在线客服

水利工程地质论文实用13篇

引论:我们为您整理了13篇水利工程地质论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

水利工程地质论文

篇1

1.1水利水电工程与地震问题水库等水利水电工程建筑物蓄水后,由于地应力的调整或水体下渗等原因,触发了地质断层的复活而诱发地震。研究表明,要触发一个比较大的地震需具备以下三个条件:①水库岩石比较破碎,且处理效果不十分理想;②存在有利于应力集中的地质环境条件;③水库水荷载所产生的超孔隙水压力足够大。关于水库诱发地震的事件国内外均有报道,一般而言,水库的坝址没有较大的断裂带存在,仅仅是水荷载引起的地应力,诱发地震的可能性是很小的。但如果诱发大的地震,那将是灾难性的。从1987年的资料至今,我国已建设的坝高在15米以上的水库共18000多座,已发现水库诱发地震的有13座。

1.2水利水电工程与水文问题水利水电工程建成后改变了下游河道的流量过程或周围环境水域的分布,从而对周围环境造成影响。例如:①大坝水库不仅存蓄了汛期洪水,而且还截流了非汛期的基流,往往会使下游河道水位大幅度下降甚至断流,并引起周围地下水位下降,从而带来一系列的环境生态问题;②下游天然湖泊或池塘因断绝水的来源而干涸;③下游地区的地下水位下降;④入海口因河水流量减少引起河口淤积,造成海水倒灌;⑤因河流流量减少,使得河流自净能力降低;⑥以发电为主的水库,多在电力系统中担任峰荷,下泄流量的日变化幅度较大,致使下游河道水位变化较大,对航运、灌溉引水和养鱼等均有较大影响;⑦当水库下游河道水位大幅度下降以至断流时,势必造成水质的恶化。由此可见,水利水电工程对水文的影响是不容忽视的一个重要问题。

1.3水利水电工程与气候问题一般情况下,区域性气候状况受大气环流和水体分布所控制。如果修建大、中型水库及灌溉工程后,当地水体的分布会发生较大的变化。如原先的陆地变成了水体或湿地。局部地表空气变得较以前更加湿润,形成新的小气候,对当地气候会产生一定的影响。主要表现在对降雨、气温、风和雾等气象因子的影响方面。

1.4水利水电工程与鱼类、生物物种问题①对鱼类的影响:切断了洄游性鱼类的洄游通道;水库深孔下泄的水温较低,影响下游鱼类的生长和繁殖;下泄清水,影响了下游鱼类的饵料,从而影响鱼类的产量;高坝溢流泄洪时,高速水流造成水中氮氧含量过于饱和,致使鱼类产生气泡病。②对植物和动物的影响:库区淹没和永久性的工程建筑物对植物和动物都会造成直接破坏;同时局部气候变化、土壤沼泽化、盐碱化等都会对动植物的种类、结构及生活环境等造成影响。

二、工程地质工作中存在的问题

2.1工程地质勘察的质量问题在工程地质勘察过程中,主要问题有以下几种:①工程概念不清,勘探侧重点不明确,针对性不强,方法不当,手段落后;②工程地质分析工作中所选择的理论、方法、计算公式等与实际情况有较大出入,其适应条件的物理意义混淆不清;③地质报告中基本地质条件不清楚。我们遇到的主要工程地质问题有:①界定不准确或论证不充分,有问题遗漏甚至结论性错误;②有些地质报告没有地质结论,也有些工程没有做多少地质工作就先下结论,极不严肃。此类问题产生往往造成阶段性工程审查不能一次性通过,可能延误开发时机;或者尽管通过了审查,但却给工程留下了隐患,这种情况的危险性极大。

2.2勘测周期不合理的问题从工程地质勘察到地质报告的提交需要一定的工作周期,这是再简单不过的道理,然而有些工程却没有进行基础性的前期投入。主要存在问题有以下几个方面:①一旦需要申报项目,立即就要求提交地质报告;②今天刚刚提交可研报告,明天就要求提交初设报告。此类情况多为地方性工程,一般国家投资的大型工程出现这种局面的不多。没有足够的勘测周期所造成的后果是严重的,由于地质条件不清楚,直接导致投资控制不住,施工后修改设计等情况。更可怕的是留下了工程隐患,可能造成重大的工程事故。:

三、结语

工程地质学是20世纪才建立和发展起来的一门地球科学。水利水电工程地质勘察是所有行业中涉及面最广、问题最复杂、任务最艰巨、声望最高、最具权威性的龙头行业,它具有自身的特殊性与复杂性。水利水电工程建设与环境保护是一项长远的任务,是水利水电工程顺利进行的重要保证之一。保护和改善工程环境是保证人们身体健康的需要,是现代化大生产和保证工程质量的客观要求,是保证工程永久利益的必须条件。工程地质工作的质量,对工程方案的决策和工程建设的顺利进行至关重要。由于地质问题引起的工程事故时有发生,轻则修改设计延误工期,严重时造成工程失事,给人民生命财产带来重大损失。近年来。工程地质勘察质量有下滑趋势,工程地质分析不够深入,有时甚至出现工程地质评价结论性错误这样严重的问题。笔者认为,总结分析水利水电工程地质勘察过程中存在的问题,具有重要的现实意义。

参考文献:

[1]林妙月.区域构造稳定性及地震性危险评价问题[M].北京:地震出版社,2008:99-100.

篇2

1.1水利水电工程与地震问题水库等水利水电工程建筑物蓄水后,由于地应力的调整或水体下渗等原因,触发了地质断层的复活而诱发地震。研究表明,要触发一个比较大的地震需具备以下三个条件:①水库岩石比较破碎,且处理效果不十分理想;②存在有利于应力集中的地质环境条件;③水库水荷载所产生的超孔隙水压力足够大。关于水库诱发地震的事件国内外均有报道,一般而言,水库的坝址没有较大的断裂带存在,仅仅是水荷载引起的地应力,诱发地震的可能性是很小的。但如果诱发大的地震,那将是灾难性的。从1987年的资料至今,我国已建设的坝高在15米以上的水库共18000多座,已发现水库诱发地震的有13座。[1]

1.2水利水电工程与水文问题水利水电工程建成后改变了下游河道的流量过程或周围环境水域的分布,从而对周围环境造成影响。例如:①大坝水库不仅存蓄了汛期洪水,而且还截流了非汛期的基流,往往会使下游河道水位大幅度下降甚至断流,并引起周围地下水位下降,从而带来一系列的环境生态问题;②下游天然湖泊或池塘因断绝水的来源而干涸;③下游地区的地下水位下降;④入海口因河水流量减少引起河口淤积,造成海水倒灌;⑤因河流流量减少,使得河流自净能力降低;⑥以发电为主的水库,多在电力系统中担任峰荷,下泄流量的日变化幅度较大,致使下游河道水位变化较大,对航运、灌溉引水和养鱼等均有较大影响;⑦当水库下游河道水位大幅度下降以至断流时,势必造成水质的恶化。由此可见,水利水电工程对水文的影响是不容忽视的一个重要问题。[2]

1.3水利水电工程与气候问题一般情况下,区域性气候状况受大气环流和水体分布所控制。如果修建大、中型水库及灌溉工程后,当地水体的分布会发生较大的变化。如原先的陆地变成了水体或湿地。局部地表空气变得较以前更加湿润,形成新的小气候,对当地气候会产生一定的影响。主要表现在对降雨、气温、风和雾等气象因子的影响方面。

1.4水利水电工程与鱼类、生物物种问题①对鱼类的影响:切断了洄游性鱼类的洄游通道;水库深孔下泄的水温较低,影响下游鱼类的生长和繁殖;下泄清水,影响了下游鱼类的饵料,从而影响鱼类的产量;高坝溢流泄洪时,高速水流造成水中氮氧含量过于饱和,致使鱼类产生气泡病。②对植物和动物的影响:库区淹没和永久性的工程建筑物对植物和动物都会造成直接破坏;同时局部气候变化、土壤沼泽化、盐碱化等都会对动植物的种类、结构及生活环境等造成影响。

2工程地质工作中存在的问题

2.1工程地质勘察的质量问题在工程地质勘察过程中,主要问题有以下几种:①工程概念不清,勘探侧重点不明确,针对性不强,方法不当,手段落后;②工程地质分析工作中所选择的理论、方法、计算公式等与实际情况有较大出入,其适应条件的物理意义混淆不清;③地质报告中基本地质条件不清楚。我们遇到的主要工程地质问题有:①界定不准确或论证不充分,有问题遗漏甚至结论性错误;②有些地质报告没有地质结论,也有些工程没有做多少地质工作就先下结论,极不严肃。此类问题产生往往造成阶段性工程审查不能一次性通过,可能延误开发时机;或者尽管通过了审查,但却给工程留下了隐患,这种情况的危险性极大。[4]

2.2勘测周期不合理的问题从工程地质勘察到地质报告的提交需要一定的工作周期,这是再简单不过的道理,然而有些工程却没有进行基础性的前期投入。主要存在问题有以下几个方面:①一旦需要申报项目,立即就要求提交地质报告;②今天刚刚提交可研报告,明天就要求提交初设报告。此类情况多为地方性工程,一般国家投资的大型工程出现这种局面的不多。没有足够的勘测周期所造成的后果是严重的,由于地质条件不清楚,直接导致投资控制不住,施工后修改设计等情况。更可怕的是留下了工程隐患,可能造成重大的工程事故。:

3结语

工程地质学是20世纪才建立和发展起来的一门地球科学。水利水电工程地质勘察是所有行业中涉及面最广、问题最复杂、任务最艰巨、声望最高、最具权威性的龙头行业,它具有自身的特殊性与复杂性。水利水电工程建设与环境保护是一项长远的任务,是水利水电工程顺利进行的重要保证之一。保护和改善工程环境是保证人们身体健康的需要,是现代化大生产和保证工程质量的客观要求,是保证工程永久利益的必须条件。工程地质工作的质量,对工程方案的决策和工程建设的顺利进行至关重要。由于地质问题引起的工程事故时有发生,轻则修改设计延误工期,严重时造成工程失事,给人民生命财产带来重大损失。近年来。工程地质勘察质量有下滑趋势,工程地质分析不够深入,有时甚至出现工程地质评价结论性错误这样严重的问题。笔者认为,总结分析水利水电工程地质勘察过程中存在的问题,具有重要的现实意义。

参考文献:

[1]林妙月.区域构造稳定性及地震性危险评价问题[M].北京:地震出版社,2008:99-100.

