在线客服

土壤重金属污染的定义实用13篇

引论:我们为您整理了13篇土壤重金属污染的定义范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

土壤重金属污染的定义

篇1

Key Words: heavy metal; pollution; soil;

中图分类号:[TE991.3]文献标识码:A 文章编号:

一项由原国家环保总局进行的土壤调查结果显示,广东省珠江三角洲近40%的农田菜地土壤遭重金属污染,其中10%属严重超标。由于土壤重金属污染具有隐蔽性、不可逆性和持久性,对生态环境和人类健康影响深远,所以土壤重金属污染问题越来越受到人们的关注和重视。

一、土壤质量的涵义与土壤重金属污染

根据联合国粮食及农业组织(FAO)相关专家对土壤质量的定义,结合国内外尤其是美国、澳大利亚、欧盟等一些国家学者对土壤质量的普遍看法,所谓土壤的质量,与土壤中的重金属含量是决不可能画上等号的。我们不能认为土壤中重金属的含量低就认定土壤的质量高,反之亦然。根据对土壤质量的比较权威的定义,土壤的质量并不就是指土壤的质地,也不是指土壤为植物提供P、N、K等一些营养成分的能力,而是指能够支撑农产品的生产能力、保护生态环境、保护动物以及人类的健康与保护食品的安全等综合能力。FAO对土壤质量的定义主要是从测定土壤的生物、物理和化学性质的大概100多种指标而来。其中生物参数的指标是比较重要的。也就是说,代表土壤的生命活力主要是土壤中生物以及生物的多样性,其中土壤中的生物多样性就是土壤质量的核心组成,也就是土壤质量的内涵。

土壤具有同化和代谢外界环境进入土体的物质的能力,也就是常说的自净能力。当土壤中重金属的含量超过土壤的自净能力或者明显高于土壤环境基准或土壤环境标准,并引起土壤环境质量的恶化,这就是土壤重金属污染。

二、土壤中重金属污染的危害

(1)在自然生态系统中,大气环境、水环境和土壤环境的物质循环联系紧密,土壤的污染物会随着土层的迁移与地表径流,从而污染地下水、地表水,也会污染其他新的土壤,甚至会通过挥发产生大气污染。

(2)土壤中的重金属污染让紧张的耕地越来越短缺。由重金属污染造成土壤质量下降而导致耕地面积的减少,更加剧了对我国耕地红线的冲击。目前这种情况并没有出现减缓的趋势。

(3)重金属污染物通过影响土壤中某些微生物的数量与活性,从而影响土壤的活性。另外,重金属污染物大多对生物具有一定的毒害作用,因此土壤重金属的含量对农作物的产量有很大的影响,甚至会导致农作物的减产,所以土壤的重金属污染影响到农业生产的可持续发展。

(4)大多数重金属污染物难以降解,在生态系统中,生物富集现象显著,将直接或间接危害到处于食物链顶端的人类的身体健康。

(5)土壤的重金属污染物在迁移和转化的过程中,除了浓度的累积,毒性也可能会增加,例如汞的生物甲基化,这更加剧了土壤污染带来的危害。

三、土壤重金属污染的来源

(1)污灌。在缺水地区,污水灌溉解决了农用供水不足的问题,起着保证农作物产量的作用,同时也带来了土壤污染及地下水污染等问题。

(2)化肥、农药以及塑料薄膜的大量使用。不合理的农药和化肥的使用会使土壤被重金属所污染,某些化肥含有过量的重金属Zn、Cd、Pb等。农用塑料薄膜释出的Cd、Pb也会造成土壤重金属污染

(3)大气的沉降。工厂排放的烟气、粉尘等气体污染物经大气环流扩散,以干、湿的沉降方式进入到水体与土壤中。

(4)含重金属固体废弃物。工业废弃物、矿产的开采与冶炼产生的废渣、涉重金属企业污水处理系统产生的污泥等含重金属危险废物是土壤重金属污染的主要来源。

(5)交通运输的污染。交通运输中重金属的污染来源于汽车排放的尾气及轮胎磨损产生粉尘。

四、政府对防治土壤中重金属污染采取的措施

(1)提高涉重金属建设项目的准入门槛,有效控制新增污染源。对不符合产业布局、行业发展规划、环保规划的建设项目坚决不予上马。符合产业政策的涉重金属项目实行入园建设、统一规划布局、统一管理。

(2)摸清管理辖区地域,特别是农作物产地土壤质量状况,强化土壤重金属污染物的跟踪监测,划分种植功能区,对超标受污染的土壤进行修复。落实环保目标责任考核、行政问责制度,对超标区域实行挂牌督办、区域限批。

