 从计算机学科分支的角度认知人工智能
人工智能属于计算机科学分支的学科,同时又是一门涉及控制论、信息论、语言学、神经生理学、数学、哲学等多学科交叉的课程。我国高等院校计算机学科的本科教学所设置的人工智能课程一般只有40课时左右,以什么角度组织教材内容,提高教学效果,才能使学生较容易地理解和掌握人工智能的原理与技术,是我们值得探索的问题。
人工智能处理的对象是知识,知识处理则需采用知识表示。因此,若以计算机分支的角度也就是用计算机学科的观点看待人工智能,人工智能课程的教学内容应以知识为主线,以知识表示和搜索为基石进行组织。反映到实际教学中,就是人工智能的各个分支的介绍,这包括知识库系统、自然语言理解、规划、机器人等。总之,教学内容可分成两个部分,第一部分是基础理论和基本方法,包括:逻辑表示与归结推理方法、搜索原理,知识表示(包括产生式系统、语义网络、框架)、推理(包括不确定性推理、非单调推理)、机器学习。第二部分是实用技术,包括知识库系统、高级搜索、自然语言理解。
3 优化和更新教学内容、加强双语教学
人工智能作为一门新学科,在1988年前,国内外均未见有教学大纲和教材,开设本课程面临的首要问题就是确定教学内容,包括人工智能的知识表示和推理以及人工智能的应用两个部分。前者是人工智能的重要基础,后者讨论几种人工智能应用系统,包括专家系统、机器学习、自动规划和机器视觉等系统。这些内容只是给出了人工智能课程的初步框架。
随着人工智能研究的进一步深入, 到20世纪90年代中期,人工智能也从符号(逻辑)主义一枝独秀发展到符号主义、连接主义和行为主义多家争鸣的新局面, 模糊计算和神经计算作为新内容列入到人工智能课程,充实了人工智能课程的内容。进入21世纪以来,人工智能学科又有了新的发展。为了及时反映人工智能研究和学科的最新进展,我们及时对教学内容进一步优化和更新:把人工智能分为基础部分和扩展应用部分。
在教学和实践过程中,考虑到本课程的多学科交叉性以及相关信息学科的快速发展, 在目前高校提倡双语教学的环境下,将《人工智能》教材逐步改为全英语教材,这样可以更快地掌握学科的发展动态, 掌握最先进的技术, 与国际发展趋势接轨。Nils J.Nilsson教授所著的《人工智能》教材是美国Stanford大学计算机系本科教材,该教材体系比较符合学生的认知规律,便于学生接受、理解、掌握和巩固所学知识;同时这本书内容丰富、取材新颖,适合作为该课程的英文教材。
4 注重案例教学、改革教学方法
案例教学首创于哈佛大学商学院,在经贸、管理、法学等学科领域的相关专业得到应用并取得显著绩效,然而目前工科专业还较少运用案例教学方法。人工智能的每一部分内容均包含大量概念,内容抽象,算法复杂,学生往往被动“听讲”;并且涉及很多的数理逻辑知识,有些显得难以理解,并且往往让学生感到比较枯燥,学生的学习兴趣就渐渐淡薄,难以获得预期的教学效果。鉴于这一现实问题,我们将案例教学方法引入到该课程的教学之中。
例如在逻辑推理技术和搜索技术这两方面的教学过程中,我们使用参考教材《人工智能:一种现代方法》,并利用其中基于JAVA的教学开发工具包AIMA进行案例设计和实验教学,在教学过程中结合AIMA中的案例来讲解,使比较枯燥的知识以有效、实用和具体的形式表现出来,做到理论与实践相结合。在讲解搜索技术时,以“八皇后”问题为案例,结合AIMA中的设计实现,以讲解和讨论相结合的方式,学习盲目搜索、启发式搜索等算法,使学生不仅能理解状态空间的产生方法,而且能设计算法、实现算法,提高了学生的学习兴趣和实践能力。在学习神经网络、模糊逻辑、进化计算等方面的内容时,我们主要借助于Matlab提供的相关工具箱。
5 加强教学队伍建设、改革考核方法
建立一支爱岗敬业、富有战斗力的教学队伍是出色完成教学任务和提高课程教学质量的根本保证。教学人才资源是教学的第一资源。在学校有关部门的领导和学院的支持下,我们组成一支知识结构和年龄比较合理的教师队伍。
篇3
虽然人工智能的发展历史只有五十余年,但它已经广泛应用于专家系统、机器翻译、图像处理和机器人技术等领域。随着人工智能技术对社会经济发展的影响不断增大,人工智能课程不再是计算机专业独有的专业课程,国内外很多高校在自动化、智能交通等专业都开设了选修课,甚至在高中的信息技术课程中也在推广设置。吉林大学硕士专业“模式识别”将《人工智能》设为专业学位课程,同时也将其设为汽车、机械等其他学科的选修课程。由于研究生相关基础知识水平参差不齐,课程内容又比较抽象、生涩,为了提高教学质量,在本次教学改革过程中充分考虑学生学习新知识的心理演变过程,认真研究教学内容、教材、教学方法等诸多方面,力求在教授基本原理的同时,培养学生对智能系统进行理论分析、设计并编程实现的能力,为后期的论文研究阶段打下坚实的基础。本次教学改革受到了吉林大学研究生课程体系建设和核心课程建设项目的资助。
一、教学内容
教学改革的关键是教学内容。人工智能与统计学、心理学、语言学、计算机科学、生物学、控制论等都有交叉关系,学科涉及的内容十分庞大。人工智能学科知识的繁多与授课学时有限之间的矛盾比较突出。作为国内模式识别专业的领军院校,如中科院智能所、清华大学、上海交通大学和南京理工大学等,他们所开设的《人工智能》课程学时和内容也不尽相同。我们参考了上述院校的授课内容,同时考虑到本校本学科的学术研究方向,精心归纳、优化教学内容,力争做到教学内容系统、精炼和实用。目前,我们讲授的教学内容主要包括:智能化智能体系统、盲目搜索方法、启发式搜索方法、局部搜索方法、约束满足问题、博弈树搜索方法、知识表示方法、不确定知识与推理、规划与机器学习等,共40学时。
另外,人工智能领域中新问题、新理论交错涌现,这就要求教学大纲要定期修订,教学内容要及时更新,同时教师也需要不断提高自身的学术水平,以便提高硕士课程的研究性内涵。
二、教材选用
要搞好课程建设,教材是一个很关键的问题。我们广泛阅读和研究了国内外的经典教材,经过一番斟酌之后,我们选用了Stuart Russell和Peter Norvig所著的《人工智能-一种现代方法(第二版)》。首先,选用国外教材能够更快地追踪最新研究成果。同时该教材已经被世界上900多所大学采用,符合促进高校的教学内容向国际水准靠拢、与国际接轨的理念。另外,人民邮电出版社在2002年曾经出版该书的英文版的第一版,双语学习能有助于提高学生的英语水平,为学生后续的查阅英文文献,甚至发表英文文章奠定基础。
三、教学方法
在国内,比较有影响的是中南大学以蔡自兴教授为首的教学团队为计算机科学与技术本科专业开设的人工智能课程,该课程在2003年被评为全国高等学校首批精品课程[1]。2007年该课程又开始进行全国双语教学示范课程建设,成绩斐然[2]。多年来,我们不断汲取同行的成功教学经验[3],结合本学科的硕士专业特点、考虑学生的知识结构和实践能力,不断改革和尝试,总结了一套行之有效的教学方法。我们一切以学生为主体,在教学过程中充分考虑学生学习新知识的心理演变过程,采用灵活多变的教学手段。让学生从感兴趣,保持兴趣,到收获用所学知识解决实际问题的成功喜悦,并进一步增强投身于科研论文研究的热情。
课程伊始,通过多媒体演示人工智能技术已取得的杰出成就,激发学生的学习兴趣。然后布置学生查阅资料,列举人工智能发展史上的重要事件和最新研究的热点问题,课上再组织学生做报告。通过上述活动,一方面拓展了学生的专业视野,另一方面锻炼了学生的表达能力。
随着课程内容的深入,让学生组成兴趣小组,任意选择问题实例,利用每节课学习的理论、算法不断地更新该实例的解决方案,评价性能优劣。学习小组可以培养学生科研协作的精神。另外,课堂上每组轮流做报告阐述各自的研究进展,演示编程效果。其他同学或给出修改意见,或提出个人观点。最后老师及时总结,引导学生提高分析问题的深入性和广泛性。充分的课堂讨论能够提高学生多角度思维的能力,培养学生善于钻研和勇于创新的精神。同学间的这种学术交流也可以让学生有机会了解彼此的学习状况与能力,促进学生展开良性的学习竞赛,也为学生接受和理解老师最后给出的课程成绩做了心理铺垫。老师总结时要对学生的努力多肯定,激发他们的学习热情和潜能,让他们感到学习知识的快乐。
四、考核方式
实践表明笔试测验的方式不能全面反映学生的学习情况,所以本课程尝试采取自选实验设计题目,根据实验报告、上机演示结果和口试等方式综合评定成绩。其中,实验报告要求学生根据实验题目详细介绍设计思路,阐述编程方法,分析实验结果。口试是老师当场就报告中的问题提问,并对学生的回答进行讲评。课程成绩中,实验报告设计分析占60%,上机成果演示占30%,口试占10%。
通过实验设计的考核方式,学生的学习积极性得到了很大的调动,充分发挥了学生的自主创新能力,锻炼了学生知识综合应用技能。但美中不足的是该方式不像笔试那么客观,学生的成绩容易受教师的主观性影响。另外,人工智能作为一门学位课,其成绩往往直接影响学生的奖学金评定,学生和相关领导对成绩的评定原则十分关心和重视。为了减少人为因素对学生成绩的干扰,避免师生因课程成绩产生分歧,我们规定了完善的考核细则。考核细则发给同学,作为实验报告的首页,方便记录每一个环节上学生的得分情况,做到成绩评定有据可查。
非笔试的成绩评定方式对任课教师的要求也提高了,我们教师团队还规定了详细的教师工作守则。首先要求教师认真细致地阅读学生的实验报告,给出报告得分,并准备口试时提问的问题,得分和问题都要在实验报告的首页做好记录。询问每个同学的问题都不能重复,上机演示和口试环节都是公开的。问题可以是设计不合理的思路,或是阐述不清的步骤等,教师要注意掌握问题的数量,尽量做到均衡。上机演示时,学生经常因为紧张而漏掉部分功能的演示,因此,教师要跟学生加强沟通。口试时,根据学生的状态,可以给予适当启发,但要在成绩评定上做出相应调整。经过多年的摸索,我们将上机演示按照实验报告成绩的倒序方式进行,这样有利于在口试过程中由浅入深,逐渐加深问题的难度,有效避免重复。教师评价时应严格缜密,让学生正确认识自己的设计水平,对课程成绩的认定跟老师达成一致。
经过教学团队的不懈努力,“模式识别”专业的“人工智能”课程建设在教学内容、教学方法、教材选用、考核方式等方面的研究都取得了一些成绩,教学实践表明教改措施已见成效,教学质量有了明显提高。
参考文献:
篇4
1人工智能课程体系
人工智能主要研究传统人工智能的知识表示方法,包括状态空间法、问题归约法谓词逻辑法、语义网络法、框架表示、剧本表示等;搜索推理技术主要包括盲目搜索、启发式搜索、消解原理、规则演绎算法和产生式系统等。
人工智能的研究论题包括计算机视觉、规划与行动、多Agent系统、语音识别、自动语言理解、专家系统和机器学习等。这些研究论题的基础是通用和专用的知识表示和推理机制、问题求解和搜索算法,以及计算智能技术等。
人工智能课程在我校计算机科学与工程学院是作为大三年级的一门专业选修课开设,总共学时数为:60(其中理论学时为36,实验学时为24),随着计算机技术的不断更新发展,人工智能的应用领域变得越来越广,因此人工智能(AI)这个学科已不再陌生,很多学生对其充满兴趣,所以在选课人数上远远超过其他选修课的人数,另外结合我校的实际情况,部分理论或实验设计项目可以与其他相关专业结合起来而应用。
2人工智能教学实践
50多年以来,人工智能获得很大的发展,已经引起众多学科和不同专业背景学者们的日益重视,成为一门广泛的交叉和前沿科学,但是到目前为止人工智能至今仍尚无统一的定义,要给人工智能下一个准确、科学和严谨的定义也是困难的。
由于人工智能[2]是一门交叉性的学科,涉及到了控制论、语言学、信息论、神经生理学、心理学、数学、哲学等许多学科。所以该学科具有知识点多、涉及面广、内容抽象、不易理解、理论性强、需要较好的数学基础和较强的逻辑思维能力等特点,导致了在教学过程中老师讲得吃力、学生听得吃力。尽管在多年的教学过程中积累了一些经验,但是对于如何把握这门课程的特点,提高学生的学习兴趣,帮助学生更好的理解这门课程,目前仍然有很多问题需要研究解决。
目前在整个教学过程中存在的主要问题[3]是:
1) 教学内容陈旧,部分参考书相关内容或案例都过于陈旧。在整个教学过程中,多数教学案例涉及到人工智能理论的高级应用――机器人,目前在国际及国内机器人的水平已经达到相当高的水平,但是部分教科书中仍沿用关节型机器人为例,教学内容稍显陈旧。
2) 教材难易程度不均匀,部分章节学生难以理解。由于人工智能课程的部分章节,本身就可以独立成一门课程,但由于是面向本科生的内容,因此很多内容压缩于一章来讲解,同时由于课时所限,完全不能将相关的内容讲透讲通;例如:神经计算中的神经网络,与模糊逻辑控制的相关理论与应用。