篇3

各类地质数据解译分析的目的是为了弄清工程区复杂的地质结构几何形态和空间分布关系,水利水电工程地质研究的主要对象为地形地貌、地层岩性和地质构造三类地质要素。因此,耦合多源地质数据的解译分析结果,对各类地质要素进行综合分析,获得能客观反映其空间构造的剖面数据,将为三维地质数据的集成提供数据源。根据地质结构分析可知,反映工程地质条件的数据多种多样,如地形等高线、钻孔、平硐、实测剖面、遥感解译图、地层柱状图、区域地质图、构造地质图等,由于数据来源、勘测手段、数据精度等方面的不一致,使得这些地质数据不能完全统一地反映实际地质条件,需要进行耦合处理分析,形成一致的解释结果。根据数据的类型和使用方式,可将其分为两大类:①直接可用数据。包括钻孔、平硐及其相关属性数据,这些通过地质勘探得到的原始采样数据,精度很高,利用数据库进行存储管理后,可直接用于剖面解译和集成系统中。②间接图形数据。由不同分辨率不同精度的图形组成,既包含分析处理过的原始信息,如三维地形、剖面数据等,也包括分析得到的数据,如通过地质点、遥感图像解译获得的地层界线、断层、褶皱等构造迹线,以及地层柱状图、构造地质图等,这类数据一般利用AutoCAD平台进行二维存储,需要进行耦合统一分析。在传统剖面形成的基础上,提出改进的耦合多源地质数据的地质剖面生成方法如下:a.将综合反映工程区域地质测绘、勘探和分析成果的工程地质平面图数字化处理,主要包含地形等高线、地表出露的岩层界线和构造轮廓线(断层、褶皱等),以及勘探数据分布,如图1(a)所示。b.结合工程需要在平面图上交互定义剖面位置,如图1(a)中的A—A''''剖面线。c.确定剖面位置后,考虑一定的距离s(0≤s≤r,r定义为研究区域内剖面的缓冲半径)和权重w选择该位置附近的钻孔和平硐,s越小,w越大。d.在平面图的基础上,结合岩层剖面分析图和构造地质图,分别计算剖切面与地形面、岩层界面及断层迹线之间的交点,得到点集Pt、Ps和Pf,连接各点集中的点即可形成相应的地形线、岩层界线和断层线。e.自动导入钻孔、平硐数据并分析各地质结构产状,对上一步得到的结果进行调整修改,使其与实际数据完全吻合;并采用样条曲线技术对每条界线进行平滑处理,获得如图1(b)所示的剖面。该方法基于表格数据、图形数据和相关的地质信息,能够半自动化地完成剖面定义和绘制,依此可形成一系列工程所需要的地质横纵剖面图和轴线剖面图,并可在确定的高程下对这些剖面图进行平切,可获得不同高程下向深部推断分析的地质平切图。

3水利水电工程地质综合数据集成

通过对各种原始勘探资料的整理分析和耦合,获得了一系列与工程相关的、含有地质专家经验知识的二维横纵剖面图和平切图,钻孔、平硐数据可通过数据库直接读入,还需要将所有剖面中的各类岩层界线、构造界线等按照统一的“层(layer)”进行分层归类,其自动分层和集成处理的主要步骤如下:a.定位二维剖面图。收集所有剖面,分别对横纵剖面和平切面进行定位,其中横纵剖面的定位数据包括剖面名称、段数、起始坐标(x1,y1,z)和终点坐标(x2,y2,z),当剖面段数大于1时还有一系列分段坐标;平切面的定位数据为平切面名称和高程。这些定位数据存储于数据库中。b.提取二维剖面线数据并作三维转换。在AutoCAD中自动提取相关的横纵剖面和平切图等二维图形中的地质线条上的点坐标,并依次分类全部存储在数据库中,主要包括地层类、断层类和界限类(主要是划分的风化、卸荷上下限)等。c.剖面线自动分层。必须有一个较完整的细分图层的剖面,才能对所有剖面线进行自动求交判断。两条不同剖面线之间存在交点则表明同属一个图层,据此可将剖面线自动分层,每条剖面线的数据包括图层名、所在剖面名称和一系列构成剖面线的点数据。

4工程实例分析

某水电工程所处地区属扬子板块西缘松潘-甘孜造山带南的木里弧形构造带,坝段及邻近区域地层普遍变质,褶皱强烈,断裂发育,工程地质条件非常复杂。该工程坝址位于雅砻江中下游河段,河流流向约N25°E,河道顺直而狭窄,其工程地质研究区域为一长方形,沿河流方向呈北东向展布,长1700m,宽1560m,面积约2.7km2。该工程地质勘测设计历经10余年,获得了大量工程地质勘察资料和研究成果,基于上述不同阶段的地质勘察数据,针对选定坝址区域进行各种地质解译分析研究,对其地质结构进行空间构造推断分析,按照研究区域和各主体工程设计的需要,获得了一系列的地质分析成果,包括研究区域的工程地质平面图和数字地形,8个从坝址上游到下游展布的横剖面图,5个左右岸分布的纵剖面图,19个不同高程的平切面图,以及其他沿各种建筑物轴线剖切的剖面图等。图2给出了基于坝区5m间距地形等高线建立的数字地形模型,图3为坝轴线附近的横剖面图。所有上述数据三维集成后的成果如图4所示,包括所有钻孔、平硐和剖面数据,并分类得到不同岩层、断层、岩脉、覆盖层、风化卸荷界限等耦合解译数据。基于耦合集成的三维数据可建立相应的三维地质模型,如图5所示,为地质、水工、施工等不同专业工程师设计分析提供地质模型平台。

篇4

对于水利工程的地质勘察阶段可以分为四个它们分别是:规划———研究———设计———施工,在地质勘查时必须保证各阶段工作和设计要求相适应,每个阶段的地质勘察任务必须严格按照合同进行,要明确设计意图,清楚设计阶段和各项技术指标的要求,熟悉施工图纸,如果即将在野外进行勘察活动时,对前往地区的地质考察非常必要,收集资料和分析地形做好准备工作,为了进一步的了解当地自然条件必须结合实际的设计,编制出工程地质勘察总纲领。

2.1工程地质勘察大纲内容

工程地质大纲的内容应包括以下内容:(1)进行勘察的主要目的、现场的工程情况和勘查主要的阶段;(2)了解所要勘察地方的工作条件、地形和地质情况;(3)熟知勘察工作的内容使用方法和完成的工程量;(4)规定确定的计划进度和竣工时间;(5)预算所需经费;(6)书写勘察资料;(7)包含地质勘察工程绘制布置示意图。在制定勘察总纲领时可根据实际的地质变化做出相应的调整。

2.2工程地质勘察的施工要求

工程地质勘察的施工要求首先是地质测绘的进行,根据勘察阶段设定工程地质测绘的比例尺,也可以根据建设项目的特点和地点选取合适的比例;不论选取哪种比例尺,都必须有勘探点或者露头观察点表示在工程测绘的过程中。工程地质在测绘时可参考人造卫星、航空测量和地面摄像片遥感资料对地质解释,解释的结果可根据野外审核和检验。在水利工程的地质勘探过程中,保持适宜的岩土物性和场地地形,选择适合的物探方法和应用物探技术。像常见的坑、洞、孔、井常被这些勘探工程综合利用。在每次的施工前应对各类钻孔进行施工程序设计和钻孔的专业设计,并按原来设计的要求进行施工。岩土试验将原位测试和室内试验相结合所使用的。通常室内试验是土工试验的基础,辅助为原位测试。室内试验以及原位测试在岩土试验的眼中都是一样的重要。不同试样和原位测试点应该拥有地质代表性。

2.3工程地质勘察的编制程序

(1)对收集到的外业和试验资料进行核实统计。这项工作的开展总是在外业进行完开始,在勘察前需要对各个资料进行检查是否完善,尤其是实验资料,可依据这些资料绘制测量结果表、勘探点(钻孔)平面位置图和勘察工作量统计表。(2)参考土工试验和原位测试的相关资料,修正地质资料。这些工作的开展很重要很重要,在工作中却是常常被工作人员遗忘。因此,实验资料和野外定名出现不对应的现象,还出现了原位测试和砂土状态的实验资料不符合的结果,像一些野外定名为黏土的,实验结果塑性指数不大于17;此外,野外定名是细砂的,根据实验资料显示是中砂的,它的颗粒含量以每颗0.25~0.5mm颗粒到达含量的50%以上;还有野外名为可塑性黏性土的,它的实验液性指数不于0;野外名为稍密状况的砂性土,砂性土的贯入击数标准不大于10,野外定为淤泥或者名为淤泥质土的,实验结果的孔隙比不到1;对于那些野外名为硬塑性黏性土的,小于18击数。综上所述产生这些矛盾是由于野外分层深度和定名具有不准确性,还有个原因是试验资料具有不真实性,面对这样的情况应该找出问题,及时的改正,让实验资料和岩土定名的数据结果达到一致。(3)描述钻孔工程地质概况绘制综合柱状图。(4)对岩土地质层划分,绘制分层统计表,对数理统计。地基岩土的分层的适合性直接影响着评价好坏。所以这个工作需要按原因类型、地质年限、岩土特性、风化程度、状态、力学特征进行全面的考虑,合理的规划每个岩土层,根据数据绘制分层统计表,其中包含每个岩土层的埋藏条件和分布状态的统计表,实验测试和原位测试的物理力学统计表等。最后进行试验资料的统计整理,计算分层承载力。(5)绘制工程地质剖面图以及相关的专门图件。(6)书写文字报告,为了减少重复率就得按照以上的顺序进行,避免出错,提升工作效率是保证质量的大前提。对于勘察场规模大的场地或者地貌地质复杂的场地而言,可以采取有针对性的进行勘察例如分区勘察,最后做出评价。对于完整的工程地质勘察报告的书写,它是由五部分组成,分别为正文、附表、附图、附照和插表。而对地质勘察要书写的文字部分应包括该区域的地质情况、地质条件和地貌条件,还有地质勘察的结论和实施的意见建议等都是其中需要书写的部分。另外,为了使报告更具有真实性,相应的加入一些和勘探有关的图表数据等都会帮助提升内容的价值。

篇5

1.1水利水电工程与地震问题水库等水利水电工程建筑物蓄水后,由于地应力的调整或水体下渗等原因,触发了地质断层的复活而诱发地震。研究表明,要触发一个比较大的地震需具备以下三个条件:①水库岩石比较破碎,且处理效果不十分理想;②存在有利于应力集中的地质环境条件;③水库水荷载所产生的超孔隙水压力足够大。关于水库诱发地震的事件国内外均有报道,一般而言,水库的坝址没有较大的断裂带存在,仅仅是水荷载引起的地应力,诱发地震的可能性是很小的。但如果诱发大的地震,那将是灾难性的。从1987年的资料至今,我国已建设的坝高在15米以上的水库共18000多座,已发现水库诱发地震的有13座。[1]