(3)推行清洁生产,加快涉重金属行业转型升级。通过实施清洁生产审核,从源头上削减重金属污染物的排放,提高资源利用效率,减少污染物末端治理的压力。

(4)加密对涉重金属企业污染物排放情况的监督性监测,对国控、省控重点企业至少每两月监测一次。强化企业自行监测,适时推行涉重金属污染源、重点流域在线监测监控。

(5)加强环境监管,严格环境执法。严厉打击涉重金属行业违法排污行为,对环保设施运行不正常、偷排、超标超总量排放等环保违法行为从严处罚,严格执行含重金属危险废物转移联单制度。

五、治理土壤中重金属污染的方法

(1)生物修复法。这种方法主要是通过一些特殊的微生物与植物把土壤中的重金属利用新陈代谢的作用去除或者转化其形态,降低重金属的毒性,使土壤得到一定程度的净化。

(2)热处理方法。热修复处理法的原理其实就是运用了污染物的热挥发性,利用高频电压所产生出来的电磁波,把土壤进行加热,使土壤中的污染物能够解吸出来,由此达到修复的目的。该方法对重金属汞的治理效果显著。

(3)排土、客土和水洗法。排土就是剥去表层受污染的土壤,客土就是在被污染的土壤上覆盖未受污染的土壤。水洗法是通过清水灌溉稀释或洗去重金属离子从而降低重金属污染物的含量。

(4)化学修复方法。这个方法是利用某些化合物与土壤中的重金属反应所形成的络合物,很容易和酸根离子发生反应产生沉淀的特点,通过投加一些改良剂到土壤里来降低土壤中重金属的迁移性,减少其含量,从而达到修复以及治理土壤的目的。

六、结束语

土壤中重金属污染问题隐蔽、危害大,难以治理。国土资源部曾公开表示,中国每年有1200万吨粮食遭到重金属污染,直接经济损失超过200亿元。经济发达地区普遍存在着土壤重金属污染问题。随着产业转移,一些东部地区的高能耗、高污染项目开始往中西部省份转移,中西部欠发达地区的土壤环境也面临着重金属污染的威胁。近年来频繁见报的重金属污染事故,时刻警醒着人们要重视土壤中的重金属污染的问题。

参考文献:

[1]李泽琴 程温莹 罗丽.地质灾害与环境保护,2002(12)

[2]陈志良 仇荣亮 张景书.重金属污染土壤的修复技术[J].环境保护,2002(06)

[3]华珞 陈世宝 白玲玉.有机肥对重金属锌污染土壤改良效应[J].农业环境保

护,1998(11)

[4]王凯荣.我国农业重金属污染现状及其治理利用对策[J].农业环境保护,1997(02)

篇2

被重金属污染的土壤不仅对作物的生长发育、产量及品质有影响,而且会通过食物链放大富集进入人体,极低浓度就能破坏人体正常的生理活动,损害人体健康[1]。土壤污染影响到整个人类生存环境的质量。重金属污染已成为一个亟待解决的环境问题。

1、土壤中重金属的来源及危害

土壤中重金属的来源可分为天然来源和人为来源。天然来源是由于土母质本身含有重金属,不同的母质、成土过程所形成的土壤含有重金属量差异很大。人为来源主要是来自人类的工农业生产活动以及生活垃圾,工矿业废弃地土壤环境问题突出,黑色金属、有色金属、皮革制品、造纸、石油煤炭、化工医药、矿物制品、金属制品和电力等行业,重污染企业用地及周边土壤存在超标现象。

近年来,突发性的环境污染事件骤增,特别是重金属污染事件。突发的环境事件会导致重金属在短时间内高浓度地进入环境,产生严重的污染。2008年,我国相继发生了贵州独山县、湖南辰溪县、广西河池、云南阳宗海等多起砷污染事件。2009年8月以来,又发生了陕西凤翔儿童血铅超标、湖南浏阳镉污染及山东临沂砷污染事件。2014年,湖南衡东县儿童血铅超标事件,300多名儿童被查出血铅含量超标。据美国学者统计表明,城市儿童血铅与城市土壤铅含量呈显著的指数关系[2]。据统计,我国约有3万多公倾土地受汞的污染,有1万多公倾土地受镉的污染,每年仅生产“镉米”就达5万t以上,而每年因污染而损失的粮食约1200万t,严重影响了我国的粮食生产和食品安全[3]。这些重金属污染事件有些是由于管理不当、交通事故等人为原因导致的,有些则是环境长期受到污染、污染物含量超过环境容量而突然爆发的结果。“砷毒”“血铅”“镉米”等重金属污染事件频发,让重金属污染成为最受关注的公共事件之一。重金属污染问题已日益严重,土壤重金属的治理和修复已迫在眉睫。