3) 教学手段单一,教学过程中缺乏师生之间的沟通与交流。经过自己的实践教学及对兄弟院校的人工智能的教学内容与教学手段的调研,同时也在学生之间进行沟通交流,发现多数同学反映,理论与应用虽然前沿,但是在学习过程中,教师教学手段单一,内容枯燥乏味,一般的教学模式,多采用“老师讲,学生听”的方法,整个教学效果并不理想。
4) 考核方法不科学,不能体现学生实际的学习情况。目前对于课程学习的考核采用闭卷考试的方式,很多考点有的同学根本不理解,完全死记硬背,考后又将内容丢弃,从学习的效果来讲,收获甚微且完全没有达到真正学习及应用的能力。
3教学方法改进
3.1注重激发学生的学习兴趣
科学家爱因斯坦曾说过:“兴趣是最好的老师。”如何在教学工作中激发和培养学生的学习兴趣,提高他们学习的主动性和积极性是当前教学改革中迫切需要解决的重要问题。
在实际的课堂教学中发现,刚开始听课由于有兴趣学生整体学习的积极性很高,但是一段时间过后发现部分学生由于教学内容抽象,难点比较多,不便于理解,兴趣日渐变少,针对此种情况,可以采用任务驱动式教学或案例教学。
例如:在讲专家系统章节时,在授课之前先通过互联网,采取案例教学法,给学生们实时在线演示一个医疗专家诊断系统,演示其中的功能,同时与学生互动,以问答式与学生互动,了解目前专家系统的具体应用、可以解决的问题、给人民生活带来的益处等。通过这种教学的形式,一方面可以激发学生的学习兴趣;另一方面也使同学们体会到人工智能与我们生活的贴近程度。第二步,采用任务驱动法,具体来说,它是指教学全过程中,以医疗专家诊断系统若干个具体任务为中心,通过完成任务的过程,介绍和学习基本知识和具体设计方法。
3.2注重教材选择
这一任务的执行者主要是由教研室主任或任课老师来完成。目前在各高校中所使用的人工智能相关教材的种类繁多,章节和内容的设置上也存在差别。笔者在订阅教材或参加教材展销的活动中,都比较重视人工智能教材的情况,通过比较发现,有的教材内容及难度太低,完全不符合高等本科院校的要求,而部分出版社的教材则是内容及章节安排内容太多太泛,有些知识点讲的又过于深奥,限于学时所限也不适合选用。在选教材方面,除了关注内容方面外,还要注重书上所讲的一些实例,注重这些例子的典型性、时效性及新颖性,例如,部分教材在自动规划这一章,选用机械手作为例子来说明积木世界的机器人规划问题,还有一些选择关节机器人,前些年这样的机器人技术确实是个难点,但是依据现在成熟的机器人技术,无论是国际还是国内都已不再是技术难点,再拿这个例子去配合理论去讲解,无论内容还是形式都稍显陈旧,目前机器人技术发展水平基本上达到尽可能高仿真状态。
3.3运用现代化的多媒体教学手段
针对人工智能课程相关内容比较抽象,公式推导比较繁琐,除了具有完善的教学大纲、合理的教学计划以及好的教材外,还应该根据学校的实际硬件条件尽可能地选择多媒体教学手段来辅助教学。因此在实践教学中,配合教学内容,充分利用计算机、投影仪以及互联网的优势,结合多种教学方法与手段组织整个教学过程。例如:在讲述搜索推理技术时,使用一些小的演示软件,将相关推理技术的理论通过动画的形式一步一步演示出来;在讲专家系统相关理论知识时,尤其是各种类型的专家系统,采用互联网上的一些在线视频资源为例,给同学进行详细讲解,同时结合农业院校的特点,在线资源有如农业专家系统或动物专家诊断系统等,这样学生可以加强对理论知识的理解,同时也体会到理论不再是抽象空洞的文字描述;在自动规划这一章,给同学们选择演示发达国家目前研制的各种类型机器人,通过这些形象生动、行为举止逼近真实人的机器人来给学生讲理论,这样学生通过观看视频资源,不仅可以拓宽知识面及视野,同时也可以及时地了解国际及国内机器人的发展水平及差距,不断更正自己的错误观点并更新自己新的专业认识,另一个方面也可以同时激发学生们的学习热情和积极性,这一点在课堂实践教学中得到验证,得到广大同学的认可和接受,整个教学课堂不再那么单调枯燥呆板了,基本可以达到在娱乐中传授专业知识。
3.4加强对实验教学的重视
目前高校在人工智能的教学过程中,实验所占的学时比较少,有的甚至就不安排实验课学时;另外实验内容也相对比较简单,应用不到理论课堂上所学到的人工智能原理,实验效果不是很好。面向人工智能课程的程序设计语言,多采用Prolog程序设计语言,该语言是一种基于一阶谓词的逻辑程序设计语言,它在AI和知识库的实现技术方面具有十分重要的作用,具有表达力强、表示方便、便于理解、语法简单等优点。但在整个实验教学环境也遇到了如下问题:首先是目前有关人工智能的专门配套实验教程很少;其次是即使有诸如《面向人工智能程序设计Prolog》教程,则主要是侧重介绍这门自然语言的程序设计,而其中很多部分与AI实验环节关联度不大,另外教材价位也比较高。针对此种情况,笔者在24个学时的实验教学过程中,安排7个实验内容,其中最后一个专家系统的设计与实现作为一个综合性实验来设计。在进行实验教学的过程中,首先参考多本Prolog程序设计教程,选择其中与实验教学计划中相关的内容,专门编写相应的电子教程,同时也结合我校学生本身的特点[4],有侧重地体现和编写,总的目的是给学生一份完整的、系统的、规范的电子教程。这样做的目的是:一方面作为学生参考的技术文档;另一方面也可以节省学生的部分经济开支。电子教程的结构分为三个部分来完成,首先为人工智能理论及原理,Prolog语言的使用说明;其次具体的例子演示(均经过调试正常运行);最后为布置给学生具体的实验内容及相关题目,以提供给学生自己动手实践的机会。此外在实验教学过程中,同时也会给学生们自由发挥的机会,比如专家系统的设计与实现作为一个综合性实验,学生可以采用Prolog编程实现,也可以采用其他自己擅长的程序设计语言,例如有的同学选择C语言、VC++、Visual Basic、Java及网页开发设计语言ASP/JSP等,此外在实验内容方面,实验递交的专家系统涉及多个领域(有动物辨别、医疗诊断、动物养殖咨询等专家系统)、范围也颇广,实验内容重复性很小,在设计过程中,绝大部分同学均是结合自己的兴趣爱好来完成设计。
4结语
人工智能的研究成果将能够创造出更多、更高级的智能“制品”,并使之在越来越多的领域超越人类智能,同时将为发展国民经济和改善人类生活做出更大的贡献。作为一名当代的大学生有必要学好这门课程,但是根据实际教学情况,教师与学生仍然需要继续进行相应的研究与发展,只有不断地探索和提高,才能使我们的教学工作更上一层楼,才能培养出符合时代和社会需求的人才。另外人工智能与农业等方面存在很多结合应用的契机,这样计算机就可真正地服务于社会、服务于人类、服务于农业、应用于农业、发展农业。
参考文献:
[1] 蔡自兴. 人工智能及其应用[M]. 3版. 北京:清华大学出版社,2007.
[2] 陈峰,文运平. 浅谈人工智能课程的教学[J]. 消费导刊,2006(12):123.
[3] 赵蔓,何千舟. 面向21世纪的人工智能课程的教学思考[J]. 沈阳教育学院学报,2004,6(4):131-132.
[4] 王莲芝. 高等农林院校人工智能教学的探讨[J]. 高等农业教育,2003(12):64-65
Study of the Artificial Intelligence Teaching Methods
HAN Jie-qiong1, YU Yong-quan2
(1. School of Computer Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
篇5
2人工智能课程教学案例的详细设计
在教学案例具体设计时应包括章节、知识重点、知识难点、案例名称、案例内容、案例分析过程、案例教学手段、思考/讨论内容等案例规范,分别从以下单一案例、一题多解案例和综合应用案例3种情况进行讨论。
2.1单一案例设计以人工智能课程中神经网络课堂教学内容为例,介绍基于知识点的单一案例的设计。神经网络在模式识别、图像处理、组合优化、自动控制、信息处理和机器人学等领域具有广泛的应用,是人工智能课程的主要内容之一。教学内容主要包括介绍人工神经网络的由来、特性、结构、模型和算法,以及神经网络的表示和推理。这些内容是神经网络的基础知识。其重点在于人工神经网络的结构、模型和算法。难点是人工神经网络的结构和算法。从教学要求上,通过对该章节内容的学习,使学生掌握人工神经网络的结构、模型和算法,了解人工神经网络的由来和特性,一般性地了解神经网络的表示和推理方法。采用课件PPT和演示手段,由简单到复杂,在学生掌握人工神经网络的基本原理和方法之后,再讲解反向传播BP算法,然后运用“手写体如何识别”案例,引导学生学习理解人工神经网络的核心思想及其应用方法。从国外教材中整理和设计该案例,同时应包括以下规范内容。章节:神经网络。知识重点:神经网络。知识难点:人工神经网络的结构、表示、学习算法和推理。案例名称:手写体如何识别。案例内容:用训练样本集训练一个神经网络使其推广到先前训练所得结果,正确分类先前未见过的数据。案例分析过程:①训练数字识别神经网络的样本位图;②反向传播BP算法;③神经网络的表示;④使用误差反向传播算法训练的神经网络的泛化能力;⑤一个神经网络训练完毕后,将网络中的权值保存起来供实际应用。案例教学手段:手写体识别的神经网络演示。思考/讨论内容:①训练改进与权值调整改进;②过学习/过拟合现象,即在一个数据集上训练时间过长,导致网络过拟合于训练数据,对未出现过的新数据没有推广性。
2.2一题多解案例设计一题多解案例有助于学生把相关知识点联系起来,形成相互关联的知识网络。以人工智能课程中知识及其表示教学内容为例,介绍一题多解案例的设计。知识及其表示是人工智能课程三大内容(知识表示、知识推理、知识应用)之一。教学内容主要包括知识表示的各种方法。其重点在于状态空间、问题归约、谓词逻辑、语义网络等知识表示方法。难点是知识表示方法的区别及其应用。从教学要求上,通过对该章节内容的学习,使学生掌握利用状态空间法、问题归约法、谓词演算法、语义网络法来描述和解决应用问题,重点掌握几种主要知识表示方法之间的差别,并对如何选择知识表示方法有一般性的了解。通过讲解和讨论“猴子和香蕉问题”案例,来表示抽象概念。该案例从国内外教材中进行整理和设计,同时包括以下规范内容。章节:知识及其表示。知识重点:状态空间法、问题归约法、谓词逻辑法、语义网络法等。知识难点:知识表示方法的区别及其应用。案例名称:分别用状态空间表示法与谓词逻辑法表示猴子和香蕉问题。案例内容:房间内有一只机器猴、一个箱子和一束香蕉。香蕉挂在天花板下方,但猴子的高度不足以碰到它。猴子如何摘到香蕉?如何采用多种知识表示方法表示和求解该问题?案例分析过程:①状态空间法的解题过程。用n元表列表示该问题的状态;定义问题的操作算符;定义初始状态变换为目标状态的操作序列;画出该问题的状态空间图。②谓词逻辑法的解题过程。定义问题的常量;定义问题的谓词;根据问题描述用谓词公式表示问题的初始状态、中间状态和目标状态。案例教学手段:猴子和香蕉问题的演示。思考/讨论内容:①选择知识表示方法时,应考虑哪些主要因素?②如何综合运用多种知识表示方法获得最有效的问题解决方案?
2.3综合应用案例设计与单一案例、一题多解案例相比,综合应用案例能更加有效地启发学生全方位地思考和探索问题的解决方法。以机器人行动规划模拟为例,介绍人工智能综合应用案例的设计,该案例包括以下规范内容。章节:人工智能综合应用。知识重点:人工智能的研究方向和应用领域。知识难点:人工智能的技术集成。案例名称:机器人行动规划模拟。案例内容:综合应用行为规划、知识表示方法、机器人学、神经网络、人工智能语言等多种人工智能技术与方法,对机器人行动规划问题进行描述和可视化。案例分析过程:①机器人行为规划问题求解。采用状态归约法与分层规划技术,将机器人须完成的总任务分解为若干依序排列的子任务;依据任务进程,确定若干关键性的中间状态,将状态对应为进程子规划的目标;确定规划的执行与操作控制,以及机器人过程控制与环境约束。②基于谓词逻辑表示的机器人行为规划设计。定义表达状态的谓词逻辑;用谓词逻辑描述问题的初始状态、问题的目标状态以及机器人行动规划过程的中间状态;定义操作的约束条件和行为动作。③机器人控制系统。定义机器人平台的控制体系结构,包括反应式控制、包容结构以及其他控制系统等。④基于神经网络的模式识别。采用神经网络方法以及BP算法对桌面茶壶、杯子等物体进行识别,提取物体图形特征。⑤机器人程序设计语言。运用人工智能语言实现机器人行动规划行为的可视化。案例教学手段:机器人行动规划的模拟演示。思考/讨论内容:人工智能将会怎样发展?应该在哪些方面进一步开展研究?