1.2水利水电工程与水文问题水利水电工程建成后改变了下游河道的流量过程或周围环境水域的分布,从而对周围环境造成影响。例如:①大坝水库不仅存蓄了汛期洪水,而且还截流了非汛期的基流,往往会使下游河道水位大幅度下降甚至断流,并引起周围地下水位下降,从而带来一系列的环境生态问题;②下游天然湖泊或池塘因断绝水的来源而干涸;③下游地区的地下水位下降;④入海口因河水流量减少引起河口淤积,造成海水倒灌;⑤因河流流量减少,使得河流自净能力降低;⑥以发电为主的水库,多在电力系统中担任峰荷,下泄流量的日变化幅度较大,致使下游河道水位变化较大,对航运、灌溉引水和养鱼等均有较大影响;⑦当水库下游河道水位大幅度下降以至断流时,势必造成水质的恶化。由此可见,水利水电工程对水文的影响是不容忽视的一个重要问题。[2]

1.3水利水电工程与气候问题一般情况下,区域性气候状况受大气环流和水体分布所控制。如果修建大、中型水库及灌溉工程后,当地水体的分布会发生较大的变化。如原先的陆地变成了水体或湿地。局部地表空气变得较以前更加湿润,形成新的小气候,对当地气候会产生一定的影响。主要表现在对降雨、气温、风和雾等气象因子的影响方面。

1.4水利水电工程与鱼类、生物物种问题①对鱼类的影响:切断了洄游性鱼类的洄游通道;水库深孔下泄的水温较低,影响下游鱼类的生长和繁殖;下泄清水,影响了下游鱼类的饵料,从而影响鱼类的产量;高坝溢流泄洪时,高速水流造成水中氮氧含量过于饱和,致使鱼类产生气泡病。②对植物和动物的影响:库区淹没和永久性的工程建筑物对植物和动物都会造成直接破坏;同时局部气候变化、土壤沼泽化、盐碱化等都会对动植物的种类、结构及生活环境等造成影响。

2工程地质工作中存在的问题

2.1工程地质勘察的质量问题在工程地质勘察过程中,主要问题有以下几种:①工程概念不清,勘探侧重点不明确,针对性不强,方法不当,手段落后;②工程地质分析工作中所选择的理论、方法、计算公式等与实际情况有较大出入,其适应条件的物理意义混淆不清;③地质报告中基本地质条件不清楚。我们遇到的主要工程地质问题有:①界定不准确或论证不充分,有问题遗漏甚至结论性错误;②有些地质报告没有地质结论,也有些工程没有做多少地质工作就先下结论,极不严肃。此类问题产生往往造成阶段性工程审查不能一次性通过,可能延误开发时机;或者尽管通过了审查,但却给工程留下了隐患,这种情况的危险性极大。[4]

2.2勘测周期不合理的问题从工程地质勘察到地质报告的提交需要一定的工作周期,这是再简单不过的道理,然而有些工程却没有进行基础性的前期投入。主要存在问题有以下几个方面:①一旦需要申报项目,立即就要求提交地质报告;②今天刚刚提交可研报告,明天就要求提交初设报告。此类情况多为地方性工程,一般国家投资的大型工程出现这种局面的不多。没有足够的勘测周期所造成的后果是严重的,由于地质条件不清楚,直接导致投资控制不住,施工后修改设计等情况。更可怕的是留下了工程隐患,可能造成重大的工程事故。

3结语

工程地质学是20世纪才建立和发展起来的一门地球科学。水利水电工程地质勘察是所有行业中涉及面最广、问题最复杂、任务最艰巨、声望最高、最具权威性的龙头行业,它具有自身的特殊性与复杂性。水利水电工程建设与环境保护是一项长远的任务,是水利水电工程顺利进行的重要保证之一。保护和改善工程环境是保证人们身体健康的需要,是现代化大生产和保证工程质量的客观要求,是保证工程永久利益的必须条件。工程地质工作的质量,对工程方案的决策和工程建设的顺利进行至关重要。由于地质问题引起的工程事故时有发生,轻则修改设计延误工期,严重时造成工程失事,给人民生命财产带来重大损失。近年来。工程地质勘察质量有下滑趋势,工程地质分析不够深入,有时甚至出现工程地质评价结论性错误这样严重的问题。笔者认为,总结分析水利水电工程地质勘察过程中存在的问题,具有重要的现实意义。

参考文献:

[1]林妙月.区域构造稳定性及地震性危险评价问题[M].北京:地震出版社,2008:99-100.

篇6

引 言

物探是地球物理勘探的简称,它是根据各种岩石之间的密度、磁性、电性、弹性、放射性等物理性质的差异,利用地球物理的原理,采用不同的物探仪器和物理方法,对工程区的地球物理场进行测量,以解决地质问题的一种物理勘探方法。 当地下单元含有地下水之后,它的含水量将与电导率、渗透率、地层孔隙度、矿化度等诸多因素相关。 此外放射异常、弹性波阻抗异常、磁异常等均可以运用在水文地质实际工作中去。 在实际中,水文地质工作可以采用很多种类的地球物理勘探方法。 本文将对其中几种主要方法进行介绍,如高密度电阻率法、激发极化法、CSAMT、瞬变电磁法和地面核磁共振法等。

1 高密度电阻率法

岩石电阻率是由多种因素共同决定的。 这些因素包括含水量及水的矿化度、孔隙度、颗粒结构、矿物成分等。 在同一层岩石中有没有含水,会在很大的限度上决定电阻率的数值。 运用电阻率物探方法进行水文地质勘查,其实就是通过测定含水层的电阻率在其空间的分布规律,探查和发现含水岩层的储水条件、空间展布,最终进行水文地质勘查,这种方法是一种间接找水的方法。高密度电法实际上是电剖面法和电测深法相结合的产物。其基本原理与普通电阻率法相同, 通过 A、B 电极向地下供电流,然后在 M、N 极间测量电位差,从而可求得该点(M、N 之间)的视电阻率值。 高密度电阻率法原理如图 1 所示。

图1 高密度电阻率法原理图

由于在观实际测中布置了高密度的观测点,所以高密度电阻率法是阵列思想应用于电阻率法的产物。 高密度电阻率法为地下水资源勘查提供了有效、快捷的工具。 它不但可以运用非含水地层和含水介质之间的电性差异,来直观的获取水循环条件、富水特性和含水层位置等方面的信息;还可以通过建立含盐量与电阻率之间的转换关系,从而实现含盐量的动态原位监测。 除此之外,因为含水介质导电特性和导水性之间非常相似,高密度电阻率法便为水文地质参数的校正、确定提供了一种有效的手段。

2 激发极化法

激发极化法(或激电法)就是以岩、矿石激发极化效应的差异为基础来解决地质问题的一类勘探方法。 当对地下地质体供入一直流脉冲 ΔV1,在供电电流不变的情况下,可观测到如下现象:地面上两个测量电极的地位差 ΔV(t)随时间增加而趋于饱和值。 在供电电流断开之后,会发现电极间电位差将快速的衰减,在衰减带一定的数值后,衰减的速度将开始变慢,经过一点时间后,其可衰减为零。 这种在放电和充电过程中会产生的附加电场现象,被称为激发极化效应。在实际地质应用方面,初期的激电法主要用于勘查硫化金

属矿床,后来发展到诸多领域,如氧化矿床、非金属矿床、工程地质问题等。 近年来,激电法找水效果十分显著,被誉为“找水新法”。 利用激电法确定地层的含水性,这种方法最好与高密度电阻率法相结合,这样就可以提高找水的成功率,降低地球物理解释的多解性。

3 (CSAMT)可控源音频大地电磁法

CSAMT 是在(AMT)音频大地电磁和(MT)大地电磁法的基础上发展起来的一种可控源频率测深方法。 可控源音频大地电磁法运用可控制的人工场源来测量从电偶极源到地下的电磁场分量,两个电极的电源距离在 1~2km,测量是在距离场源5~10km 之外的地方进行 。 CSAMT 方法的工作频率一般从10kHz~0.125Hz,因此,勘探深度一般可从地表到地下几千米 。由于该方法运用巨大的人工信号源,能够压制干扰,所以可以采集到高质量的数据。 CSAMT 方法的基本理论是基于电磁波传播理论和麦克斯韦方程组, 导出电场 Hy、ρs磁场与视电阻率的关系式为:

可控源音频大地电磁法的出现展示出了较好的应用前景,其作为激发极化法和普通电阻率法的补充,可以深层次的解决地质问题。 例如地热勘查和水文工程地质勘查、推覆体或火山岩下找煤、油气构造勘查等方面,都取得了良好的地质效果。 在地下水资源中,可控源音频大地电磁法适合寻找深部的基岩裂隙水。

4 (TEM)瞬变电磁法

TEM 是运用接地线或者不接地线源向地下发送一次场 ,在一次场的间歇期间,测量出电磁场随时间的变化,依据二次场的曲线衰弱特征判断出地下不同深度地质体的规模大小及电性特征等。 因为瞬变电磁法是观测纯二次场,消除了由一次场而产生的装置偶合噪音,其有着受旁侧地质体影响小、与探测地质体有最佳偶合、对低阻反映灵敏、探测深度深、横向分辨率高、体积效应小等优点。TEM 与其他测深方法进行比较,它具有探测深度大、工作效率高的优点。 近年来,该方法得到迅速发展,特别是对探测低阻覆盖层下的良导电地质体取得了显著的地质效果。 由于上述特点,针对水文地质问题,TEM 不仅仅可以确定水文地质构造类型和在冲积层地区估算基岩的埋深和地下水位;还可以在滨海含水层中查明绘制人为和自然发生的海水入侵分布图以及咸淡水界面、监测和圈定地下水污染通道。

5 (SNMR)地面核磁共振法

地面核磁共振(SNMR)是近年发展起来的找水方法也是目前世界上唯一的直接找水的地球物理新方法。 通过运用了不同物质原子核弛豫的性质,从而产生了 SNMR 效应。SNMR 效应利用地面核磁共振找到水仪器,研究并观测在地层中水质子产生的核磁共振信号的变化的规律,进而探测地下水的时空赋存和存在性的特征。

地面核磁共振法找水的原理决定了可以找多少水,尤其是淡水。 在 SNMR 方法的探测范围之内,只要有自由水存在,就可以感应到核磁共振信号响应,反之就没有响应。 另外地面核磁共振方法受到地质因素的影响比较小,这样就可以用来区别电磁测深法的电阻率和间接找水法的电阻率的异常地质。 当前, 地面核磁共振法不足之处在于不能用来探测埋藏深度在150m 以下的地下水,并且易受电磁噪声的干扰。

6 结 语

从发展的角度看,从高密度电阻率法、激发极化法到可控源音频大地电磁法(CSAMT)、瞬变电磁法(TEM),再到地面核磁共振法,地球物理勘探方法总体上在不断进步。 尽管如此,在复杂的地质背景下,没有一种方法是万能的,只有根据不同的地质条件和工作要求,针对性地采取某种方法或几种方法的组合,才能提高成果的解译程度,更加精确地完成地球物理勘探工作。 多种方法的结合使用已经开始普遍用于地下水的勘探研究,也取得好的结果。 随着勘探难度的加大,还有更多的问题需要探索和研究。 相信随着人们认识程度的提高,物探在地下水勘察中的作用会越来越明显, 水资源勘察也将进入一个新阶段。

参考文献:

[1] 韦卫明. 高密度电法在工程勘察应用中的体会[J]. 煤炭技术,2011(2).