2.重金属土壤污染治理生物修复技术

目前,国内外较成熟的土壤重金属污染修复技术有物理修复法、化学修复法和生物修复法等,本文主要就土壤重金属修复领域的研究热点生物修复技术进行重点介绍。生物修复技术主要有植物修复技术、微生物修复技术、农业生产修复技术和组合修复技术。

2.1植物修复技术

根据Cunningham等人的定义,植物修复是利用绿色植物来转移、容纳或转化污染物,使其对环境无害[4]。根据机理的不同,土壤重金属污染的植物修复技术有3中类型:植物固定、植物挥发和植物提取。目前研究最多且最有发展前景的植物修复技术为植物提取。植物提取是指将某种特定的植物种植在重金属污染的土壤上,该种植物对土壤中的污染元素具有特殊的吸收富集能力,将植物收获并进行妥善处理(如灰化处理)后即可将该重金属从土体中去除,达到治理污染与生态修复的目的,这种特定的植物被称为超积累植物。植物修复法成本低,可有效避免二次污染,对环境扰动小。目前,全球已发现的超积累植物大约500种,大部分是关于镍的超富集植物。在我国已经发现宝山堇菜、龙葵、马蔺、三叶鬼针草对Cd有富集作用,蜈蚣草[5]和大叶井口边草[6]对As有富集作用,圆锥南芥[7]属多重金属富集植物,对Pb、Zn、Cd均有富集作用。植物修复技术可同时修复土壤及周边水体;成本低;能够美化环境,可提高土壤的肥力。植物修复技术的缺点:超富集植物个体矮小,生长缓慢,修复周期很长;超富集植物对重金属具有较强的选择性和拮抗性;植物收割后,需要进行特殊处理,否则易造成二次污染;异地引种将对当地的生物多样性构成潜在威胁。适用于大面积农田土壤修复。

2.2微生物修复技术

微生物修复技术是利用微生物(如藻类、细菌、真菌等)的生物活性对重金属的亲和吸附或转化为低毒产物,从而降低重金属的污染程度。微生物不能降解和破坏重金属,但可通过改变它们的化学或物理特性而影响金属在环境中的迁移与转化。研究证明,土壤中铬可以在微生物还原作用、生物吸附、富集等作用下降低其生物可利用性和毒性,以达到修复铬污染土壤的目的[8]。微生物修复效果好、投资小、费用低、易于管理与操作、不产生二次污染。但是微生物修复的专一性强,很难同时修复多种复合重金属污染土壤;应用难度大。

2.3农业生态修复技术

农业生态修复包括农艺修复和生态修复,前者是改变耕作制度,调节种植作物品种,种植不进入食物链的植物,选择能降低土壤重金属污染的化肥,或增施能够固定重金属的有机肥等来降低土壤重金属污染;后者调节土壤水分、养分、pH值和土壤氧化还原状况及气温、湿度等生态因素,调控污染物所处环境介质,但该技术修复周期长、效果不明显。农业生态修复技术环境友好,代价小。但需要大量的调研,基础研究,改变种植习惯。适用于大面积低污染农田土壤。

2.4组合修复技术

植物组合修复技术是将植物修复技术与其他土壤重金属污染治理方法(比如物理、化学等修复技术)综合利用形成的组合技术,与单一重金属治理技术相比,植物组合修复技术具有独特的优点。有代表的有螯合剂-植物组合修复技术,螯合剂与土壤中的重金属发生螯合作用,形成水溶性的金属―螯合剂络合物,改变重金属在土壤中的赋存形态,提高重金属的生物有效性,强化植物对重金属的吸收。另外还有基因工程-植物组合修复技术及微生物-植物组合修复技术等。

3、展望

随着社会的发展进步,人们对土壤重金属污染的认识越来越深刻,越来越重视,如何防控和治理土壤重金属已成为人们关注的焦点。在今后的土壤重金属污染治理中,首先应以源头控制,即有效地降低重金属污染物的排放,这主要有赖于国家环境政策与法规的不断完善和工矿企业技术革新的落实。其次就是土壤的修复技术,针对土壤污染的复杂性、多样性及复合性,在修复时要综合考虑污染物的性质、土壤条件、投资成本等各方面的因素,从单一的修复技术向多数联合的修复技术、综合集成的工程修复技术发展,选择最适合的修复技术或组合, 达到高效、节约的双重效果。

参考文献

[1] 张许文琦.植物修复技术治理土壤重金属污染的研究进展[J].人民长江,2013,44(增刊):144-146.