3案例教学环节和过程的具体实施细节
人工智能案例教学的实施面向笔者所在学院软件工程专业三年级本科生展开。具体实施细节如下。(1)教学内容的先进性、实用性和前沿性。引进和整合国外著名人工智能教材内容,保证课程内容具有先进性。同时将前沿人工智能的研究成果与技术有机地融入课程案例教学之中。(2)案例教学的创新教学模式。在教师的引导下,将案例中涉及的人工智能内容推广到对人工智能的一般性认识。案例的教学过程,成为认识人工智能、初步运用人工智能的理论与方法分析和解决实际应用问题的过程,使学生具备运用人工智能知识解决实际问题的意识和初步能力。在课程教学中,打破国内常规教学方式,建立和实施开放式案例教学模式。采用动画课件、录像教学、实物演示、网络教学等多种多媒体教学手段,以及集中讲授与专题讨论相结合的教学方式将理论、方法、技术、算法以及实现有机结合,感性认识与理性认识相结合,理论与实际相结合,极大地激发学生自主和创新性学习的热情。(3)“课堂教学—实践活动—现实应用”的有机融合。在案例教学过程中,从传统教学观以学会为中心转化为创新应用型教学观以创新为中心,以及从传统教学的以课堂教学为中心转化为以课堂教学与实践活动并重为中心,构造具体问题场景以及设计教学案例在情境中的现实应用,加深学生对教学内容的理解,同时提高学生的思考能力和实际综合应用能力。
篇6
1教学目标的精确定位
首先,人工智能概论课程在智能科学与技术专业整个教学体系中起到引导和奠基的作用,但不同于其他相关的专业基础课,其总的特点可归纳为“少而精”,即在较少的教学授课学时中起到画龙点睛的作用,为学生进一步的深入学习打好基础,并激发他们对智能专业的学习兴趣和爱好。基于以上特点,通常选择一学期共32学时课程的安排计划,并且在大三上学期开始进行授课。
其次,要研究解决同学们所反映的“虚与实”问题。人工智能是一门涉及到多个学科的课程,具有相当复杂的背景,其与哲学、数学、经济学、神经科学、心理学、计算机工程、控制论和语言学都有着密切的联系,并且随着这些学科的发展而深化,不断产生新的思路和新的问题。以上特点决定了该课程内容较为抽象,且难以把握全局,学习起来不易消化理解,从而造成了学生学习的困难,容易产生畏惧感,并且学生常常对其在实际环境中的具体应用产生疑问。
如何在这么短的授课学时里使学生产生学习兴趣并且能取得良好的教学效果是一个具有挑战性的课题,这需要对该课程的授课内容、教材选择、讲授方法和考核形式进行全方位的思考与探索,并在教学过程中落在实处。一方面让学生了解和掌握人工智能的发展历史和思想渊源,并指出各个分支的本质特点和整个领域的发展趋势;另一方面有意识地穿插介绍人工智能在实际中具体应用的例子,开阔学生的眼界,打消他们的疑虑。这些将在本文的后面部分进行深入的介绍。
最后人工智能概论这门课程还要兼顾研究型和应用型这两种特点的共同发展。在以前,由于人工智能授课内容的特点,常常讲授时偏向研究型,往往涉及到复杂的数学推导和逻辑运算,增加了老师讲授的难度和学生学习的困难。因此,针对上述问题,在教学过程中可以引入多种形式的事例说明和多媒体演示环节,以讲授思想为主,具体技术为辅,这将直接反映到授课内容的选择上。
2授课内容的选择
人工智能概论授课内容的选择至关重要,本着该课程“少而精”的特点,既需要让学生在较短时间内掌握基本的思想与概念要点,又要对该课程进行全方位的介绍,并点出其发展趋势,因而对授课教师有着非常高的要求。由于授课课时的限制,我们无法做到既面面俱到,又对每个具体方向进行详细的讲解;而且这样也容易陷入复杂的数学推导和逻辑运算的误区。因而,整个课程的讲授内容应该以传授思想和概念要点为主,并在讲授的过程中加入有趣的事例,通过这些形象的事例说明和多媒体演示环节折射出人工智能思想的精髓和应用的广阔前景。
人工智能概论主要涉及到知识表示、搜索推理、计算智能、专家系统、机器学习、自动规划、Agent和自然语言理解等内容,其中以知识表示、搜索推理和计算智能为授课内容的重点,在讲授的过程中需要对这些内容加以整理精简,分清主次,合理地安排授课内容在总学时内。除了这些基本的授课知识外,还应该在教学环节引入多媒体演示,通过形象生动的视频演示让学生们了解人工智能的科学价值和实际应用所在。视频可以选用世界一流大学实验室的开放多媒体内容,例如:MIT计算机科学与人工智能实验室的相关科研项目中间过程及结果的视频演示,以此来开阔学生的眼界,增长他们的见识,使之了解其应用前景和未来的发展空间。
人工智能领域的发展受到多个学科的影响,这些学科在不同历史时期都对人工智能领域起到了各种推进作用,也产生了许多不同层面的争论,至今也是如此。如何在授课过程中形象地对人工智能历史进行回顾,阐述这些学科对人工智能领域的影响,尤其是思想方面的影响特别重要。“回顾历史,立足当今,展望未来”――给学生形象地描绘出人工智能发展的思想史,并以画龙点睛之笔指出人工智能领域发展的广阔未来,是授课教师艰巨而光荣的任务,只有这样才能使学生把握住人工智能领域的整个发展脉络,激发出他们的学习兴趣和爱好。
以哲学家对强人工智能方向的争论为例,向学生们介绍这些收集整理的资料对于他们思想的启迪是非常有益的。这里值得说明的是这种思想的阐述事实上是非常不容易的,其难度甚至高于复杂的数学推导,因为它常常要求授课教师掌握思想的精髓所在,并用非常形象生动的语言对其进行说明,而这些常常是现在书本中所没有的。例如:知识的表示、获取、存储和推理是人工智能领域中重要的组成部分,虽然目前已经有很多书籍详细地介绍了这些方面,但学生仍然反映听起来比较抽象。为什么会这样?其原因是一些基本的问题并没有得到圆满的说明和阐述,如“什么是知识”,“知识能够表示吗”,“有统一表示各种各样抽象、复杂知识的工具吗”,“抽象的美学与复杂的人类情感,知识能够表示吗”……其中有些问题看似容易回答,却往往涉及到一些复杂的哲学问题,目前在各种人工智能的教科书和专著里常常对这些问题避而不谈,只在数学的层面上针对具体的问题来进行说明和讲授。如果想在这方面有所突破的话,就需要阅读大量的哲学书籍,如认知学、知识论和心智哲学等领域的著作,还需要大量时间的理解和参悟,这些有价值的资料也是对授课内容的极大丰富和补充。近年来,认知神经科学、心理学、生物学、语言学甚至社会学对人工智能领域有着较大的推进作用,也是将来融合发展的总体趋势,如何在课堂上结合具体的事例对其加以说明也是授课内容的一个重要环节。
3相关教材的选择
众所周知,关于人工智能的国内外优秀教材有很多,例如:S.J. Russell和P. Norvig所著的《Artificial Intelligence――A Modern Approach》被全世界89个国家的900多所大学用作教材[1],国内可以考虑使用其影印版或中文翻译版本,大大的降低了购买国外原版教材所需的费用,并可以在此基础上考虑实现双语教学。此外还有蔡自兴教授等编著的人工智能及其应用,详细而恰当地介绍了人工智能领域中的各个研究方向(分别适合于本科生[2]和研究生[3])等。我们从整个教学时间安排上看,因其所占学时较少,所以人工智能概论课程的教材选择不适用于大部头的书籍,宜选用篇幅较小但内容较全的适合于本科生的教材。除了选择合适的教材外,对于任课教师还要拥有大量的参考书,包括上述提到的其他领域的书籍和资料,只有这样才能拓展所掌握的知识,为实现良好的教学效果而服务。
4讲授方法和考试形式的选择
课程讲授时注意主线的选择,着重以思想介绍为主,详细地介绍人工智能发展的历史以及各种学派和学说,如符号主义、连接主义和行为主义等,要重点介绍他们的特点和本质,指出它们形成的原因以及其中的不足之处,并向学生介绍新的学说,例如机制主义[4]等。整个教学过程并不涉及较为复杂的数学,要注重各个分支的思想源流,主要从其机制上做定性介绍。同时可在讲授过程中穿插相关历史问题的争论,例如:中国屋问题[5]等,引发学生学习的兴趣和爱好,开展交互式教学,使学生和老师产生互动。授课方式采用板书和多媒体交互使用方式,力争在每节课的空闲时间里穿插加入人工智能领域的实际应用介绍,放映相关的视频录像,开阔学生们的眼界。在最终考试形式的选择方面不是要学生死记硬背知识点,而是要注重学生思想的发挥,鼓励学生提出新想法和新思路,并丰富其掌握的相关知识,为将来的进一步学习打好基础和做准备。
5结语
我们认为在教学方式上力争采用“启发式”教学,能真正做到启迪学生思想的作用,尤其要鼓励思想创新,在高等教育阶段培养学生具有独立思考、勇于探索的能力,使之成为社会的有用之才。希望这些在人工智能概论课程教学中的思考和探索能在日常教学活动起到有益的作用,并与同行们共同交流和探索。
参考文献:
[1] S.J. Russell, P. Norvig. Artificial Intelligence:A Modern Approach[M]. 2nd Ed. 北京:清华大学出版社,2006.
[2] 蔡自兴,徐光佑. 人工智能及其应用本科生用书[M]. 3版. 北京:清华大学出版社,2003.
[3] 蔡自兴,徐光佑. 人工智能及其应用研究生用书[M]. 3版. 北京:清华大学出版社,2004.
[4] 钟义信. 机制主义方法与人工智能统一理论:人工智能的新方法与新进展[J]. 计算机教育,2010(19):7-10.
[5]J. Preston, M. Bishop. Views into the Chinese Room: New Essays on Searle and Artificial Intelligence[M]. Oxford: Oxford University Press,2002.