篇7

水文地质是勘查水利工程地质的重要组成部分,它对建设场地地基岩土体的特性有很大影响,特别是对水利工程地基的稳定性及耐用性的作用,更为突出。在水利工程地质勘查中,主要是对工程建设相关的地质因素进行勘探,然而勘查人员一般都只注重对岩土类型、地质性质及结构的研究,很少会将注意力放在水文地质上,水文地质成了可有可无的勘查因素。然而在勘查工作中,工作人员常常将水文地质勘查放在一个无不起眼的位置,在勘查报告上只是做了一般性的评价,特别是在一些水文地质条件较复杂的地区,没有进行深入研究,常因没有意识到水文地质对整个工程的影响而导致由此引发的各种岩土工程危害问题,进而威胁到整个工程的质量安全。笔者基于此,分析了水利工程地质问题及水文地质危害,望能够相关工作人员一些启示。

一、水利工程地质情况

1、关于坝基岩体

不同的坝型具有自己的工作特点,也决定了其对地质条件要求的差异。由此可知,要做好坝基岩体的地质工作,在了解不同类型坝体的工作特点的同时,还应掌握每种坝型对地质条件的适应性及对工程地质条件的要求。另外,还应注意研究坝区岩体本身存在的地质缺陷,防止因缺陷而引起的坝基不稳和坝区渗漏情况。

2、关于边坡

引起边坡变形破坏的因素有多种,如地形地貌条件、岩土类型和性质、水等,此外还有风化因素、人工挖掘、振动、地震等。边坡不稳的类型主要包括四种:松弛张裂、蠕动变形、崩塌、滑坡。

3、关于地下洞室围岩稳定性

围岩变形的类型有以下几种:脆性破裂、块体滑动和塌方、层状弯折和拱曲、塑性变形和膨胀。一般对于工作人员来说,洞室地质较简单、岩层厚、具有一定的间距,不存在影响洞室稳定性的断裂带,整体的岩体具有较强的硬度及完整性、整个地形没有滑坡及塌方等的趋势、地形完整、地下水其地基基础影响小、环境好、无异常地热等,具备这些条件的建洞山体是比较理想的。

4、关于水库工程

水库包括两类:地面水库和地下水库。前者即人工湖泊,是通过筑坝在河流上拦水形成的;后者则是通过地下蓄水构造,然后进行人为的控制所形成的。水库蓄水虽然能够造福于人类,然而库区及库周的水文条件都会发生较大的变化,从而影响周围的地质情况,如库水升高浸润库岸,风浪作用冲蚀库岸及地下水位上升浸没洼地等,这些情况都会影响工程地质,从而影响工程的施工、质量。

5、关于软土基坑

软土基坑的地质问题主要涉及到土质边坡稳定和基坑降排水两个方面。为了保证边坡稳定,在施工中常会采取坡度及边坡护面的合理设置、基坑支护、降低地下水位等措施,确保施工安全。而基坑降排水的途径主要有两种:明排法和人工降水,后者常选用轻型井点或管井井点的降水方式。进行软土基坑降排水有很多好处,不仅保证了边坡的稳定,防止了流砂和管涌的发生,还在下卧承压含水层的黏性土基坑中,避免了基坑底部的隆起。另外,软土基坑降排水后,基坑土体相关干燥,方便了施工。

二、地下水引起的各种岩土工程危害

地下水主要是通过地下水位升降变化和地下水动水压力作用来引起岩土工程危害的。一般来说,地下水位变化引起的危害可分为三种:

1、 关于潜水位上升

在附近修建水库,导致河流、湖泊、水库中的水位上升是引起潜水位升高的重要因素,另外灌溉工程(包括引水渠道和水浇地渗漏工程施工、工业废水和各种地下给排水管道的渗漏等)也是影响潜水位上升的一个方面。潜水位上升对建筑物的安全稳定性构成了巨大的威胁:

(1)地下水渗入地基,导致粘性土含水率增高、整体强度下降、可压缩性大大增加,长此以往,建筑物很容易发生沉降变形;

(2)地基无法保持稳定,出现隆起,或产生侧向位移,地基不稳,引起上浮,最终导致建筑物不稳定,更甚者发生位移;

(3)砂土及粉土出现含水量饱和,引发砂土地震液化问题,或者引发流砂、管涌等现象;

(4)斜坡、河岸临空面的岩土体力学性能降低,引发滑移、崩塌等危害,使得其失去原有的功能;

(5)没有进行防护的地下室出现浸水而无法使用;

(6)土壤沼泽化、盐渍化严重,对建筑物的腐蚀性大大增强。

2、关于地下水位下降

此种危害大多由人为因素引起。抽取地下水没有节制、采矿活动中的矿床疏干以及上游筑坝、修建水库截夺下游地下水的补给等人为操作都可引起地下水位下降。地下水位急剧下降对地质灾害及自然环境都造成很大的影响,前者主要表现在地裂、地面沉降、地面塌陷等,后者主要是地下水源的缺乏、水质污染等,严重的地区还会出现沙漠化或海水倒灌现象。因此其严重影响了建筑物的稳定安全及人类的居住环境。

3、关于地下水位升降

气候、季节的变化,地球与月球引力的变化,河流、湖泊水位的变化,潮汐的变化等都会影响地下水位波动。此类危害对工程建设的影响也很大:

(1)地下水位波动,引起土体卸载再加载,而加载后的土体密度比原来的大,因此导致土压密;

(2)建筑基础工程材料的使用期限受到影响,加剧了腐蚀性;

(3)干湿交替较频繁,诱发木桩腐烂,因此跟埋于水下的地基相比,泥炭土地基的使用年限大大减少;

(4)石膏层和钠盐层等含盐地层出现溶解现象,进而导致建筑物发生位移。

三、结语

综上所述,水利工程的地质问题分析可以让我们了解到在勘查过程中,应注意哪些问题,防止一些小的问题引起大的危害,而水文地质因其常被勘查人员所忽略,在工程中引发较多的危害,因此本文重点介绍其引起的各类岩石危害,望能给相关工作人员一些思考。

参考文献:

[1]会议论文.水利工程中的工程地质环境分析.中国水利学会勘测专业委员会.2002年学术研讨会,2002.

篇8

我国是一个地质灾害十分频繁的国家,尤其是我国西南地区,不仅地质灾害数量多,而且灾种全。其中崩塌、滑坡、泥石流等浅层表生地质灾害异常突出,分布有大量的由滑坡堆积、崩塌堆积、残积层、冰溃堆积、坡积物等组成的松散堆积体斜坡[1]。与此同时,西南地区一系列大型乃至巨型正在建设或规划中的水电站相继开工建设,在复杂地质环境和大规模工程活动、水库蓄水及暴雨等复杂条件下,可能会有大量的水库库岸堆积体边坡发生变形甚至失稳破坏。

水库库岸堆积体边坡失稳的代价是巨大的。斜坡或边坡作为一种人类不可回避的地学环境与工程形式,总是伴随着人类的工程活动,人类为了安全始终关注着边坡的稳定性。一百多年来,人们对边坡变形过程、失稳形式、失稳机制、稳定评价及滑坡预测预报等进行了广泛的研究,借助数学、力学和计算科学理论与方法,试图对边坡的稳定、演化及滑坡的预测预报进行研究,并应用到工程实践中。

1.土坡稳定性分析理论研究现状

1.1边坡稳定性分析现状

边坡失稳作为普遍存在的工程问题受到国内外学者的重视。对此课题的研究,国内外都经历了从实践积累到理论归纳,再实践,再归纳,并逐步总结提高的过程。十九世纪末二十世纪初,随着发达国家的大规模土木工程建设,大量边坡工程问题、特别是滑坡问题随之产生,并造成了很大损失,人们开始应用材料力学和近代土力学的理论对边坡问题进行半经验、半理论的研究。上世纪五十年代,我国学者引进了前苏联的工程地质分析的体系,继承和发展了地质历史分析法,着重研究边坡的工程地质背景和边坡类型的划分,以此进行边坡的工程地质类比分析,在滑坡的分析和研究中取得了一定的成果。

1.2边坡稳定研究方法现状

研究边坡稳定的方法主要有:“地质历史分析”方法、极限平衡法、概率分析法、极限分析法、数值计算分析方法、物理模拟法、非线性方法等。现将主要边坡稳定性评价方法列述如下:

(1)“地质历史分析”方法:五十年代,我国许多工程地质工作者在滑坡研究中采用了苏联的“地质历史分析”方法[4],但该方法偏重于定性描述和分析。

(2)极限平衡法:极限平衡法是一种定量方法,也是工程中使用最多、最成熟的方法,其理论基础为极限平衡理论。它通过分析在临界破坏状态下,土体外力与内部强度所提供的抗力之间的平衡计算土体在自身和外荷作用下的稳定程度。同时,根据假设不同而形成不同方法,具有不同的适用范围。

(3)极限分析法:岩土工程极限分析是典型的塑性极限分析问题。塑性极限分析对象包括塑性区Gussmnna.P提出了运动单元法,以莫尔一库仑岩土介质为研究对象,采用离散技术与现代数值手段,通过运动分析、静力分析和求多变量目标函数值的优化分析,有效地分析了地基极限承载、挡土墙极限土压力及斜坡稳定性问题。

(4)数值计算分析方法:数值计算方法上,随着计算机的普及和发展,出现了一批以弹性力学、结构力学为基础的数值计算方法:FDM(有限差分法)、FEM(有限单元法)、DEM(离散单元法)、DDA(不连续变形分析)、FLAC(快速拉格朗日插值)、NNM(流形元方法)等。

(5)非确定性分析方法:该方法的评价基础是工程地质类比法、滑坡静态规律的认识以及预测科学的一般原理。随着概率论、数理统计、信息理论、模糊数学等方法用于滑坡预测,目前已形成了多种预测模型。其预测成果可相互对比、检验,使预测成果更具合理性、科学性。目前常用的非确定性定量分析方法主要有以下几种[7]:①经验方法;②数理统计方法;③信息模型法;④模糊数学评判法;⑤灰色系统方法;⑥模式识别方法;⑦非线性模型预测法;⑧人工智能法。

其中,数值计算分析方法又可以分为如下几种:

①有限单元法(FEM):该方法是目前应用最广泛的数值分析方法。它能够考虑滑坡体的非均质性、不连续性等特征,考虑岩体的应力应变特征,避免将坡体视为刚体,能够切实地以应力、应变为变量分析边坡的变形破坏机制,对了解滑坡的应力分布、应变发展很有利。其不足之处是:数据准备工作量大,而且原始数据易出错,不能保证整个区域内某些物理量的连续性;对解决无限性问题、应力集中等问题精度较差。

②边界单元法(BEM):该方法只需对已知区域的边界进行极限离散化,具有输入数据少的特点。其计算精度较高,在处理无限域方面有明显的优势。其不足之处为:一般边界元法得到的线性方程组的关系矩阵是满的不对称矩阵,不能采用有限元中成熟的求解稀疏对称矩阵的解法。另外,边界元法在处理材料的非线性严重不均匀的滑坡问题方面,远不如有限元法。

③快速拉格朗日分析法(FLAC):为了克服有限元等数值分析法不能求解岩土大变形问题的缺陷,人们根据显式有限差分原理,提出了FLAC数值分析方法。该方法较有限元方法能更好地考虑岩土体的不连续性和大变形特征,求解速度较快。其缺点是同有限单元法一样,计算边界单元网格的划分带有很大的随意性。

④离散单元法(DEM):该方法可以直接反映岩体变化的应力场、位移场以及速度场等各个参量的变化,也可以模拟边坡失稳的全过程。另外,该方法特别适合块裂介质的大变形及破坏问题的分析,但所需计算时步非常小,阻尼系数也难以确定。

⑤块体理论(BT):该方法是以构造地质和简单的力学平衡计算为基础,利用拓朴学和群论提出的一种评价三维不连续岩体稳定性的方法。随着关键块体类型的确定,块体理论能够找出具有潜在危险的关键块体的临空面位置及分布。

除以上几种方法外,近几年还出现了如无界元(IDEM),不连续变形分析(DDA)等方法。此外,由于工程实践的需要,出现了多种数值方法的算法,使滑坡稳定分析数值方法化的趋势更加明显。但数值分析方法也存在着不足:由于地质条件的复杂性及认识的局限性,往往使计由于计算参数的选取是以某种简化为基础的,与实际存在一定误差,继而影响了计算结果的精度[5,6,7,8,9,10]。

1.3边坡参数选取研究现状

边坡的静力稳定研究中,计算采用参数的准确程度会对边坡稳定的评价结果产生重大的影响,因此,本节对边坡物理力学参数选取的研究现状进行论述。

当前国内外岩体力学参数选取研究的总趋势是有经验、半经验、精度较低的数值计算方法向考虑多种因素影响,计算过程复杂、精度较高代表性较强的数值中计算分析法发展。尤其是计算机的使用,使这一领域的研究加快。岩体力学参数选取常用的方法有点群中心法、优定斜率法、最小二乘法、随机一模糊法等。点群中心法由于人为因素影响过多,目前已不常采用,国内对于岩体力学参数的研究主要是从岩体力学参数本身所包含的随机性和模糊性出发,应用随机理论和模糊数学的方法,对试验所得的数据进行分析以获得更为逼近岩体力学实际参数的“真值”[11]。

1.3.1水库库岸堆积体边坡塌岸范围预测方法研究现状

水库蓄水运行过程中,库岸所处的地质环境将发生改变,自然平衡条件遭到破坏,引起岸坡变形失稳,库岸线也逐渐后退,直至达到新的平衡状态为止,这一过程称为库岸再造。库岸再造是一个十分复杂的动力地质过程,受岸坡物质组成、结构特征、形态及水流等多因素控制,塌岸过程复杂,尚无法精确地通过数学计算式来表达。

1.3.2地震作用下边坡稳定性分析研究现状

地震边坡稳定性研究是边坡稳定性研究的重要方面,是岩土工程和地震工程中关心的重要问题之一。刘红帅等认为,从地震作用下是否考虑边坡岩体参数的不确定性的观点来看,岩土边坡地震稳定分析方法可分为确定性方法和概率分析方法两大类;从边坡稳定性计算中对地震动作用的不同处理方式来看,岩土边坡地震稳定性分析方法宜分为拟静力法、滑块分析法、数值模拟法和试验法四大类[5,10,12-18]。

2.结束语

目前,我国的大部分已建、正在兴建和规划中的水利水电工程都在该地区。水利工程中库岸边坡的滑动范围和稳定性问题是大坝安全、社会效益和水利工程经济效益考虑的重要因素之一。同时,西南地区地壳活动频繁,地震震级高、强度大,大量库岸边坡都是重力崩塌堆积体。西南堆积体边坡,考虑地震作用下修正塌岸预测方法中图解法,并将其用于预测边坡滑动范围;与实际情况对比进行反分析,藉此评价堆积体边坡震后滑动范围图解法反分析在工程上的适用性。

【参考文献】

[1]丁秀美.西南地区复杂环境下典型堆积(填)体抖坡变形及稳定性研究.成都理工大学,2005,1.

[2]曹毅然等编.国土资源部实物地质资料中心集刊第15号[M].北京:地质出版社,2002.

[3]黄润秋.高边坡整体稳定性综合评价探讨[J].水文地质工程地质,1995,22(6).

[4]张悼元,王士天,王兰生.工程地质分析原理(第二版)[M].北京:地质出版社,1994.

[5]汪贤良.强震作用下堆积体边坡变形特征和稳定性分析.成都理工大学硕士学位论文,2009,5.

[6]杜明亮.考虑渗流作用的土质边坡稳定性分析.河海大学地质及岩土工程系硕士论文,2007,5.

[7]郑颖人,赵尚毅,张鲁渝.用有限元强度折减法进行边坡稳定分析.中国工程科学,2002,10,4(10).

[8]Dawson E M,Roth W H,Drescher A.Slope stability analysis by strength reduction.Geotechnique,1999,496,49(6):835-840.

[9]Griffiths D V,Lane P A.Slope stability analysis by finite elements.Geotechnique,1999,493,49(3):387-403.

[10]Sarma S K.Stability analysis of embankments and slopes.Geotech.Eng.ASCE,1979,10512,105(12):1511-1524.

[11]姜彤.边坡在地震力作用下的加卸载响应规律与非线性稳定分析.中国地震局地质研究所固体地球物理博士论文,2004,7.

[12]马芳芳.基于地震动力时程反应的有限元边坡稳定性分析.大连理工大学硕士论文,2005,6.

[13]祁生文,伍法权,刘春玲,丁彦慧.地震边坡稳定性的工程地质分析.岩石力学与工程学报,2004,8,23(16).

[14]刘立平,雷尊宇,周富春,地震边坡稳定分析方法综述,重庆交通学院学报, 2001.9,3(20).

[15]Zienkiewicz O C,Humpeson C,Lewis R W.Associated and nonassociated visco-plasticity in soil mechanics.Geotechnique,1975,254,25(4):671-689.

篇9

地质的测绘主要是运用地质相关的理论对工程项目的建设及地质进行精密的观测和分析,了解对于建筑区各个工程地质的内在条件和它们之间的密切关系,然后按照测绘比和论文的尺寸把它们更好地绘制在图纸上,并且通过勘测和试验等编制成工程地质图,作为工程勘测的首要的资料,供给对于项目各个部门的参考。对于长期的地质测绘它依靠于经纬仪、平板仪、水准仪这三种较为局限的应用,在未来的发展中,逐渐的采用了相对来说较为先进的技术设备和设计的理念。现代的地质绘图技术主要依赖于卫星导航定位系统、遥感勘测技术和地理信息系统技术。

1、工程地质测绘

工程地质测绘是岩土工程勘察的基础工作,在诸项勘察方法中最先进行。按一般勘察程序,主要是在可行性研究和初步勘察阶段安排此项工作。但在详细勘察阶段为了对某些专门的地质问题作补充调查,也进行工程地质测绘。

工程地质测绘是运用地质、工程地质理论,对与工程建设有关的各种地质现象进行观察和描述,初步查明拟建场地或各建筑地段的工程地质条件。将工程地质条件诸要素采用不同的颜色、符号,按照精度要求标绘在一定比例尺的地形图上,并结合勘探、测试和其他勘察工作的资料,编制成工程地质图。这一重要的勘察成果可对场地或各建筑地段的稳定性和适宜性做出评价。

根据研究内容的不同,工程地质测绘可分为综合性测绘和专门性测绘两种。综合性工程地质测绘是对场地或建筑地段工程地质条件要素的空间分布以及各要素之间的内在联系进行全面综合的研究,为编制综合工程地质图提供资料。在测绘地区如果从未进行过相同的或更大比例尺的地质或水文地质测绘,那就必须进行综合性工程地质测绘。专门性工程地质测绘是对工程地质条件的某一要素进行专门研究,如第四纪地质、地貌、斜坡变形破坏等;研究它们的分布、成因、发展演化规律等。所以专门性测绘是为编制专用工程地质图或工程地质分析图提供资料的。无论何种工程地质测绘,都是为工程的设计、施工服务的,都有其特定的研究目的。

2、现代测绘技术的应用

现代测绘技术作为一门新的信息科学在经济和社会可持续发展的诸多领域正发挥着愈来愈大的作用。在这里主要介绍现代测绘技术在矿山测量方面、湿地方面、水利工程方面和地理信息系统的发展情况。

2.1矿山测量方面

遥感技术在矿山测量中的应用已经历了较长的时间,并积累了丰富的经验。应用遥感资料,可获取矿区实时、动态、综合的信息源,对矿区环境进行监测,为矿区环境保护提供决策支持。遥感资料用于找矿、矿区地质条件研究、煤层顶底板研究等方面都已得到应用,所有这些,都说明遥感技术应用于矿山测量是矿山测量实现其现代任务的重要保证。