Teaching Reflection on Introduction to Artificial Intelligence
YANG Dedong, SUN Hexu, YANG Peng, ZHANG Lei
篇7
人工智能的研究、应用和发展,在一定程度上代表着信息技术的发展方向,同时信息技术的广泛应用也对人工智能技术的发展提出了迫切的需求。今天,人工智能的不少研究领域如自然语言理解、模式识别、机器学习、数据挖掘、智能检索、机器人技术、人工神经网络等都走在了信息技术的前沿,有许多研究成果已经进入人们的生活、学习和工作中,并对人类的发展产生了重要影响[2]。
实践教学环节在大学教育中是一个非常重要的教学环节,是提高人才素质与能力的重要途径。人工智能课程除了具有较强的专业性之外,还具有突出的实践性,为了能深入理解和掌握所学内容,必须把讲授和实践结合起来。本文结合该课程实验教学,将研究型教学的理念引入到实验教学,并对教学过程中的经验和问题加以初步的总结。
1研究型教学模式背景
研究型教学是相对于以单向性知识传授为主的传统教学提出的,是指教师以课程内容和学生的学识积累为基础,引导学生创造性地运用知识和能力,自主地发现问题、研究问题和解决问题,在研究中积累知识、培养能力和锻炼思维的新型教学模式。研究性教学是对现有的大学课堂教学模式的突破。有利于开发大学生的创造潜能,提高学生适应社会需要的创造性和创新能力,充分展现现代大学培养人才、发展科学、服务社会的三大基本职能[3]。
19世纪初,德国著名教育家洪堡最早提出了教学与科研相统一的原则,为研究型教学模式的发展奠定了基础。20世纪50、60年代,美国著名教育心理学家布鲁纳提出了著名的“发现教学模式”[4],成为后来探究性学习和研究型教学的先导。20世纪70年代,美国研究教学专家萨奇曼正式提出了研究训练教学模式。他认为学生会本能地对周围新奇事物发生兴趣,并想方设法弄清这些新奇事物背后究竟发生了什么,这是一种进行科学研究的可贵的动力。
自此,研究型教学理念开始广泛使用。现在,哈佛大学、牛津大学、剑桥大学等世界著名大学,都非常注重学生能力的培养,普遍采取了研究型教学模式。以美国高校为例,虽然美国高校83%的教师在课堂教学中主要采用讲授法进行教学,但在整个教学过程中都渗透着研究型教学的方法,如积极引导学生参与教学过程,开设研究性课程,引导学生积极主动地参与科研活动等。我国自20世纪90年代初推出211工程建设以来,清华大学、北京大学、人民大学、复旦大学、浙江大学等一些重点大学都提出了建设世界一流的综合性研究型大学的目标。这些高校在实现从单向知识传授的传统型教学向关注创新性教育的研究型教学转变方面进行了许多有益的尝试。
2研究型实验教学
本科教学不仅要培养学生的应用能力,还要培养学生具备基本的科研素质。大学是培养未来一线创新人才的主要基地,必须从本科教学人手,深入探索研究型教学的手段和方法,才能满足未来经济增长和社会发展的需要,才能符合建设研究型大学的需要。特别是近几年来我国对科研的投入不断增加,研究生招生规模逐年增大,本科高年级学生打算继续读研的也不在少数。而人工智能是计算机相关学科非常活跃的研究课题,其涵盖的分支非常广泛,如模式识别、机器学习、数据挖掘、计算智能、统计学习理论等,都是目前国际和国内热门的研究方向。
人工智能课程在计算机专业人才培养方案中占据着重要的位置。在专业理论方面,它承续了离散数学中的逻辑知识;在专业方法方面,是数据结构、算法分析与设计的继续;在专业工具方面,是面向对象程序设计的生动实例。并且人工智能的每一部分内容都可以作为一个深入的研究课题,课堂上讲解的内容不可能面面俱到,学生们也不可能对人工智能的每一领域都做很深入的学习。并且人工智能涉及很多的数理逻辑知识,有些显得难以理解,并且往往让学生感到比较枯燥,学生的学习兴趣就渐渐淡薄,学生往往被动“听讲”,难以获得预期的教学效果。
针对这一特点,在人工智能教学中,如何引导学生系统学习人工智能的知识、激发学生的研究兴趣,树立目标意识找准研究方向,为未来的科研工作打下基础,研究型实验教学就成为了人工智能课程教学的一个重要环节和必然选择。
2.1实验教学中加强学生的研究导向
在实验教学中,如果照搬一些教材中的例子或习题教学,一方面学生们会缺乏兴趣,另一方面学生对这个领域的知识缺乏全面的了解。应不断提出一些学生们感兴趣的开放性课题,比如基于支持向量机的人脸识别、基于肤色的人脸检测,基于内容的图像检索等,培养学生们的学习兴趣,让学生们逐渐深入的学习某一领域的知识。比如BP神经网络,在模式识别、经济数据分析、生物信息学、数据挖掘等众多领域都取得过成功应用,是一种具有强大的非线性学习能力的计算智能技术。然而BP神经网络算法自身也存在着一些缺点,如会有局部最小解、解受初值影响较大、理论解释不完善等,而支持向量机在这些方面具有显著优点。我们可以设计一个人脸识别的实验,用神经网络和支持向量机分别实现,并作以比较。让学生们在了解人工智能新技术的同时,也培养学生们如何分析问题、解决问题的科研能力。
2.2人工智能课程实验
该课程是一门对实验技术有较高要求的课程,对于基本原理和方法的实现,要求学生进行严格的计算机专业技能训练和培养良好的科研工作作风。因此对课程中的技能及技术性内容,除单独进行必要的基础训练外,还融入到综合和研究型试验中,通过多次反复实验练习,达到牢固掌握人工智能原理和人工智能的问题求解技术的目的。
该课程的实践环节主要是实践项目,由具备较强工程实践能力的任课教师和助教负责,学生可在全天候开放的专用机房完成。在实践环节的设计上,我们尝试把验证性实验和开发性实验相结合,结合实验教学进度,安排相应的开放实验,开放性实验以科学研究实验为主。并在课程的教学过程中,不断深化和扩展教学内容,结合人工智能学科的发展趋势和本院老师的最新研究成果,对实验内容进行更新。
课程主要设置三种层次的实验:1)基本原理和算法编程,测试例设计及程序测试实验;2)分析综合实验;3)研究型设计实验。整个实验包括课前讨论、实验操作、实验报告、结果讨论、总结提高等六个环节。对于综合性和研究型实验,把学生分成5个人一小组,每小组选做其中的一个。学生从指导老师处了解到实验课题后,即着手查资料,研读文献,钻研有关理论。在此基础上,学生先提出实验方案,经与老师讨论后,即可开始实验研究。
3实验平台的构建
民族关系问题对被访对象,特别对少数民族被访对象是非常敏感的问题,对民族关系的评价又存在个体层面、群体层面、不同阶层人群之间的差异,因此,仅仅以传统的文献分析、问卷统计和现场观察等民族学方法来进行调查,得到的数据会存在较多误差。
因此结合本校的民族特色和民族学领域独特的研究优势,将信息认知技术引入民族关系研究,运用图像、心电和脑电数据进行分析,将分析的结果和心理场景测试及民族学调查结果进行相互印证和参数修正,从而获得尽可能客观的数据,这些数据将有助于建立一个客观、完备、科学的民族关系监测体系,并真实全面地评估民族关系,从而使决策机构及时做出正确的决策。基于多信息融合的民族关系监测预警系统总体框图如图1所示。
目前该平台已经搭建,由北京市公共安全信息监测平台建设、北京市公共安全信息监测平台建设关键技术研究、基于多源信息融合的民族信任研究等多个重大项目支撑。在这个平台的下面,涉及到人脸识别、表情识别,视频监控、认识等领域,小波分析、神经网络、支持向量机、模糊数学、信息融合等人工智能知识得到了具体的应用。学生可以根据自己的兴趣爱好,自愿参加到该平台下的某一项目,切实对自己所学知识有一个深刻的理解和掌握。
4结语
研究型实验教学激发了学生的学习兴趣,不但使学生更好地掌握了人工智能的基本概念、基本理论和基本技术,也切实提高了学生的实际动手能力和编程能力。研究型实验教学在实践过程中还有以下问题需要改进:
1) 研究型实验教学的理念很难普及。很多教师对研究型教学模式的内涵未能准确把握,把研究型教学模式等同于学生实习或者写论文。
2) 研究型实验教学的辅导老师素养需要提高。研究型实验教学作为体现创新教育要求的现代教学模式,需要的不是知识传授型的教师,而是高素质的研究型教师。教师不仅是单一的教者,更应该成为一个学者,教师不仅要有研究型教学的教育观念、快速接受新知识的能力和高超的教学技能,要能够合理地规划和设计实验内容。
3) 需要建立一套合理的学生学业和教师绩效的评价体系。
参考文献:
[1] 王万森. 人工智能原理及其应用[M]. 北京:电子工业出版社,2007.
[2] 蔡自兴,徐光佑. 人工智能及其应用[M]. 北京:清华大学出版社,2004.
[3] 李得伟,张超,李海鹰. 大学工科专业课程实施研究型教学的探讨[J]. 高等教育研究,2009(9):74-75.
[4] 彭先桃.大学研究性教学的理念探析[J].教育导刊,2008(3):56-58.
Exploration and Practice of the Research Experiment on Artificial Intelligence
ZHANG Ting, YANG Guo-sheng
篇8
现代社会发展呈现出有别于传统社会特征的信息化、快节奏、高压力和高竞争等特征,这就对我们的包括高等教育在内的学校教育的人才培养提出了新的要求,即培养适应现代社会生活的具备一定社会适应能力的合格劳动者。在社会学中,社会适应是指个人或群体调整自己的行为使其适应所处社会环境的过程,其实质就是个体的社会化过程。体育是个体社会化的重要方式,与他人和群体的联系是体育活动的必要条件。4学校体育课程的学习过程不仅体现为个体认知性知识的积累、深化,更体现为个体体能的增强、技能的掌握和行为态度的改变等方面,具有参与性、实践性特点,因此学校体育课程在个体社会适应能力培养方面将承担重要的责任。籍此,教育部在2002年颁布的《全国普通高等学校体育课程教学指导纲要》中指出社会适应能力培养是高校体育课程的课程目标之一,并进一步提出“表现出良好的体育道德和合作精神;正确处理竞争与合作的关系”是我国高校大学生社会适应能力培养的基本目标。
“元认知学习”是现代学习理念的一种新观念。这种新的学习理论在教育观念上强调的不仅仅是“学会”,而更主要的是“会学”,以及对学习动机、学习方式、学习结果的调节与监控。元认知学习理论所倡导的是学生个体自身对学习的监督和调控及学习过程结束后的自我反馈,要求每个学习个体学会学习、学会生活、学会生存。元认知学习理论指导高校体育学习将彻底改变以往的传统的体育教学思想,并使每个学习个体对自身学习进行调节和监控,这也是元认知体育教学促进大学生社会适应能力发展的理论依据。本研究旨在探讨体育的元认知教学对大学生社会适应能力的影响,进而为高校公共体育教学的社会适应教学目标的实现寻找一条可行途径。
通过查阅大量的参考文献,并进行综述研究之后,本研究提出以下假设:
①元认知教学可有效提高大学生的元认知水平;
②元认知教学是达成高校公共体育课程社会适应目标的有效途径。
1研究对象与研究方法
1.1研究对象
本研究以大学一、二年级的大学生(开设公共体育课程)为研究对象,样本为某高校开设公共体育课程的大一、大二部分大学生,共75人,其中男生36人,女生39人。
1.2研究方法
1.2.1文献资料法。查阅了国内外大量的文献资料,掌握了有关元认知和社会适应问题的相关研究成果,为本次研究奠定了较好的理论基础。
1.2.2问卷调查法。本文采用国内研究者根据Gregory .Schrawd等人编制的元认知意识量表(Meta一cognition con-sciousness questionnaire)翻译修订而成的中文版量表。该量表采用10等级记分法,从元认知知识、元认知体验和元认知技能三个维度测量了被试的元认知水平。马建锋研究表明该问卷具有较好信效度,适合中国背景下的大学生。
根据社会适应能力的相关研究成果,并结合大学生公共体育课程课堂教学实际与课外体育活动情况自编大学生社会适应能力问卷,该问卷采用5等级记分法,并主要从对活动的规则、纪律的遵守、活动中的人际互动、活动中的自我激励、自我调控、团队意识(竞争、合作、集体荣辱感)等社会适应方面对大学生进行考察。该问卷的重测信度:=0.94(时间间隔为3周),另外就问卷的内容效度对多所高等院校的心理学、体育学专家进行了访谈,最终的反馈结果表明该问卷内容效度良好(每个条目与问卷总分的相关系数在0. 31-0.66之间),能全面、有效地反映所要研究的问题。因此该问卷具有较好的信效度,可以为本研究服务。
1.2.3实验法。采用单因素完全随机等组前测后测实验设计方法并随机选取对照组与实验组(分组时对其元认知水平和体育社会适应水平进行了均衡化处理)。实验组与对照组课堂教学活动内容相同,时间共16周,并由同一教师教授(实验组接受元认知教学培训)。对照组按教学计划学习,不进行任何干预。实验组在按教学计划学习的同时,一是教师在教学过程中提示学生注意运用元认知的方法进行学习,二是实验者在学习现场进行言语指导,让学生注意采用元认知的方法进行社会适应训练。最初和最终学生在体育活动中的社会适应水平由同一教师按同一问卷进行调查。在实验过程中,注意到了教师及学生主观期望效应可能对实验结果的影响,并加以控制。
1.2.4数理统计法。本研究测量所得数据均运用SPSS for Windows 11.0统计软件进行处理。
2实验组进行的元认知教学培训说明
2.1教学目的
对实验组学生进行另外的元认知能力培训,以提高其元认知能力。
2.2教学方法