2.2湿地方面

利用遥感技术对湿地生物资源的分布、生长状况及其变化进行估测。利用遥感技术多层次、多时相的动态监测功能获得及时可靠的数据,通过地理信息系统技术进行相关数据的实时更新,并对这些数据进行空间分析,可得到湿地的动态变化情况。

2.3水利工程方面

遥感技术能够实时地对大江、大河和湖水水位进行监测,可实时监测洪水灾害面积。RS和GIS集成能及早预报洪水淹没范围和干旱灾情范围,为防灾、抗灾提供准确信息。在水利枢纽工程竣工后,需对水库大坝、大型桥梁等进行连续的、精密的监测。现代测绘技术提供了连续、实时的安全运行监控手段。

2.4地理信息系统的发展

从系统角度看,在未来的几十年内,地理信息系统(GIS)将向着数据标准化(Interoperable GIS)、数据多维化(3D&4D GIS)、系统集成化(Component GIS)、系统智能化(Cyber GIS)、平台网络化(Web GIS)和应用社会化(数字地球DE)的方向发展。Interoperable GIS 互操作地理信息系统(Interoperable GIS)是GIS系统集成平台,它实现在异构环境下多个地理信息的系统或其应用系统之间的互相通信和协作,以完成某一特定任务。Web GIS 基于WWW的地理信息系统(Web GIS)是利用Internet技术在Web上空间信息供用户浏览和使用。Digital Earth 它是对真实地球及其相关现象统一性的数字化重现和认识,其核心思想是用数字化手段统一地处理地球问题和最大限度地利用信息资源,从而完成数字地球的核心功能,光缆、卫星通信技术以及计算机网络等技术则完成海量空章数据的传输任务。

3地质测绘技术发展

3.1大地控制测量。

控制测量是地质测绘的基础,地质矿区布设平面控制的方法,一是在国家一、二等三角控制下进行三、四等三角点的加密,另一是在国家一、二等三角点下不能加密情况下布设独立的三、四等三角或五秒小三角锁网作为矿区基本“平面控制.独立的三角锁网必须测定锁网的起算边长。我单位在上世纪末期引入载波静态相对定位技术即多台套GPS接收机结合后处理软件以来,精密控制测量就不再限制于通视条件、距离条件这些因素,控制测量的工作模式有了很大的改观,对于相对独立断点分布的矿区工程点不再需要长远距离的测三角锁从其他地方引入控制点,只需从起算点采用边点连接跳跃式地可以直接引入到测区,极大地简化了工作步骤,节省了时间和人力。

3.2地形测量技术。

地形测量的加密图根控制,传统的方法是在矿区基本控制点下布设测角图根线形锁及测角交会点,现在则采用导线测量、GPSRTK模式,极大地减少工作量,也提高了精度。

地形测量是地质测绘工作重要的任务,长期以来的测图方法,以大平扳仪测图,至今在大比例尺地形测图中仍然是普遍采用的主要手段之一。但是占主导地位的已经是全野外数字化测量了,采用全站仪、RTK一天的工作量已是大平板仪所不能比拟,完全不可同日而语了。

4、结语

现代科学技术发展的综合化整体方向极大地影响着现代测绘科学的发展趋势,这种趋势表现在现代测绘新理论的概括性增强,测绘新技术的技术综合程度提高,各专业学科之间的相互交叉与渗透,测绘学与其它门类科学的联系增强加大,测绘学吸收和移植其它学科成果的速度加快,这种学科内外的综合化发展,将使现代测绘学不断开拓出新的领域。测绘将成为构建“数字地球”、“数字中国”的主力军。

5、参考文献:

[1]曹幼元,贺跃光. PDA GPS在地质测绘中的应用[J].测绘技术装备,2005,(4).

篇10

    水工建筑物不同于其他建筑物,有其自身的特点。因水工建筑物的建成,而使广大范围内的水文和水文地质条件发生变化。这种变化就可能引起水库岸坡再造、水库渗漏、水库淤积和坝下游河床冲刷等作用。因此,必须重视勘察、设计、施工全过程,否则,后果极其严重。在坝址选择时除了考虑主体建筑物拦水坝的地质条件外,还应研究包括溢洪、引水、电厂、航闸等建筑物的地质条件,为规划、设计和施工提供可靠依据。

    2.坝址选取的工程地质勘察

    在自然界中,地质条件完美的坝址很少,尤其是大型的水利枢纽,对地质条件的要求很高,更不能完全满足建筑物的要求。所谓“最优方案”是比较而言的,最优坝址在地质上也会存在缺陷。所以在坝址选择时,应当考虑不同方案,并采取改善不良地质条件的处理措施。因此,地质条件较差,预计处理困难,投资高昂的方案,应首先被否定。坝址选择时,工程地质论证的主要内容包括区域稳定性、地形地貌、岩土性质、地质构造、水文地质条件和物理地质作用以及建筑材料等,还要预计到可能产生的工程地质问题和处理这些问题的难易程度,工作量大小等,下面分别论述。

    2.1 区域稳定性

    区域稳定性问题的研究在水利水电建设中具有特别重要的意义。围绕坝址或要开发的河段,对区域地壳稳定性和区域场地稳定性进行深入研究是一项战略任务。特别是地震的影响直接关系着坝址和坝型的选择,一般情况下,地震烈度由地震部门提供,但对于重大的水利枢纽工程要进行地震危险性分析和地震安全性评价。因此,对于大型水电工程,在可行性研究阶段,应组织专门力量解决区域稳定性评价。

    2.2 地形地貌

    地形地貌条件是确定坝型的主要依据之一,同时,它对工程布置和施工条件有制约作用。狭窄、完整的基岩“V”型谷适合修建拱坝,宽高比大于2的“U”型基岩河谷区宜修建混凝土重力坝或砌石坝。宽敞河谷地区岩石风化较深或有较厚的松散沉积层,一般适于修建土坝。不同地貌单元,其岩性、结构有其自身的特点,如河谷开阔地段,其阶地发育,二元结构和多元结构往往存在渗漏和渗透变形问题。古河道往往控制着渗漏途径和渗漏量等。因此,在坝址比选时要充分考虑地形、地貌条件。

    2.3 岩土性质

    岩土性质对建筑物的稳定来说十分重要,对坝址的比选具有决定性意义。因此,在坝址比选时,首先要考虑岩土性质。修建高坝,特别是混凝土坝,应选择坚硬、完整、新鲜均匀、透水性差而抗水性强的岩石作为坝址。我国已建和正在施工的70余座高坝中,有半数建于强度较高的岩浆岩地基上,其余的绝大多数建于片麻岩、石英岩和砂岩上,而建于可溶性碳酸盐岩、强度低易变形的页岩、千枚岩上的极少。通过结合工程实践,根据不同成因类型岩土的建坝适宜性及其主要问题作简要概述。

    (1)侵入的块状结晶岩体,一般致密坚硬、均一、完整、强度大、抗水性强、渗透性弱,是修建高混凝土坝最理想的地基,其中尤以花岗岩类为最佳。这类岩石需注意它们与围岩以及不同侵入期的边缘接触面,平缓的原生节理,风化壳和风化夹层的分布,选坝时避开这些不利因素。

    (2)喷出岩类强度较高、抗水性强,也是较理想的坝基。我国东南沿海、华北和东北有不少大坝坐落在这类岩石上。喷出岩的喷发间断面往往是弱面,存在风化夹层、夹泥层及松散的砂砾石层,还有凝灰岩的泥化和软化等,对坝基抗滑稳定性的影响不可忽视。此外,玄武岩中的柱状节理,透水性很强,在选坝时也须注意研究。例如:桑干河干流上的山西省册田水库大坝坝基为新生代的玄武岩,柱状节理极发育,坝基及绕坝渗漏严重,影响着水库效益。

    (3)深变质的片麻岩、变粒岩、混合岩、石英岩等,强度高、抗水性强、渗透性差,也是较理想的坝基。但是在这类岩体中选坝址,必须注意片理面的各向异性及软弱夹层的存在,选坝时,应避开软弱矿物富集的片岩(如云母片岩、石墨片岩、绿泥石片岩、滑石片岩)。在浅变质岩的板岩、千枚岩区,应特别注意岩石的软化和泥化问题。

    (4)沉积岩中,以厚层的砂岩和碳酸盐岩为较好的坝基。这类岩石坝基较岩浆岩、变质岩的条件复杂。这是因为在厚层硬岩层中常夹有软弱岩层,这些夹层力学强度低,抗水能力差,易构成滑移控制面。碎屑岩类如砾岩、砂岩等,强度与胶结物类型有关,一些胶结物在水的作用下可能产生溶解、软化、崩解、膨胀等。在构造变动下往往发生层间错动,经过次生作用易于发生泥化。在坝址比选时必须十分注意这一问题。此外,碳酸盐岩的岩溶洞穴和裂隙的发育,可能会产生严重的渗漏。

    另外,在坝址比选中,河床松散覆盖层具有重要意义。修建高混凝土坝,坝体必须座落在基岩之上,若河床覆盖层过厚,就会增加坝基的开挖工程量,使施工条件复杂化。所以当其他条件大致相同时,应将坝址选择在覆盖层较薄的地段。有的河段因覆盖层过厚,只得采用土石坝型。比选松散土体坝基的坝址时,须研究渗漏、渗透变形和振动液化等问题,而且应避开如淤泥类土等软弱、易变形土层。

    2.4 地质构造

    地质构造在坝址选择中同样占有重要地位,对变形较为敏感的刚性坝来说更为重要。在地震强烈活动或活动性断裂发育的地区,选坝时应尽量避开或远离活断层,而位于区域稳定条件相对较好的地块上。在选坝前的可行性研究时,应进行区域地质研究,查明区域构造格局,尤其要查明目前仍持续活动或可能活动断裂的分布、类型、规模和错动速率,并预测发生水库诱发地震的可能及震级。国外有些水坝就因横跨活断层而坝体被错开或致垮坝。地质构造也经常控制坝基、坝肩岩体的稳定。在层状岩体分布地区,倾向上游或下游的缓倾岩层中存在层间错动带时,在后期次生作用下往往演化为泥化夹层,若有其他构造结构面切割的话,对坝基抗滑稳定极为不利,在选坝时应特别注意。因为缓倾岩层的构造变动一般较轻微,容易被忽视。陡倾甚至倒转岩层,由于构造形变强烈,岩石完整性受到强烈破坏,在选坝时更要特别注意查清坝基内缓倾角的压性断裂。总之,要尽可能选择岩体完整性较好的构造部位作坝址,避开断裂、裂隙强烈发育的地段。

    2.5 水文地质条件

    在以渗漏问题为主的岩溶区和深厚河床覆盖层上选坝时,水文地质条件应作为主要考虑的因素。从防渗角度出发,岩溶区的坝址应尽量选在有隔水层的横谷、且陡倾岩层倾向上游的河段上。同时还要考虑水库有否严重的渗漏问题,库区最好是强透水层底部有隔水岩层的纵谷,且两岸的地下分水岭较高。当岩溶区无隔水层可以利用的情况下,坝址应尽可能选在弱岩溶化地段。这就要求仔细分析研究岩层结构、地质构造和地貌条件。

    2.6 物理地质作用

    影响地址选择的物理地质作用较多,诸如岩石风化、岩溶、滑坡、崩塌、泥石流等,但从一些水库失事实例来看,滑坡对选择坝址的影响较大。在河谷狭窄的河段上建坝可节省工程量和投资,所以选择坝址时总希望找最窄的峡谷段。但是,峡谷地段往往存在岸坡稳定问题,一定要慎重研究。如法国罗曼什河上游一坝址,地形上系狭窄河段,河谷左岸由花岗岩和三叠纪砂岩及石灰岩构成。右岸是里亚斯页岩,表面上看来岩体较完整,后经钻探发现页岩下面为古河床相的砂砾石层,表明了页岩是古滑坡体物质,滑坡作用将河槽向左岸推移了70m。因而只得放弃该坝址而另选新址。

    2.7 天然建筑材料

    天然建筑材料也是坝址选择的一个重要因素。坝体施工常常需要当地材料,坝址附近是否有质量合乎要求,储量满足建坝需要的建材,如砂石、黏土等,是坝址选择应考虑的。天然建筑材料的种类、数量、质量及开采条件及运输条件对工程的质量、投资影响很大,在选择坝址时应进行勘察。

    3.结语

    从实践表明,选择坝址是水利水电建设中一项具有战略意义的工作,它直接关系到水工建筑物的安全、经济和正常使用。工程地质条件在选坝中占有极其重要的地位,选择一个地质条件优良的坝址,并据此合理配置水利枢纽的各个建筑物,以便充分利用有利的地质因素、避开或改造不利的地质因素。

篇11

(一)课程内容多,授课学时少

根据国家高等教育对人才培养的要求,近些年来,多数院校在培养方案的制定上存在着向公共课倾斜的现象,这使得专业课学时被不断压缩。主要表现在课程学时少,尤其是实践教学环节。过去动辄几十学时乃至上百学时的课程,现在多为32~48学时。在多数煤炭院校中,水文与水资源工程专业开设有基础地质学、矿物岩石学、构造地质学等课程,具有一定的地学背景。即便如此,工程地质学课程仍涉及工程岩土学、工程动力地质作用、岩土工程勘察等方面的内容,这使得该课程教学内容繁杂,教师上课难度增大。在此情况下,如不进行课程教学改革,教师就无法很好地完成相关内容的讲授;同时学生对专业领域知识的学习也将停留在较浅的感性认知阶段,不能理解机理性的问题,更不能深刻地认识该课程在国民经济建设中的作用,这势必对学生未来就业产生不利的影响。

(二)教学方法单调

工程地质学课程基本概念和基本原理较多,同时该课程又具有很强的实践性,因此,单一的多媒体或板书授课模式很难调动学生的积极性。加之个别教师实践经验不足,存在照本宣科的现象;而个别教师授课又完全脱离指定教材,这些都容易使学生产生厌学心理。此外,课程中涉及的一些教学内容,诸如崩塌、滑坡等灾害的形成机理及演化过程等比较抽象,单纯在PPT中以图片形式展示,不能很好地呈现,学生缺少感性的认识,这在一定程度上挫伤了学生学习的积极性和主动性。

(三)实践环节薄弱

近些年来,随着高校的不断扩张,教学资源的投入问题已经成为高校普遍面临的问题。具体到实践教学环节,主要体现两个方面:一方面野外实践场地或基地功能缺失,满足不了野外实践教学的需求;另一方面学生人数与设备台套数不成比例,同时也存在部分试验仪器无场地安放的尴尬局面,导致部分试验无法开出,学生动手能力得不到培养。此外,还存在实验教学方式和时间不灵活等问题。目前多数院校的室内实验都是教师准备好试验后,学生在制定的条件下按照实验指导书进行,学生真正思考的较少,部分学生既不动脑也不动手,而是依靠同组其他同学来完成实验,这不利于学生实践能力的培养,容易导致学生实践能力不足或丧失。

(四)考核方式单一

考核成绩比例分配不合理,多数院校该课程考核成绩都是由期末考试成绩(约占70%~80%)和平时成绩(占20%~30%)组成,而平时成绩又多以上课出勤率、课外作业以及实践环节表现等形式存在,其中上课出勤率占主导地位。这样难免会存在一些学生到课不听课,考前突击且考分很高的现象。此外,考核的内容也不够全面,多侧重于理论知识,往往忽视学生动手能力的考核,最终导致校内所学知识与实际工作脱节,不利于综合人才的培养。

二、课程教学改革探索

针对当前教学过程中存在的问题,结合近年来的教学和实践经验,提出从教学内容、教学手段和教学环节等几方面对课程教学进行改革。

(一)合理优化教学内容,改专业通识教学为行业特色教学

在教学内容的选择上,要突出院校的特色优势。针对煤炭院校水文与水资源工程专业具有地学背景这一特点,工程地质学课程教学可主要讲解三部分的内容,即岩土体工程地质性质研究、工程动力地质作用研究以及工程地质勘察等。岩土体工程地质性质研究是该课程的基础,该部分主要讲授土的物质组成、物理力学性质以及岩土体的工程地质特性;工程动力地质作用研究是该课程的核心内容,讲授学时应占总学时的一半以上。该部分主要讲授活断层和地震、斜坡、岩溶、泥石流及地下硐室的工程地质研究;工程地质勘察部分主要讲授工程地质测绘、勘探、试验以及长期观测等几种工程地质勘察方法。课程教学要确保在有限的学时内突出重点,同时也要注意前后所学课程内容上的衔接,避免重复。

(二)丰富教学方法和手段,改单一的满堂灌为交互式教学

工程地质学具有较强的实践性,其教学目标是要培养学生对于工程地质现象的认识、判断能力和工程地质问题的分析、处理能力,这需要在传统教学模式的基础上,紧扣学科的发展前沿和热点问题,丰富教学方法和手段,灵活组织课堂教学。

传统课堂教学方式使学生获取的知识较多地局限在抽象的经验上,而现代化的教学手段不仅可以使学生获取抽象的理论知识,还可以提供丰富的观察经验,在一定程度上将理论与实践相结合,因此要充分利用现代化的教学手段。如在讲授滑坡、泥石流等内容时可采用flash动画或影像资料展示灾害的形成过程、危害以及其防治措施;在讲授地震的工程地质研究内容时可结合典型的地震(512汶川大地震),讲解地震发生的机理及预警预防措施;在讲解地下硐室位置的工程地质论证时,可借助物理模型来分析地形、地质构造、岩性特征等对硐室位置的影响等等。这些方法和手段的引入不仅可增强教学的直观性、主动性,同时也可节省一定的时间,扩大课堂教学的信息量,提高教学效果。

鉴于该课程内容多,课时少,可采取学生自学、教师课堂讲解和课外辅导答疑相结合的教学方法,以锻炼学生的自学能力。还可就工程地质学领域的热点问题,设置课堂辩论。通过教师布置论题学生收集资料学生课堂辩论教师讲解剖析的教学过程,改过去教学单行道(教师到学生)为双行道(教师到学生,学生到教师),引导学生分析问题和解决问题。例如,针对近期发生的崩塌、滑坡、泥石流等地质灾害,可设置地质灾害的主要诱因?人类活动or自然条件的论题,让学生通过查阅与崩塌、滑坡、泥石流等灾害相关的资料,展开讨论与辩论,从而达到牢固掌握崩塌、滑坡、泥石流等相关知识的目的。此外,还可增加一些工程实例课,让学生尝试用所学知识去解决实际问题。例如利用最新发生的地震、滑坡及泥石流等地质灾害的工程实例,探讨这些灾害的发生机理及防治措施,从而锻炼学生发现问题和分析问题的能力。

(三)加强实践环节教学,改被动式接受为主动式探索

在实施实践教学活动时,要强调以学生为主体,培养学生的动手能力,充分发挥实验教师的引导作用。在进行实验之前,指导教师可提出实验要求及注意事项,并给出参考意见,让学生自行设计实验方案,将原来的验证性实验改为设计性实验。尽量创造条件让学生开拓思维,发挥想象力和创造力,激发学生学习的主动性和积极性,提高洞察力,培养严肃认真和实事求是的工作作风,提高学生的综合素质。

野外实践应有效地将理论与实际相结合。因此,在进行野外实践教学时地点应尽可能选择工程地质现象丰富的地方。对河南理工大学而言,可在市区北部的缝山针公园进行为期半天的实践教学活动。结合园区内原有采石场开挖形成的人工边坡讲解边坡的应力分布状态及变化特征,边坡变形破坏类型及稳定性的影响因素,同时还可结合该园区的生态恢复治理工程讲解边坡变形破坏的防治原则和措施。此外,可结合水文与水资源工程专业学生未来就业意愿和方向,在毕业设计(论文)环节安排一些与工程地质有关的实践内容,例如岩土工程勘察设计或岩土工程分析与评价、边坡稳定性分析与评价以及煤矸石堆积体稳定性分析等。在毕业设计(论文)过程中要充分发挥学生的主观能动性,让学生多动手、多动脑,多方位培养学生获取知识的能力和创新能力。

(四)完善考核内容与方式,改重视理论考核为突出实践性考核

篇12

地理信息系统(GIS)是由计算机系统、地理数据和用户组成的,通过利用数据的空间属性,实现了图形与数据的结合。它通过可视化平台多维地显示数据,揭示数据之间的关联和隐藏在数据背后的信息。作为传统地图学与现代信息技术相融合的一门空间技术,GIS是水利信息采集、存储、管理、分析、表达的有力工具。水利信息量大繁杂,既有实时数据,又有历史数据;既有环境数据,又有经济数据;既有矢量数据,又有栅格数据,这些信息中80%以上与空间信息相关。实践证明:GIS可以胜任存储、管理这么庞杂的数据。水利信息化是国家以信息化改造和提升传统产业思路在水利行业的具体体现,是推动水利现代化的重要措施之一。近年来,GIS技术已深入到水利工程的各个方面,并发挥了巨大的作用。如国家防洪抗灾总指挥部开发的“区域性防洪减灾信息系统”,是基于GIS工具软件Mapinfo平台开发的。文献[1]利用了GIS技术,开发了三峡工程信息系统(TGPIS)及三峡工程测绘管理系统(SMMS)。据此,GIS已经运用到水利工程的各个方面。