一是采用课堂教学法对实验组学生讲授元认知的理论知识,以及提高元认知能力的方法;二是在公共体育课堂上采用现场言语指导的方法提示学生注意使用元认知有关的技能进行学习活动(主要是体育活动的社会适应方面)。
2.3教学内容
2. 3.1有关元认知理论方面的内容。元认知的基本含义、实质和要素。元认知与体育活动的社会适应方面结合起来,让学生理解、体会体育活动的社会适应方面的元认知知识、元认知体验、元认知技能。体育活动的社会适应方面的元认知知识是指对体育活动的社会适应方面认知的知识,即学生对自己的体育社会适应认识活动过程与结果及其影响因素的知识,包括三个方面内容:个人、任务和策略。体育的元认知体验是指伴随着体育认知活动的体育认知体验或体育运动的情感体验,它包括知的体验,也包括不知的体验。体育的元认知技能是指学生在运动学习过程中对动作活动进行调节的技能。
2.3.2培养、训练元认知的一般方法。自我提问法:在元认知训练中,通过提供给学习者一系列自我观察、自我监控、自我评价的问题,不断地促进学生进行自我反省而提高问题解决的能力。
相互提问法:让学生每两人分成一组,给每个学生一份类似于上述自我提问的问题单,让学生在尝试解决问题的同时根据问题单相互提问并做出回答。这种方法能有效地促进学生的思考和竞争,提高元认知水平。
知识传授法:通过传授元认知理论的有关内容,使学生认识到元认知在学习中的重要性,自觉地将元认知运用于学习中,以提高学习效果。
元认知培训和训练的各方法在体育课程教学活动中实施(主要与大学生体育课程活动的社会适应方面相结合而开展)。
2.4元认知理论教学进度安排
利用体育课程以外的时间,采用课堂教学的方法对实验组学生进行元认知能力的培训,培训共4次课,每次30min,并布置课后作业。教学进度安排如下:
课次1:元认知理论知识的培训。
课次2;元认知与体育运动的关系、在体育运动中的作用等方面的知识培训。
课次3:训练、提高元认知的方法的培训。
课次4:对所培训内容复习,巩固所培训的知识。
3结果与分析
3.1元认知教学效果考察
实验组经元认知培训后,其元认知水平较对照组呈现下表所示变化(调查数据统计采用配对样本t检验方法)。
结果显示实验组在经过元认知教学后,整体元认知水平有了显著提高(实验组整体元认知水平实验前后比较P- I) . 046,达到显著差异),且元认知知识、元认知体验、元认知调控水平也都有显著性提高,而对照组无论整体元认知水平p=0.446),还是分维度水平前后测均未出现显著性变化。实验结果说明元认知教学可有效提高大学生元认知水平,证实了研究假设。这进一步说明个体的元认知能力不仅是在个体长期的学习过程中形成和发展起来的,而且元认知能力是可以教授的,即经过系统、专门的教学培训,个体的元认知毙力可以在相对较短的时间内得以提高。该结果可解释为:通过提问、讲授等元认知培训方法的实施并在实践中加以锻炼,可使学习者个体更好地掌握自我的元认知知识,加深元认知体验,增强元认知技能,进而提高个体整个元认知水平。
3.2大学生体育方面的社会适应能力考察
实验前对普通专业103名大学生(大一、大二)的体育方面的社会适应能力进行了调查,结果如下表:
表2显示大学生体育社会适应情况:规则适应方面相对较好,达到基本适应水平,且个体差异不大;人际互动、自我调控、团队意识方面表现较差,且人际互动、自我调控方面的个体差异较大。总体而言,大学生社会适应的整体水平与我们的基本培养目标间还存在一定差距。造成这一差距的原因是多方面的,如由于受中小学应试教育环境影响,学生的社会适应教育得不到足够重视,缺乏足够的锻炼;社会适应能力培养的实施存在一定的难度,由于学生个体差异较大,因此较难采取统一的培养措施。
对性别变量进行考察(表3),发现:男生在人际互动、团队意识方面好于女生,在规则适应、自我调控方面差于女生。除规则适应方面,女生显著好于男生外,社会适应其它方面不存在显著性别差异。另外统计显示大学生的元认知水平与社会适应能力之间的相关系数为0. 45,为中度相关,说明两者之间存在一定程度的共变关系。
3.3体育教学对大学生社会适应能力的影响考察
实验组接受元认知培训和元认知教学及相应体育教学,对照组接受相同体育教学。实验结束后,实验组和对照组大学生的体育方面的社会适应水平前后呈现表4所示变化。
表4表明,实验前后实验组与对照组大学生体育方面的社会适应各维度均存在显著性差异,实验组与对照组不同组别大学生体育方面的社会适应各维度均存在显著性差异,且交互作用不明显,即实验后实验组大学生体育方面的社会适应各维度较实验前有显著性改善,实验后实验组大学生体育方面的社会适应各维度较对照组均有显著性改善。统计结果说明元认知体育教学可有效改善大学生的体育社会适应水平,结合对元认知教学效果的考察,这一结论可理解为元认知教学提高了学习者的元认知水平,而提高的元认知水平又在个体的体育社会适应实践方面发挥作用,即在体育活动实践中通过比较、反馈、自我暗示、自我调控等手段,逐步提高自我的体育社会适应水平。元认知体育教学以学生的发展为中心,突出学生的主体地位和主观能动性,在社会适应的教学中,学生不再处于从属、被动的“他控”地位,他们的社会适应是主动的,并对适应的过程和结果具有深刻的感受和体验,对自我的社会适应具有高度的自控,因而可有效地促进大学生适应能力的发展。
4结论与建议
4.1结论
通过本实验研究,可以得出以下结论:在教学中实施现有的提高元认知水平的方法、措施可在相对较短时间内提高大学生的元认知水平;大学生体育方面的社会适应情况处于基本适应状态,与相关培养目标存在一定差距;元认知体育教学有效地提高了大学生的体育方面的社会适应能力。
4.2建议
元认知理论与现代教育思想紧密相关,并对学校教育目标的实现将起到很好的促进作用。在高校体育教学中采用元认知教学手段,必将为体育教学的各学习目标的实现提高一条可行性途径。
4.2.1因本次实验条件的局限,还应进一步考察实验效果的外部效度,为其应用、推广提供可靠的理论依据。
篇9
一、优选教材
目前,国内有关人工智能课程的中英版教材种类非常多,遵循实用、简单、够用的原则,再经过授课老师和学生们的共同调研,我们选用由中南大学蔡自兴教授主编的《人工智能及其应用》第三版作为南邮本课程的授课教材。本书覆盖的人工智能知识体系比较全面,包含知识表示、搜索推理、模糊计算、专家系统等。本书主要针对计算机、自动化、电气工程等本科专业的学生所编写,内容基础,难度适中。蔡教授所编写的这本教材全面地介绍了人工智能的研究内容与应用领域,做到了内容新颖、简单易懂、兼顾基础和应用,受到了全国广大师生们的一致好评,多年的教学实践证明我们所选择的教材是恰当的、正确的。
二、考核方式
在全国大部分高等院校,“人工智能”这门课大都选择开卷考试的方式来进行考核。为了强化学生对人工智能这门课基础知识的掌握,南京邮电大学自动化学院选用闭卷考试的方式来进行考核。为了打消部分学生想在期末闭卷考试中通过作弊手段来完成人工智能这门课考核的侥幸心理,我们加强了对学生平时考勤成绩、课下作业成绩和实验成绩的考核,从而杜绝了“一纸定成绩”的现象。我们对人工智能这门课的最后期末成绩是按如下权重来划分的:平时考勤成绩占10%、课下作业成绩占10%、实验成绩占20%、最后的期末考试卷面成绩只占60%。为了克服国家现行教育体制的弊端,避免学生“机械式”地的应对教学和考试,我们对考试题型进行了调整,不再是以往的填空、选择、简答等题型,而是改为以解决实际问题为导向的应用题型为主,这样学生只需要在理解授课内容的基础上利用自己的思维来解题就可以了,这也体现了国家目前正在提倡的应用型教学导向。
三、教学内容调整
对于本科生而言,人工智能这门课程所需要讲授的内容实在太多,由于课时所限,我们必须精简教学内容,让学生在掌握基础知识的同时,也能够了解它的具体应用。因此,我们将人工智能这门课程的教学内容分为两个部分:第一部分是基本理论和方法,包括人工智能的概述、知识表示方法、确定性推理方法等;第二部分为人工智能研究成果的具体应用,包括神经元网络计算、模糊智能计算、专家知识库系统、机器语言学习等。通过对教材内容的合理调整和安排,使得授课计划能够比较全面地覆盖了人工智能这门课程的基本知识点,从而满足了学生们的求知需求。
四、教学手段的改进
(一) 激发学生的学习兴趣
经过长时间的教学我们发现,在选修“人工智能”这门课程时,每个学生的心中所想各有不同,这些学生在刚开始学习时兴趣还比较强烈,但随着教学内容变得越来越抽象,学生逐渐对这本课的学习失去了信心,甚至上课时间不去听课,使授课教师对教学也渐渐失去了信心,导致恶性循环,严重影响了教学质量。针对这种现象,我们认为,在开课前充分激发学生的学习兴趣是很有必要的。我们要结合学校的实验条件,开课前给学生演示“机器人医疗服务”实验,通过该实验的演示,让学生们看到机器人能够给病人提供多项人性化的服务,理解人工智能技术在开发医疗服务机器人多项关键技术中的应用,让学生在开课前能够对本课程的学习产生极大的兴趣,实践证明这种方法是有效的。
(二) 借助多媒体教学
多媒体教学是现代教学过程中一种非常重要的形式,它往往根据教学目的和学生们的特点,通过合理的设计、选择教材内容,应用公式、图形、文字、视频等多种媒体信息进行有机组合并通过电脑和投影机显示出来,与传统教学手段相结合,形成合理的教学过程结构,达到最优化的教学效果。人工智能这门课具有针对性强、内容抽象、公式繁琐等特点,学生学习起来比较困难,为了让学生生动、形象地学习该课程,我们在教学过程中充分利用了多媒体技术来组织教学。例如在课堂教学过程中播放南邮自动化学院梁志伟博士带领学生所开发的“智能足球机器人”比赛片段;让学生在线观看北京大学工学院谢广明博士带领学生所开发的“自主视觉机器鱼”录像片段等。在讲解某些重要的求解算法时,借助Matlab软件和投影机,直接展现该算法的求解过程,从而改善了课程教学的形式,提高了教学质量。
(三)提倡课堂辩论
我们在教学过程中打破了传统的“老师讲课学生听课”的教学模式,多次组织课堂辩论,辩论的主题包括人工智能研究过程中出现的技术困惑、人工智能研究成果转化中的市场前景等。如组织了“电脑PK人脑”“电脑是否让电视消失”“电脑的未来发展方向在哪里”等一系列辩论会。经过激烈的辩论,无论正方还是反方都感觉自己收获很大,增长了知识,开阔了眼界。在教学过程中通过将学生由“被动听课”角色变换为“主动参与”角色,大大地调动了学生的学习积极性,从而提高了课堂教学质量。
五、实践教学
实践教学是课堂教学不可缺少的重要组成部分,通过让学生亲自动手实验来对理论知识进行检验和应用是目前国内外各个大学提高学生综合素质、增强学生市场竞争力的重要手段。人工智能实验教学的目的是让学生通过亲自动手体会授课中的各种智能控制算法,从而使学生能够更加形象地掌握课本知识。人工智能教学计划安排了4学时实验课,设置了“传教士和野人过河”“机器人路径规划”这两个人工智能问题,要求学生独立完成这2个实验题目的编程,并书写实验报告。通过实验,学生动手实践了课堂上所掌握的理论知识,加深了对智能算法的理解。
人工智能是一门实用性较强的课程,我们总结了近几年来的教学经验,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学五个方面对人工智能课程教学进行了总结。从学生的反馈来看,我们所总结的教学经验对于指导新教师讲授“人工智能”这门课程具有积极的作用,需要指出的是,我们仍有很多不足之处,需要在以后的教学过程中不断努力完善,提高自己的教学能力,争取更好的教学效果。
参考文献
[1]蔡自兴,徐光佑.人工智能及其应用[M].北京:清华大学出版社,2003.
[2]路小英,周桂红,赵艳等.高等农业院校《人工智能》课程的教学研究与实践[J].河北农业大学学报:农林教育版,2007,9(4):66-68.
[3]马建斌,李阅历,高媛. 人工智能课程教学的探索与实践[J].河北农业大学学报:农林教育版,2011,13(3):330-332.
篇10
1传统教学的缺陷
⑴课程的教学地位没有引起足够的重视一些高校为计算机基础课程分配较少的学时(少于48学时),甚至有的专业将此课程设置为选修课。这种设置降低了该课程在教师和学生心目中的位置,导致了对该课程的忽视。同时,不少老师因为学时不够,时间紧迫,仅仅讲述与考试相关的内容,不考的一概不讲。这导致学生的眼界受限,知识和能力受限,无法培养其全面综合的计算机素质。还有的专业没有将这门课给专业的计算机学院的老师讲授,而是随意安排授课人员。没有经过系统专业训练的教师缺乏足够的知识储备,很难讲好这一门看似简单的课程。⑵课程教学内容的制定与当今时代对于信息化人才的需求脱节一些高校的现状是计算机基础的课程教材知识陈旧[3]、质量堪忧,教材总是无法跟上知识更新的步伐,例如都2019年了还在讲Office2010。有的高校由于缺乏对课程的重视,没有对教材优中选优,而是基于利益的考虑,优先选择自己院系编写的教材。其教材内容是七拼八凑,没有整体性、逻辑性和连贯性,更不用说前瞻性。这样的教材,无疑对学生的学习设置了巨大的屏障。除此以外,一些院校的课程教学知识体系不够明确和完善,教学大纲的制定不够科学。从教学大纲中制定的学时分配来说,常常偏重实用性[4],常用计算机软件操作占据了大部分的课时。这会让教师在授课时轻理论而重操作,如此培养学生,非常不利于其计算思维的形成,对后续其他计算机相关课程的学习也是很大的伤害。⑶教学模式过于传统,信息化水平较低从教学方式上来说,传统的教学模式以教师课堂授课为中心,是以教师为主体的教学模式[5]。在这种模式下,教师仍然主要以填鸭式教学为主[6],无法通过课堂教学发现学生的个性化特点,并进行有针对性的教学。另外,虽然计算机基础课程一般都配备了实验课时,但是实验课常常是采用教师布置上机任务、学生做完抽样检查的模式。这对于大课堂来说,教师的任务繁重,无法搜集到每一个学生的任务完成情况,无法清晰地掌握学生学习的实际情况和薄弱环节。而且,该课程缺乏相应的研讨课时,很难让学生对其所学知识进行深入思考和探究,以增强思辨能力和对课程的学习兴趣。⑷课程考核方式不够公平合理从考核方式上来说,该课程普遍采用“平时成绩”+“期末考试”的加权方式对学生成绩进行评定。平时成绩多由考勤分所得,期末考试多采用机考模式。这种考核方式过于单一化、机械化,无法对学生进行全方位的评价。很多学生来到教室打考勤,但可能根本没听讲,而是在睡觉或者玩手机。期末机考的公平合理性也是存在着很多的漏洞。例如机考的试题库可以十年不变,分值的分配和难度的掌握都没有经过系统的考量。甚至有的考试系统不够稳定和安全,频频爆出Bug,严重影响了考试结果的真实性。
2新人工智能环境下对计算机基础课程改革的具体方案
2012年开始,在随着卷积神经网络技术在视觉处理方面的应用取得巨大的成功之后,人工智能到达了有史以来的第三个爆发期。目前,深度学习技术在AlphaGo、无人驾驶汽车、机器翻译、智能助理、机器人、推荐系统等领域的发展如火如荼。与此同时,人工智能技术在教育领域方面的应用已经兴起。人工智能的教学产品也已有先例,例如基于MOOC平台研发的教学机器人MOOCBuddy等等。基于人工智能的教育是融合云计算、物联网、大数据、VR、区块链等新兴技术的增强型数字教育[2].在当前人工智能的大时代背景下,针对传统计算机基础的种种弊端,我们提出了如下教学改革方案。⑴改变教学理念,确立计算机基础课程的重要地位计算机基础作为高校的一门公共课,实则应当作为各个专业的学生后续的学习、科研的必修之课程。因此,高等学校应从源头上确立该课程的重要地位,将该课程纳入必修课范畴,并给与更充分合理的课时分配。除教学课时、实验课时之外,需要为该课程增加一定的研讨课时。任课老师必须是来自于计算机专业的人才。同时,定时举办关于该课程的教学培训、教学研讨会和教学比赛,改变教师的教学理念,从源头上给予该课程足够的重视。⑵优化教学内容,重新制定课程的教学知识体系教材是教师教学的主要依据,也是学生获得系统性知识的主要来源。因此,教材对于教学的重要性不言而喻。教材的选取需要优中择优,必要的时候可以根据自身院校的情况自己编写,力求使用好的教材使教学事半功倍。在选定优质教材的基础上,制定更加合理的教学大纲,优化计算机基础课程的教学知识体系,突出计算机学科入门相关基础理论知识的重要地位。对现有的过时内容进行更新,例如操作系统以Windows10的操作取代Windows7,Office这部分使用Office2019版本取代2010的版本,同时增加关于算法入门知识、程序设计入门知识以及人工智能、区块链等前沿知识单元的介绍。以华中师范大学为例,我们在图1中给出了该校计算机基础课程的教学知识体系结构图。⑶充分利用现代化的教学工具和人工智能技术,构建智慧课堂,改变传统教学模式现代化的教学应当转变以教师为核心的教学模式,更加突出学生的主体性地位。因此,在人工智能、物联网、大数据等技术和蓬勃发展的情形下,应当改变传统的课堂教学形式,充分利用现代化信息技术,将传统课堂教学和网络课堂教学模式相结合,构建智慧课堂。融合课堂教学身临其境的效果与网络课堂自主性强且方便师生交流的特点,通过师生之间多层次、立体化的互动,达到提升教学效果的目的。同时,建立功能强大、完善的学生实验平台,基于不同专业学生的不同特点和不同需求,进行个性化的作业设置。针对教师布置的实验任务和学生的完成情况,结合在线网络教学系统,通过传感器及网络数据,搜集学生的学习行为数据,并且使用人工智能算法进行智能分析,使教师对当前的学生的学习情况一目了然,并能引导学生对重点、难点的巩固和掌握。研讨课以学生为主体,按照所选课题进行分组调研、分组讨论,刺激学生的学习兴趣,培养其思辨能力。研讨内容最终可以课程论文的形式上交至课程共享平台,由教师和同学共同给出评分。这里,仍以华中师范大学为例,我们将在线教学系统、实验课平台、研讨课共享平台等集成为一个基于人工智能技术的网络智慧教学综合平台系统。该系统主要包括用户管理、在线教学、课堂互动、作业管理、考试管理、BBS系统、智能分析和平台管理8个模块,其主要功能如图2所示。该系统采用C/S模式,系统的服务器选用Linux服务器,同时开发基于PC机的和手机端的客户端系统,方便学生和教师随时选用、更加灵活。在线教学模块中的智能学习助理功能,能够根据历史用户的学习行为和当前用户的学习行为,自动地识别学习内容中的难点以及当前学生的难点内容,有针对性地对学生进行知识点强化。课堂互动模块中,通过可穿戴式传感器搜集学生的学习行为,用于后续智能分析模块中对学生的学习态度和学习行为进行智能分析。在线作业评价模块包括机器评价和教师评价两个功能。机器评价是系统为学生作业(客观题、主观题)自动评分,其中主观题的评分也是使用人工智能技术来实现。教师评分时可以参考机器评分,减少教师工作量。同时,教师评分为机器评分提供机器学习的经验数据,促进机器评分更加智能。智能分析模块能够依据学生的在线课程学习模块、课堂学习模块、作业管理模块等搜集到的学习行为数据进行综合分析,促使教师深入了解学生的学习情况和个性化特点,提升教学的针对性,并且有助于后续对学生进行全面、综合的分析和成绩评定。所有系统模块中使用到的智能分析技术包括基本的统计分析、以及各类机器学习算法(k-means,NaveBayes,SupportVectorMachine,DeepLearning等等)。⑷改变传统成绩考核的方式在“教学”+“实验”+“研讨课”课程结构以及网络智慧教学综合平台的辅助之下,学生的成绩评定更加全面化、多元化、公平化、自动化[7]。平时成绩中,除了教学综合平台的“课堂签到”次数之外,还增加更多丰富多元化的考察信息,如:学生的课堂讨论、在线课程学习和考核结果、平时作业完成情况,以及智能分析模块中辅助分析的学习态度、学习能力、平时成绩预测。期末上机考试系统也是智慧课堂综合平台的一个子模块,是精心设计的稳定、安全、功能强大的子系统,方便教师每一年更新试题库,修改bug。试题库中的每一套试卷都应当经过科学的考卷质量分析,使其难度、覆盖范围在一个均衡、合理的范围。最后,教师通过对各类平时成绩指标以及期末考试成绩加权,给出最终的学习成绩。通过规范、合理、公平、全面的考核体系,获得对学生公平、完善的评价机制,激励学生并刺激教学良性运转。
篇11
一、人工智能时代的概述
人工智能(ArtificialIntelligence,缩写为AI)亦称智械、机器智能,指由人制造出来的机器所表现出来的智能。通常人工智能是指通过普通计算机程序来呈现人类智能的技术。该词也指出研究这样的智能系统是否能够实现,以及如何实现。人工智能于一般教材中的定义领域是“智能主体(intelligentagent)的研究与设计”,智能主体指一个可以观察周遭环境并作出行动以达致目标的系统。约翰麦卡锡于1955年的定义是“制造智能机器的科学与工程”。安德里亚斯卡普兰(AndreasKaplan)和迈克尔海恩莱因(MichaelHaenlein)将人工智能定义为“系统正确解释外部数据,从这些数据中学习,并利用这些知识通过灵活适应实现特定目标和任务的能力”。人工智能的研究是高度技术性和专业的,各分支领域都是深入且各不相通的,因而涉及范围极广。人工智能是研究使用计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能是十分广泛的科学,它由不同的领域组成,它是哲学、认知科学、数学、神经生理学、心理学、计算机科学、信息论、控制论、不定性论、仿生学等多种学科互相渗透而发展起来的一门综合性学科。在人工智能时代下进行电气信息类专业教育改革的过程中,需要对人工智能时代的含义和发展背景进行深入的分析和研究,这样才可以给电气信息类专业教育改革指明一个正确的方向,保证后续工作的科学性和有效性。在2016年的世界经济报告中,人工智能被预测为第4次工业革命的主要技术代表,人工智能的发展将从宏观到微观的各个角度进行相互的渗透以及融合,从而符合各个领域对于智能化技术的新要求和新需求。在人工智能技术发展的过程中,产生了大量的新技术和新产品,也形成了新的产业核心的发展模式[1]。我国经济结构在人工智能时代下发生了重大的变革,由于人工智能技术独特的技术形式和技术模式,深刻地改变着人们的生活方式和生活模式。在一定程度上不仅可以推动我国社会生产力的提高,还有助于推动科学技术水平逐渐朝着智能化和数字化的方向而发展,从中可以看出人工智能技术的发展是时展的必然趋势,并且发展前景是比较广阔的。人工智能技术主要是指将多个学科技术进行有效的整合,其中涵盖了计算机学科、语言学科和心理学科,智能化特征是比较明显的。在实际应用的过程中,由于融合了各种尖端的技术,能够将技术能力和技术思维进行有机的结合,模仿人的工作行为和思维,在当前时代下人工智能技术得到了蓬勃的发展,但是人工智能技术的发展也需要一定的时间和精力。首先,在实际用的过程中相关工作人员进行了机器人的研发,机器人可以在复杂的环境中对信息进行有效的替代和处理,模仿人类的思维进行日常的工作。在后续工作的过程中,相关工作人员进行了数据系统的开发,可以自动化和智能化的对计算机数据进行有效的处理以及分析,在较短时间内提取出有效的信息,完成整个工作流程[1]。随着我国当前科学技术的不断发展,一些工作人员纷纷加强了对人工智能技术的研发力度和开发力度,不仅可以提高计算机的使用效果,还可以及时的发现在计算机系统日常运行过程中所存在的故障。在当前时代下人工智能技术的使用范围在不断的扩展,并且人工智能技术的发展前景是非常广阔的,在计算机网络技术中发挥着独特性的作用和决定性的重要影响的作用。
其次,随着人工智能技术的不断发展,人工智能技术和各行各业进行了相互的渗透以及融合。在当前电气信息专业领域中人工智能技术得到了广泛的应用,并在实际工作的过程中对原有的工作模式进行了有效的改进和创新。一些工作人员在实际工作的过程中构建了自动化的工作模式和工作平台,将人工智能技术完美的融入电气信息领域中,不仅为我国电气信息领域指明了一个正确的方向,也在一定程度上提高了人工智能技术的水平。最后,人工智能技术的发展,在电气信息领域中的影响是迅速扩大的,人工智能的使用会对电气信息行业的各个环节产生深刻的影响,甚至是革命性的变化。人工智能的应用不仅仅停留于行业的技术层面,更加重要的是在人工智能时代下一些新的工作思维和发展理念。作为电气信息类专业的工作人员在人工智能的时代下要提高自身的专业素质和专业水平,根据人工智能时代的特点以及发展方向,对原有的工作模式和工作理念进行深入的改革以及创新,并且还要掌握有关人工智能方面的新技能,从而使得电气信息类专业影响力能够得到有效的提高。但是从侧面来看人工智能技术的发展对于电气信息类专业2本刊特稿科学咨询/教育科研2021年第24期(总第745期)来说是把双刃剑,给实际工作带来了新的挑战,一些工作人员不得不提高自身的专业素养和专业素质,掌握更多的人工智能技术。在当前时代下这种影响和变革已经被普遍认可,因此使我国电气信息类专业行业能够得到良好的发展。高校要对电气信息类专业教育进行适当的改革以及创新,根据当前人工智能时代的发展方向和对人才的要求,对学生的综合素质和创新能力进行良好的培育,从而使学生能够充分的发挥人工智能技术的优势,提高电气信息类专业的水平和质量,再一次加深人工智能和电气信息行业的融合力度。相关负责教师要加强对这一问题的理解,对原有人才培养模式和课程教育重点进行适当的改革和创新,根据人工智能时代和电气信息领域融合的背景,提高课堂教学的科学性和针对性,从而使学生在毕业之后能够获得良好的发展。
二、人工智能对电气信息类专业人才需求的影响分析
人工智能主要是利用计算机对人脑功能进行模拟,具备一定程度的人类认知和分析问题的能力,人工智能是人类所制造的智能化技术,也是机器智能化发展的主要载体。在人工智能发展的过程中,由于是计算机科学领域的一个分支,所以在人工智能研究的过程中,涉及有关语言识别和图像识别方面的功能。在当前时代下,人工智能所形成的热点效应是比较广阔的,人工智能技术的应用,使得各行各业朝着智能化的方向而发展,对于电气信息类专业人才需求来说,也逐渐朝着智能化的方向而发展。电气信息类的教学,主要是为了让学生能够在班级学习的过程中,将理论和实践进行有机的结合,提高学生的实践能力和操作能力,实践性是比较强的。在电气信息类专业发展的过程中各种新兴的技术被应用其中,扩展了电气信息类专业的发展实力,并且人工智能和电气信息类专业进行了有机的融合和渗透。人们在互联网思维的影响下已经形成了互联网思维的发展理念,随着人工智能技术的广泛运用再加上云技术和算法技术的普遍化,这又给电气信息类专业的发展提供了重要的支撑。在相互融合的技术背景下,电气信息类专业也即将进入到人工智能发展的领域中[2]。因此对于电气信息类专业行业的工作人员来说,要了解人工智能时代下先进的信息技术,并且还要结合电气信息类专业在人工智能背景下的新特点,树立新的工作模式和工作理念,从而使得电气信息类专业能够在人工智能技术背景下得到广泛的发展。对于人才需求方面,要求高校要对原有课堂教学模式和课程教学重点进行深入的改革和创新,融入人工智能方面的内容,对学生的综合素质和专业能力进行良好的培育,高校要正确地理解人工智能对电气信息类专业教学的影响,从而使得电气信息类专业能够朝着生态化和持续性的方向而发展。