2GIS支持下的水利工程勘察信息管理

传统水利工程勘察资料管理方法以纸质档案为主,借助档案管理软件和数据库系统实现管理,这些管理方法无法适应信息化管理的需求,存在诸多弊端,[2]信息利用率低、信息交换手段缺乏、信息表现形式单调等。水利工程勘察信息具有明显的与地理位置相关的空间特性传统的信息表达手段对空间特性[3]的描述是非常困难的,而GIS空间数据处理和管理为勘察信息管理提供了技术支持。GIS能够管理并描述地表及其附着物的空间信息与属性信息,具有强大的图形、图像及属性数据处理能力,能够对地理信息及其相关信息提供采集、处理、管理、制图等功能。其次,现有水利工程勘察数据可以方便的与GIS数据进行融合。已有水利勘察资料包括岩层、构造、水文、岩土体的物理力学性质等,大多直接与钻孔资料相关,这些信息可以通过关系数据库进行管理,GIS可以通过一定技术与关系数据库关联。

基于GIS勘察信息管理系统设计与开发,目前并不成熟。[4]系统开发思路是通过背景图层的加载建立空间数据库,运用GIS统一管理,通过钻孔信息的收集录入建立勘察资料属性数据库,运用关系数据库(DBMS)进行管理。

3基于GIS的CAD地形图管理

在水利工程,特别是大型水利工程(如跨流域调水工程)中,工程选址是一个人机交会、反复修改优化、集设计和决策于一体的过程,往往涉及范围广泛,内容复杂。应用传统的选址方法往往需要大量的野外实地踏勘工作,这不仅耗费巨大的人力、物力和财力,而且给施工的进度造成了影响。目前,水利勘察信息管理中,GIS应用并不广泛。勘测设计部门对计算机的应用还处于CAD的机助制图阶段,还没有引入GIS进行数据管理和分析,如何充分发挥计算机在数据管理和辅助设计中的作用,是面临的主要问题。

应用GIS为水利工程服务,建立空间数据库是基础,空间分析是核心。数字地形信息是GIS的重组成部分,是地理空间数据的基本信息之一。地形图为各种勘察、规划、设计的地理信息载体,地形图数据要同时满足测绘制图、GIS数据交换及分发的需要。因此,建立GIS的第一步是设计并建立数字地图数据库。已有的AutoCAD数字地形图只是GIS数据库建立的数字化形式的基础数据源,将已有的 AutoCAD数字地形图数据转换为满足GIS要求的数据格式,已为技术所需。空间数据信息包括3方面:空间定位信息(实体的坐标)、空间关系及属性数据。实际应用中,CAD/GIS数据转换可分为直接转换和间接转换两种方法[5]。而地图生产中矢量数据格式的转换有两种方法,即自行编程转换法和商品软件工具转换法[6]。自行编程转换是使用计算机程序语言(如VB、VC、DEPH I等)自行编制程序,并通过运行程序来实现。软件工具转换,则是通过某一制图系统软件的转入、转出的功能菜单选项来实现,例如ArcGIS软件工具。

4基于GIS的水利工程施工可视化管理

大型水利水电工程施工是一项复杂而又艰巨的工作,利用计算机进行辅助管理是人们一直所追求的目标。因此,把GIS技术应用于水利水电工程施工管理领域,来辅助工程施工管理、模拟仿真施工过程,以及进行地形地质的数字化与可视化,是一种新的发展方向。以信息的数字化、直观化、可视化为出发点,GIS可将复杂的工程施工过程以可视化的形式表达出来,为全面、准确、快速地分析掌握工程施工全过程提供有力地分析工具,实现工程施工信息的高效应用和科学管理。GIS的应用,将推动水利水电工程施工的数字化、可视化、智能化的发展。

系统仿真技术是随着计算机科学与技术的发展而逐步形成的一门新兴学科。现代仿真技术已成为分析、研究、评价和管理复杂系统不可缺少的重要手段,为大型水利工程施工管理提供了有效的途径。集面向对象图形建模技术、动态仿真技术、可视化技术、动画技术及数据库技术于一体的可视化仿真技术正是当前先进仿真技术与应用研究的核心。目前,GIS与可视化仿真结合的方式主要包括:①融合式。这种集成方式数据传递方便高效,操作简便,但开发费用高,开发周期长;②扩展式。通过建立扩展模块来实现数据相互交换和信息共享,此方式开发简便、费用低廉,两者具有相对独立性及可扩展性,便于系统的维护及进一步开发。涉及虚拟地形的实时可视化技术,及基于分形理论的实时可视化的动态扩展技术等,目前是研究的热点。

5结 论

水利是国民经济的基础设施,是经济社会发展的制约因素。目前,水利信息化的研究与发展,成为提升传统行业的研究核心,水利行业与GIS的融合正如火如荼的展开。从水利工程地质勘察,到工程选址,到运用GIS对地形图管理以辅助设计,再到整个水利工程施工的可视化管理,GIS与水利工程的兼容,贯穿了整个水利工程建设过程。GIS将为水利工程的实施,提供一个科学有效、便捷直观的设计、分析及管理手段。

参考文献

1 敖 麟、甘维义.三峡工程信息系统(TGPIS)总体设计的基本思想和初步实践[A].98’水利水电系统计算机研讨会论文集[C],1998:48~64

2 李生林、秦素娟、薄遵昭等.中国膨胀土工程地质研究(第一版)[M].南京:江苏科学技术出版社,1992.171~173

3 柴寿喜、韩文峰、王 沛等.用冻干法制备微结构测试用土样的试验研究[J].煤田地质与勘探,2005.33(2):46~48

篇13

1.1 气候变化对于大型水利工程设计所造成的影响

在气候变化的情况下,设计水利工程应考虑以下问题:

(1)气候变化可使的发生干旱的程度、范围、频率等加剧,从而影响其供水的保证率

(2)气候变化导致流域降雨与径流等发生改变,使得流域设计洪水与设计暴雨等受到影响,换而言之就是使得水利工程的防洪设计标准受到影响。

(3)暴雨强度与次数的加剧,均可致使地质灾害的发生与加大泥沙冲淤所对于水利工程的安全与寿命的影响。

(4)气候变化与变异都会使得发生极端水文气候事件的强度与频次大大增加,从而引发计划外的洪水,导致设计与编制水利工程运行质量的计划受到影响。

1.2 气候变化对于大型水利工程的运行管理所造成的影响

对于大型水利工程运行管理过程中,应考虑一下问题:

(1)在“温室效应”的背景下,因为发生极端灾害气象的频率与强度有所增强,因此在运行管理的过程中,要注重监测、预报水情信息,加强编制、执行防洪抗旱的应急预案。

(2)因为受到气候变暖与人类活动的影响,流域的来、用水条件和原本设计会有明显的变动,所以已建工程运行的规模、规则要做出相应的调整,从而保障水利工程的安全性与洪水的资源化。

(3)气候变化明显影响水生态环境,在运行调度水利工程中,要充分考虑到生态环境用水,可治理与保护逐渐恶化的水生态环境,可持续利用水资源。

2 气候变化对于南水北调工程所造成的影响

南水北调由三条调水线路和海河、淮河、黄河与长江四大江河联系,构成了“四横三纵”的布局,从而实现我国水资源的南北调配、东西互补的合理配置。

2.1 气候变化对于华北地区水资源的影响

根据气候模型显示,华北地区2050~2100年的降水量会增加,但是气温升高的幅度大,蒸发量也随之加大,让径流增加不明显。径流量的增加可否抵消经济社会发展与人口增长对于水的需求,预测未来需水量起着决定性的作用。研究表明,生活水平、人口增长的提高与生态、工业用水量的加大,使得需水量不断增加,未来的径流量远远不能满足需水量,因此北方缺水的局面还不能有根本性的解决。按照水利部水利信息中心所模拟的结果:在2061至2090年中,北方地区山西、陕西、甘肃与宁夏等省区的径流量会有减少的趋势,减幅为2%、3%、6%与10%。结合生态需水量的加大、科技发展对于节水的影响与人类活动对于径流的削减等,气候变化不能有效缓解我国华北地区的缺水情况。

2.2 气候变化对于调水区所造成的影响

气候变化致使在空间、时间上河流径流的变化,所以会直接影响到华北地区能调水量的多少,与此同时,也影响到调入去需水量的大小。

(1)对于东线能调出水量的影响。据研究显示,气候变化会加大汛期长江下游的径流量,不过其年内的分配也会随之发生改变,当南水北调与三峡水库蓄水一同进行时,要预防枯水年对于下游航运、入海径流的锐减和生态环境的约束都会加剧风暴潮灾、海水入侵。除此之外,气温变化对于调水水质也有所影响,特别是在枯水年,是不容忽略的。

(2)影响中线的可调水量。陈剑池等相关学者用月水量的平衡模型和7种GCMs模型所给出温室气体加倍情况下气候情景的输出值,并综合汉江流域未来需水的预测,模拟算出丹江口的径流量对于不同气候情景的情况和丹江口能调水量的影响。模拟得出初期能调水量会减少了3.5%,后期的能调水量减少了2.2%,平均年调水量减少了4.8~5.0亿立方米。气候变化对于能调水量的影响不大,基本能忽略。

陈德亮等采取了两参数分布式的水文模型,使用HadCM2与ECHAM4这两个GCMs模型,探讨了汉江径流受气候变化的影响程度,从研究中可见,在HadCM2的情境下,2051至2080增量15%,比2021至2050年增多10%;在ECHAM4的情境下,则相反,2021至2050年平均年径流量增加10%,比2051至2080年增量2%。

现在所得的结果均为在特定的气候背景中所假设的可能性,但气候变化是不可预测的,因此也会产生异于结果的气候响应,结果也因此而具有局限性。所以,有必要深入地认识气候变化对于南水北调工程调水区域受水区的可能性影响。

3 结语

气候变化导致了全球水文循环的改变,从而引起了在时空上水资源的再分配,汛期洪涝、暴雨与干旱等水文极端事件发生的频率呈上升的趋势,从而使得大型水利工程设计、运行等受到不同程度的影响。

参考文献:

[1]常军,顾万龙,竹磊磊,李素萍.河南5座大型水库上游流域气候变化及对水库运行影响分析[A];第26届中国气象学会年会气候变化分会场论文集[C],2009.