三、人工智能给电气信息类专业提供的机遇
在人工智能技术中,所涵盖的技术内容相对来说是较为丰富的,这在一定程度上有助于提高电气信息类专业的教学水平和教学质量。从中可以看出在当前时代下的电气信息类专业教育教学中,教师要充分地把握人工智能技术所带来的机遇,从而提高课堂教学的效果和质量。在人工智能技术中包含着语言识别技术和图像辨认技术,也可以对一些语言进行有效的处理和研究。在课堂教学的过程中,教师要充分的发挥人工智能技术的优势,让学生了解当前电气信息领域的发展方向和主要的发展特点[3]。由于电气信息类专业所涵盖的内容是相对来说较为复杂的,学生在日常学习的过程中,需要进行多个学科知识内容的学习,这给学生日常学习和教师的课堂教学带来了诸多的挑战,教师要结合课程教学的内容,对课堂教学模式和流程进行精心的安排。在实际工作过程中,要以计算机作为主要的辅助手段兼容,并且充分利用其他专业领域的技术来开展日常的教学。在课堂教学过程中,教师要充分的利用人工智能技术,对原有课堂教学模式进行深入的改革以及研究,并且结合新一代人工智能发展规划的这一大背景,对原有课程教育模式进行创新和调整,从而给学生提供更加广阔的发展空间。首先,在实际工作的过程中,人工智能技术重新构造了电气信息专业的课程,由于电气信息类的实用性是比较强的,在人工智能的技术下能够取得不一样的教学效果。将语言识别技术和图像辨认技术进行了有机的结合,教师可以充分发挥这些专业技术的优势,提高课堂教学的效果。另外在课堂教学情景中,教师可以利用人工智能技术来实现网络化的教学,并且为学生打造智能化的工厂开展虚拟实验室,从而对学生的专业能力和操作水平进行良好的培育。其次,在电气信息类专业教学中人工智能技术的应用能够对传统课程教育模式进行有效的转型和升级。在以往课程教学中,由于电气信息类专业所涉及的知识学科是相对来说较为丰富的,这给教师的日常教学带来了诸多的问题。比如在实际教学的过程中很难实现课程的有效统一,也无法为学生打造标准化的课程教育体系,在进行个性化和独特性课程教学方面的力度还是不足的,甚至也没有完善的教育体系进行主要的支撑,这给实际的教学工作带来了诸多的问题。随着人工智能技术的应用,在课程教育的过程中,教师可以充分的发挥人工智能技术的优势,对相关信息进行有效的总结和收集。从而为学生打造个性化的教学课堂,并且运用人工智能技术,还可以对不同学生的学习需求进行分析和研究,提高课堂教学的针对性,从而使学生可以更加积极地进行知识内容的学习,实现快乐学习的效果[4]。在专业教育中教师要充分的发挥人工智能技术的优势,提高人工智能技术的应用性效果,对学生的知识需求进行深入的挖掘以及研究,从而使学生的学习质量能够得到有效的提高。与此同时,在课程教育的过程中,教师还可以进行课堂情景的构建,通过网络化的教学为学生再现一些生活中的真实案例,为学生全面素质的提高奠定坚实的基础。
四、人工智能技术在电气信息类专业教育教学中的应用路径
(一)转变人才培养目标在人工智能时代下的电气信息类专业教育中,由于原有的教育重点和人才培养模式已经无法顺应人工智能时代的发展特点和对人才的需求了,所以在实际工作的过程中,要对电气信息类专业教育进行有效的改革,帮助学生在毕业之后能够获得稳定的发展。首先,在对电气信息类专业教育进行改革时,要转变人才培养的目标,这主要是由于人工智能技术在电气信息类专业行业中的运用对各个环节都产生了非常深刻的影响,并且电气信息类专业对于人才的需求发生了很大的变化。比如,对人才的知识结构和专业技能方面都和传统发现模式有所不同,在电气信息处理的过程中提出了诸多的要求。相关电气信息类专业从业者不仅要具备完善的理论知识,还要具备创新性的思维能力,能够面对当前变化多端的人工智能时代,具备新的技术和新的思维,灵活地运用在实际工作中所存在的问题。因此对于电气信息类专业教育来说,要对人才培养目标精准定位,实现良好的变革。其次,电气信息类专业要着眼于当前国际发展方向和新业务的特征,了解有关业态产品和专业能力方面的内容。从这些问题入手提出正确的人才培养目标,并且对原有课程教学进行改革和创新,从而促进学生能够在课堂学习的过程中加深对人工智能技术的了解,提高学生的专业素质和创新能力。
(二)升级人才培养模式在人工智能背景下对电气信息类专业教育进行改革时,要在原有育人模式的基础上实现有效的升级,改变传统的课程教学设置。当前大部分电气信息类专业院校还是采用之前偏理论的课程来对学生进行知识内容的讲授,虽然这些理论知识是学生在学校学习期间必须要掌握的内容,但是假如仍然向学生讲述这些课程的话,也没有将理论和实践进行相互的结合,使得学生无法在人工智能时代下得到良好的发展,因此相关负责教师在实际教育工作中要对原有人才培养模式进行转型和升级。电气信息类专业教师要根据当前电气信息行业的发展和对人才的要求,对课程教育内容进行重新的调整。首先,在实际教育的过程中要向学生全面地展示先进的人工智能技术,技术是推进电气信息专业前进的动力之一。但是在原有的电气信息类专业教育中,教育技术的实施和教学并没有受到相关负责教师的重视,教师在班级教学的过程中,也没有为学生融入当前先进的人工智能技术和运用案例,提高学生的专业素质。在人工智能时代下,人机协作是当前主要的工作模式和发展模式,因此对于电气信息类专业教育来说,要对人才培养课程结构和课程重点进行有效的调整和创新。教师在教学中不仅要加入有关以往课程的教育内容,还要对课程进行有效的扩展,融入新媒体和人工智能技术应用相关的课程。比如教师可以立足于教材中的内容,为学生创设多样化的实训活动和实践操作平台,在学生实践的过程中要融入先进的人工智能技术,这些教学模式的运用不仅可以让学生了解人工智能技术的实际应用情况,还可以多方位的锻炼学生的创新能力和实践应用能力。所以相关高校要适当的借鉴这一教学经验,提高课程教学的针对性。其次,在育人模式中还要加强对学生创新思维和操作能力的培养,在人工智能背景下,电气信息的发展模式和主要的发展方向都发生了一定的改变。在当前电气信息领域发展的过程中,为了使自身能够在人工智能背景下得到有效的发展需要创新和创意的人才,并且要求这部分人才能够掌握先进的人工智能技术,根据电气信息发展的实际需求和人们对电气信息的要求,从而生产出个性化和特色化的产品。在育人模式升级中,教师要将专业和特色进行有机的融合,构建新的教育思路,过硬的专业素质才是人才升级的重要基础。在人工智能时代下,信息的来源和途径逐渐朝着多样化的方向发展,在这些繁杂的信息中既有重要的信息也有多余的信息,所以要使学生能够对这些信息进行有效的辨别。高校在制定人才培养模式中,要专业性的锻炼学生的工作能力和专业素质,从而使学生能够在这些大量的信息中提取有用的信息,提高电气信息类专业的有效性。
(三)引入任务驱动的实验模式在人工智能背景下对院校电气信息类专业进行教学时,教师要在保留原有学习项目的同时,立足于学生当前的理解能力,开发新的教学内容。在教学中教师要求学生进行独立性的思考,并且教师还要对学生的学习思路进行适当的引导以及启发,使学生可以运用课堂中所学到的知识内容灵活的解决实际实验过程中所存在的问题。教师要引导学生运用不同的方法进行学习,鼓励学生进行大胆的设计以及验证。教师在班级教学的过程中,可以为学生引入任务驱动式的教学模式任务,驱动式的教学模式主要是以学生为中心,教师要立足于教材中的内容和课堂教学的目标为学生布置相关的学习任务,实现综合性的学习效果。在为学生布置学习任务时,要融入当前先进的人工智能技术,让学生充分的发挥人工智能技术的优势来完成教师所布置的任务。教师要在任务驱动式的教学模式中增加一些设计型和创新型的学习活动,让学生直接深入到实践学习中进行方案的设定以及验证,并且对最终的实验结果进行多方位的分析以及讨论。在班级教学的过程中,教师要让学生围绕着一个教学目标来开展日常的学习,并且学生在学习和验证的过程中,教师还要加强和学生之间的互动和交流,从而对学生的实验方向和实验思路进行有效的引导,使学生可以在强烈的学习兴趣和学习动力的驱动下进行自主性的探索以及学习,并且也可以在班级中形成良好的互动。
(四)利用人工智能技术进行辅的教学在电气信息类专业教学课堂中,教师在利用人工智能技术进行教学时,要在原有课程的基础上充分地发挥人工智能技术的优势,从而对实际教学起到一个良好的辅助作用。比如,在实际教学的过程中,教师需要将理论知识和学生的实践学习进行相互的结合,提高课堂教学的真实性和有效性,在课程内容中要围绕着各种企业的实际项目来让学生进行知识内容的学习,教师要利用人工智能技术的优势为学生展现真实的一线工作现场,让学生全面的感受工作的环境,不仅有助于提高课堂教学的效果,还可以让一些抽象的理论知识变得生动和直观,促进学生学习效率的提高。
篇12
本文着重介绍教学团队在智能科学精品课程群建设方面的基本情况。
一、智能科学精品课程群的建立
该团队逐步推进智能科学精品课程群建设,不断积累教学改革成果。首先,利用颇具特色的优秀教材群,建立起国内首个立体交叉的智能科学教材体系。其次,把多元智能理论和本体论的知识组织方法用于课程群建设,并建立了智能科学课程群之间的内在联系,建成国家级智能科学精品课程群。再次,增强实验教学,整合多元资源,创建开放式软硬件训练环境,促进智能科学精品课程群的进一步建设与发展。
(1)率先建设立体交叉的智能科学教材体系
智能科学具有高度交叉、多学科融合的特点,结合这些特点研究了不同课程、不同学历层次、不同学科门类之间的交叉链接关系。建设以信息学科类本科生教育为主,兼顾硕士和博士研究生的教材体系,并辐射到管理类、机械类等专业。教学团队与时俱进,对教材不断更新,自1987年以来共出版人工智能、机器人学、智能控制等教材共20个版本[8-13]。例如,《人工智能及其应用》、《机器人原理及其应用》和《智能控制》均为我国相关课程的第一部具有自主知识产权的著作,被誉为“智能三部曲”,为国内高等院校广泛使用。
(2)建立多层次智能科学精品课程群
团队把多元智能理论和本体论的知识组织方法运用于课程群建设,并依据个性化元素特征和个体差异构建模块化课程体系及系列化课程设置,并据此设计课程群及课程相关的实践环节。
设计出各课程间的横向关系和专业间的纵向关系,即建立智能科学课程群之间在知识、技能、素质三个维度上的横向联系,以及在本科生、硕士研究生、博士研究生三个学历层次与专业基础课、专业课专业层次上的纵向关系。
经过长期建设,10年来共获准12项各级质量工程等立项,建立与形成了国家级智能科学精品课程群。其中包括国家级精品课程、全国双语教学示范课程、国家级教学团队、全国优秀网络课程、国家级规划教材、国家级精品视频公开课和国家级精品资源共享课程以及省级和校级精品课程等。
(3)整合资源,加强实验,创建开放式训练软硬件教学环境
教学改革没有最好,只有更好。教学团队不断增加与逐步完善智能科学精品课程群的实验和实践环节,开设智能科学相关培训课程和专题讲座。注重整合各种资源,增强智能学科与其他学科的交叉,创建开放式训练环境和训练中心,建设智能科学与技术创新实验室、大学生程序设计竞赛训练中心、大学生智能移动机器人科技创新平台等。此外,还积极参与智能类学科竞赛,如“飞思卡尔”大学生智能车竞赛、全国大学生智能设计大赛、ACM/ICPC程序设计大赛,以及多种智能机器人和智能小车大赛等。
经过多年精品课程建设与积累,目前,教学大纲、教学日历、教案或演示文稿、重点难点指导、作业、参考资料目录和课程全程教学录像等教学必需资源均进行了持续建设与更新补充。其中一些特色资源得到建设与共享。首先,共享国家级教学名师积累的丰富教学资源。通过建立名师工作室、名师示范项目实验室和名师图书室,形成多元化的带教制度,使老教师的教学理念和经验得以传承。这样就能够加快年轻教师的培养与成长。其次,共享网络课程资源。各门网络课程均采用智能技术中的知识推理和智能算法来实现编程、答疑和虚拟实验,具有智能化、个性化、情境化和形象化等特色,以及导航系统多样化、向导学习个性化和情景化学习等功能。促进了各课程教学改革,提高学生培养质量,深受学生欢迎。再次,共享实验资源。教学实验从无到有,从弱到强,逐步建立教学实验室和科研实验室,全面向学生开放,使广大学生共享实验资源。通过实验,学生发挥了主动性,提出并积极验证和探索自己的思路,从而更好地掌握知识,培养学生的理论联系实际能力和创新能力。
二、改革课程教学,建设精品课程群
着力课程教学改革,建立以精品课程群为核心、以课堂教学为基础、以实践训练深化教学效果的课堂教学与实践教学创新体系。为了实现教学目标,保证课程群的教学和教改的顺利进行,加强了教师队伍建设和教学管理,建立教学质量评价系统,保证课程群的教学质量。
(1)建立以精品课程群为核心,以课堂教学为基础,以实训深化教学效果的课堂教学与实践教学创新体系。
提出“以趣导课、以疑启思、以法解惑、以律求知”的“四以”教学方法。建立“课堂讲授+启发互动+创新实践”三位一体的教学模式,探索出“项目驱动教学”(Project-orientedlearning)和“做中学、趣导思”的主动教学方法和学生培养途径。开发双语教学平台,改进与强化双语教学模式,完善双语教学的方法和手段,提高教学质量。
(2)加强教师队伍建设,改进管理,改革考试,促进课程群的教学和教改的顺利进行。
总结并推行“严肃对待教学工作,严格要求学生,严密组织教学过程,严谨施行教学改革”的“四严”教育思想,指导教师队伍思想建设[1]。注重对青年教师的业务培养,提高他们的授课水平。改革考试制度和方法,培养学生思维、分析能力和创造创新能力。
(3)建立教学质量评价系统,监控课程教学全过程,保证课程群的教学质量。
将控制论(Cybernetics)中的闭环控制信息反馈和故障诊断理念引入教学质量评估过程,建立教学质量的诊断、分析与校正评价系统DIACES (Diagnosis,Analysis and Correction Evaluation System)。
(4)利用教师试讲、督导听课、网上评教、同行评议、讲课竞赛、质量评优、师生座谈、公开示范课等一系列措施,反映教学中的存在问题和成功范例。然后通过集体讨论分析,提出对存在问题的纠正措施或对成功范例的推广意见,实现评估监控过程的自动化、智能化与常态化,保证教师授课技能、教学效果和人才培养质量的提高。
三、经验与结论
在智能科学精品课程群建设过程中,取得了丰硕成果,探索与积累了丰富经验。主要体会如下:
(1)在该精品课程群建设中,始终贯彻“以人为本”的育人理念,把多元教学理论和本体论的知识组织方法用于课程群建设,创建因材施教和探索性的学习环境。以“教书育人”为根本任务,坚持“严肃对待教学工作,严格要求学生,严密组织教学过程题,严谨施行教学改革”(“四严”)教育指导思想,奠定创新型人才培养的理论基础。
(2)注重“课程核心”教育定位,总结出“以趣导学、以疑启思、以法解惑、以律求知”(“四以”)的教学方法和“做中学、趣导思”的综合素质培养方法。做到师生互动,理论联系实际,深化教学,摸索出创新型人才培养的有效途径。
(3)建立覆盖多层次、多专业、多语种、立体配套的智能科学精品课程群系列教材体系,实现课程群系列教材的“精品化”。建立网络化、个性化、智能化的多维教育网络课程体系。建立一种教学质量评估系统,即质量诊断、分析与校正闭环评价系统。这些措施为课程教学和创新型人才培养提供了有力保障。
篇13
近年社会对计算机专业人才能力的要求越来越高,而学生所学与实际需求存在不少差距,高校计算机专业课程教学因而遭遇诟病。依托信息与网络技术支撑的大规模网络开放课程(massive online open course,MOOC)较好贯彻了以学为中心的理念,其翻转教学模式与灵活有效的交互极大提升了学习兴趣[1]。搭建MOOC平台的计算机技术既是技术基础,也是热门MOOC课程。在此浪潮下传统高校计算机专业的教学首当其冲受到冲击,遇到前所未有的挑战。纵观国际三大MOOC巨头的课程建设均始于计算机类专业课程,同时也是所占比例较大的课程系列,其中人工智能(Artificial Intelligence,AI)课程在Coursera、Udacity[1]两个平台上均是最早开设的课程之一。采用何种教学模式更适应社会对人才的需求呢?这是应对挑战的关键问题。
1 人工智能课程的课堂教学困境
人工智能是研究模拟、延伸和扩展人类智能的理论、方法、技术及应用的前沿交叉学科,涉及面广、研究性强,还不断产生新的理论和方法。课程难度大理论强实践难,也是公认难讲的课程之一,该课程具有如下特点:
1.1 先导课多,知识抽象,涉及面广,更新快
前期知识包括:数据结构、离散数学、程序设计、图像处理等。如果前期知识不扎实,很难理解内容并融会贯通。传统内容包括:知识表示和推理、搜索策略、模糊理论、神经网络、机器学习、专家系统、遗传算法等,涉及大量抽象理论和复杂算法。教材普遍特点是:内容滞后,枯燥深奥的理论和解决现实问题的实践联系不紧密。
1.2 研究性强
该领域很多内容仍是科研热点,并不断涌现出新的研究方向、新内容、新方法、新技术和新应用。
1.3 教学方式单调
技术和管理的局限也制约了教学方式,教学方式基本以教为中心,停留在讲授、问答等简单互动上,教学方法单一。很少能提供学生自学、讨论、合作和实践的一整套互动实践机会,难以真正体现以学为中心的理念。
1.4 学生缺乏兴趣
一方面,课程本身特点使得课程容易陷入枯燥的纸上谈兵的尴尬。另一方面,即将毕业的高年级本科生对未来规划明确,抽象的人工智能课程无论从职业发展还是继续深造对学生并没有立竿见影的效果,进一步拉低兴趣。此外,教材滞后,教学方法单一等也会影响兴趣。
如火如荼发展的MOOC的课程,尤其Udacity的课程设计之初就立足于解决实际问题的导向,做法上的独特之处成功吸引了大批学生。课堂教学中借鉴在MOOC上被证明有效的教学模式和方法,不啻为一种尝试,以期摆脱教学困境,提高学习兴趣,最终提升教学质量。
2 MOOC的教学模式
MOOC的教学模式分为三种:cMOOC、xMOOC 和 tMOOC[2]。早期的cMOOC的教学模式特点是学习者完全做主,但复杂的网络互动产生庞大而混杂的知识网,缺乏识别主次和归纳总结能力学生常因信息过载陷入茫然无措的境地。2011年Udacity 创始人之一在网上开设的“人工智能导论”课程改变了表现风格,把互联网作为教学媒体的呈现潜力发挥到极致,按知识点分割内容成短小视频,其间插入现场对问题的解决,突出了Udacity有别于传统教育机构及其先行者的地方:注重发现并解决问题。这就是xMOOC的教学模式,沿袭并创新了熟悉的学习风格,使得MOOC如鱼得水渐渐发展壮大。随着MOOC逐步成熟,为了适合具有专业基础的职业技能培训,发展培养针对具体任务的探究学习教学模式,即tMOOC模式,这是Udacity网站课程的另一个设计目标。表1显示了MOOC的三种模式的对比。
以Udacity的人工智能导论课程为例,只要高中毕业具有概率论和数理统计基础的学生就可以学习,该课程适合入门,但难度较低,内容较少。清华大学的马少平编写的人工智能教材是很多大学,包括我院人工智能课程的教材,清华大学的人工智能课程经过多年发展已经形成了一个系列教学资源库,包括教材、课程视频、教学课件、作业及答案和实验设计等。根据Udacity网站的人工智能导论课程的展示,表2从几方面对比了Udacity人工智能课程与清华大学马少平版的人工智能课程情况:
从表2可以发现Udacity的人工智能视频采用了按知识块分割成短小视频,在期间和完毕之后都准备了测试,细节上体现了以学为主的理念。纵观类似人工智能的国家精品课程[3],学习资源多为文本类,重用难,对教学重难点没有拓展和转化。这种以内容共享为中心的呈现模式,缺乏与学习者充分交互,难以体现以学为中心的教学理念。
在MOOC的教学设计中,调动学习者极大热情的是翻转课堂,在学习环境中引入了自主协作[4-5],在交流机制中融入了多元互动,给学习者带来积极、主动、高效的学习,翻转课堂和传统课堂的区别如表3所示:
3 MOOC的教学模式对人工智能课堂教学的启示
3.1 教学内容的优化与调整
MOOC的教学通过把理论抽象的知识点分割成小段录制的微课视频,时长不超过15分钟,内容衔接处具有一定交互性,讲解形象化,提供给学生反复观看,这种用技术处理分解知识点和把难点从抽象变成具象的过程降低了理解难度。
课堂教学也可以通过分而治之的方式对教学内容优化调整。人工智能涉及内容与范围多而杂,作为入门课程并不要面面俱到,根据学生层次,可以区分重点掌握和一般介绍的内容,以点带面铺开,因此,根据学生特点,把成熟的基础理论和这些理论的实际应用整合,辅以其他新技术的穿插介绍,主要分三块:
①人工智能的概念和发展,熟悉人工智能的研究和应用领域;
②人工智能的基本技术,包括知识表示,逻辑推理、搜索策略、模糊理论等;
③涉及现实应用,如:机器学习,模式识别,自然语言理解,智能控制等。
为了反映人工智能领域最新进展,教师还可以收集学生感兴趣的最新成果专题信息,及时更新、调整教学内容,通过与实际更紧密的融合接轨,对课堂上没时间介绍而又较热点的新知识,通过提供方向和资料解决,注重提高兴趣的同时,也展示出课程学科特点、主流技术及发展趋势。
3.2 紧密结合实际
Udacity的开设之初的目的就是学习为了解决现实问题,其人工智能课程设计也不例外,包含有实际遇到问题的解决,这种立竿见影的好处就是极大激发了兴趣。
考虑到高年级学生对解决实际问题技术的兴趣远远大于技术理论等细节,不想花太多时间去理解复杂而难以看到实践效果的理论上,更想通过实际体验解决问题增强成就感。教学内容的设计尤其紧密结合实际运用。
传统人工智能讲授通过实例解答或推证式讲述理论,如知识表示和搜索推理技术,该部分理论强,应用实例少,往往学生感觉枯燥乏味,教师也感觉晦涩抽象,学生对所讲内容基本靠死记方法和步骤,这种僵化的教与学影响了教学效果。
因此,设计教学时尤其注重内容的实用性。除了讲授至今仍沿用和有效的基本原理和方法外,引入近年发展起来的方法和技术,如智能算法等,对这些内容重点在技术的具体实现上,强调与实际的融合贯通。教学过程中加入与课程内容对应又可以用计算机实现的试用内容。如模式识别应用于手写数字识别,通过仿真软件模拟实现算法,获得立竿见影的效果体验,加深对算法的认识,引起学生浓厚的兴趣。同时也对某些很有发展前景的技术兴趣导入,如目前人工智能研究侧重人类理性逻辑功能的模拟,而如果把情感智能考虑进去,才更有人性化的智能决策。这就是经过了将近20年发展的情感计算,随着可穿戴技术渐渐渗透进生活,引起更多关注,这些接地气的内容提升了兴趣。
3.3 实践能力的培养
Udacity 创始人史蒂芬斯博士的说过,“即使是最好的大学,其计算机课程所传授的技能也是浮于理论的”。学习的目的是为了解决实际问题,带着问题学习和思考,有利于主动学习的激发。这些方面,可以参考Udacity人工智能课程的实验内容修正。强调学习是为了解决实际问题服务的目标。
3.4 教学模式及教学方法的变化
3.4.1 实例教学法
人工智能内容的抽象性决定了知识点的难度,Udacity人工智能课程教学中尽量把难懂的知识点结合现实中有趣实例,通过感性体验提高理性理解,让学生容易接受。笔者进行了一些化难为易的尝试:如利用汉诺塔问题讲解状态空间的知识表示,通过野人过河的游戏程序步步领会理论精髓;结合下棋软件体验模拟人脑思考的计算机博弈的极大极小搜索思路,这些实例教学激起了兴趣,扩展了学生思路,拓宽了视野。
3.4.2 翻转教学法
整门课程录制课程小视频还有一定难度,作为尝试,选择少量知识点录制视频进行翻转教学。如抽象的理论部分,借鉴网上已有视频资源融入教学过程,分解知识点破解难点,形象化与短时间的重复讲解,增加学生对抽象内容的理解,期间穿插核查对理解内容的核查,并留出思考时间,强化学习效果。
3.4.3 交互环境的营造,辅助教学过程完善
1)基于联通主义的学习交互[6-7]
在MOOC课程中,提供在线交流论坛,学习者建立课程组,学习组等方式交流,这种教与学、学与学的交互不但是网状进行的,而且是即时的。学生将互动产生的内容作为学习的中心,通过学习者不同认识的交互,建立新的认知结构,拓宽了视野,更有利于问题的有效解决。这种互动交流分成三种形式:
①教师对统一回答提问集中且意义较大的疑难问题;
②学习者分享学习感悟;
③学生间交流带来不同认知的碰撞。
以上三种情况的互动在课堂教学中也可以运用于课堂教学:及时分析整理共同问题,集中回复;课堂教学的互动除了课堂上及时了解学生反馈的互动,还有对解决问题的互动。课下互动可以利用学者网建立课程组,提供了较好的师生交流形式与效果,同时利用学习组在小组中分享互助,小组成员的交流引起认知碰撞,这种实际参与的体验加深了理解,并巩固学到内容,这些资料的逐渐积累还可以复用。
2)基于行为主义的学习反馈[8]
MOOC 遵循了程序教学的一般原则,尤其注重学生反馈,像游戏一样关卡设置让整个过程充满挑战性,一些机器评分实现了及时学习反馈,摆脱了单向提供课程资源的弊端。课堂教学可以借鉴这种借助技术手段互动了解学生学习的情况,促使有意义学习的发生。
4 教学改革的实施
利用以上措施在《人工智能》课程的教学中实践,通过在xMOOC教学模式中部分适当内容引入翻转教学法与利用学者网的课程交互,探索提高兴趣,促进理论与实践的融合,促进有意义学习的发生,提高学生实践能力的途径。通过观察,调查与访谈等方式,了解学生在该教学模式中兴趣与能力改善状况,同时研究教师教学法转变与教学水平变化的关系,根据追踪研究效果,发现这种改善调动了学习兴趣,促进了教学效果。实践中通过建立实验组(班)与对照组(班)、评价教学模式和教学效果等因素,不断总结、修正和完善,期望建立适应当前形势与环境的有效的该课程的教学模式与教学方法。
5 结束语
笔者结合人工智能课程的教学实践,针对本科高年级的教学特点和人工智能课程学科特点,提出在设计人工智能教学时,通过MOOC的教学模式和教学方法完善课堂教学,注重内容的实用性和新颖性,适当穿插新方向的内容,目标是将难学、枯燥、难理解的问题,变得易学、有趣、易理解。从学生反馈来看,这些方法起到了积极的实际效果,有效地提高了学习积极性。
【参考文献】
[1]udacity的人工智能导论课程网[EB/OL].https:///course/cs271.
[2]王萍.大规模在线开放课程的新发展与应用:从cMOOC 到xMOOC[J].现代远程教育研究,2013(03):13-19.
[3]国家精品课程资源网[DB/OL].[2013-04-22].http://.
[4]徐明,龙军.基于 MOOC 理念的网络信息安全系列课程教学改革[J].高等教育研究学报,2013,36(03).
[5]王文礼.MOOC 的发展及其对高等教育的影响[J].江苏高教,2013(2):53-57.