[2] 蒋海燕,等.城市土壤污染研究现状与趋势[J].安全与环境学报,2004,4(5):73-77.

[3] 陈怀满.土壤-植物系统中的重金属污染[M].北京: 科技出版社,1996.

[4] Cunningham SD.Remediation of contaminated soil with green plants: an overview[J].In Vitro. Cell Dev. Biol,1993,( 29) :207-212.

[5] 陈同斌,韦朝阳,黄泽春,等. 砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报,2002,47( 3) : 207 - 210.

篇3

重金属指密度4. 0 以上约60 种元素或密度在5.0 以上的45 种元素。砷、硒是非金属,但它的毒性及某些性质与重金属相似,所以将其列入重金属污染物范围内。环境污染方面所指的重金属主要指生物毒性显著的汞、镉、铅、铬以及类金属砷,还包括具有毒性的重金属如铜、钴、镍、锡、钒等污染物。由于人们的生产和生活活动造成的重金属对大气、水体、土壤等的环境,污染就是重金属污染。

二、重金属污染的种类及来源

由于重金属在人类生产和生活中得到越来越广泛的应用,这使得环境中存在着各种各样的重金属污染源。

1.大气中的重金属污染。大气中的重金属污染有自然来源和人为来源两种,由宇宙天体作用及地球上各种地质作用而使某些重金属元素进入大气中属于自然来源,人为来源的重金属主要为工业生产、汽车尾气排放及汽车轮胎磨损产生的大量含重金属的有害气体和粉尘等,它们主要分布在工矿的周围和公路、铁路的两侧。各种元素的两种来源间比例不同。据统计, 全球由自然来源进入大气的重金属中,铅仅占其向大气总释放量3.5 %左右,镉所占的比例也很低,只有总释放量的15 % ,而铬、铜的比例比较高,分别约为59 %和44 %。人为活动释放到大气中的重金属铅、镉、镍、钴、铜的数量远大于它们的自然输入量。在多种复杂的途径中,以化石燃料的燃烧和金属冶炼过程中的释放较为重要。大气中的重金属可以通过呼吸作用随气体进入人体,也可以沿食物链通过消化系统被人体吸收,对人群的危害极大。

2.水体中的重金属污染。在没有人为污染的情况下,水体中的重金属的含量取决于水与土壤、岩石的相互作用,其值一般很低,不会对人体健康造成危害。但工矿业废水、生活污水等未经适当处理即向外排放,污染了土壤,废弃物堆放场受流水作用以及富含重金属的大气沉降物输入,都使水体重金属含量急剧升高,导致水体受到重金属污染。水体重金属污染物排放源主要集中在大、中城市,因此其主要危害人群也相对集中于城市地区。重金属通过直接饮水、食用被污水灌溉过的蔬菜、粮食等途径,很容易进入人体内,威胁人体健康。

3.土壤中的重金属污染。在自然情况下,土壤中重金属主要来源于母岩和残落的生物物质,一般情况下含量比较低,不会对人体及生态系统造成危害。人为作用是使土壤遭受重金属污染的重要原因。在金属矿床开发、城市化、固体废弃物堆积以及为提高农业生产而施用化肥、农药、污泥及污水灌溉过程中,都可以使重金属在土壤中大量积累。积累在土壤中的重金属可以通过淋溶作用进入水体,也可以通过种植等农业活动进入农作物,进而对人体及生态系统造成危害。

三、重金属污染的危害

重金属既可以直接进入大气、水体和土壤,造成各类环境要素的直接污染;也可以在大气、水体和土壤中相互迁移,造成各类环境要素的间接污染。由于重金属不能被微生物降解,在环境中只能发生各种形态之间的相互转化,所以,重金属污染的消除往往更为困难,对生物引起的影响和危害也是人们更为关注的问题。

重金属进入人体有食道、呼吸道、皮肤三种途径。进入人体的重金属不再以离子的形式存在,而是与体内有机成分结合成金属络合物或金属螯合物,从而对人体产生危害,机体内蛋白质、核酸能与重金属反应,维生素、激素等微量活性物质和磷酸、糖也能与重金属反应。由于产生化学反应使上述物质丧失或改变了原来的生理化学功能,病变就产生了。另外,重金属还可能通过与酶的非活性部位结合而改变活性部位的构象,或与起辅酶作用的金属发生置换反应,致使酶的活性减弱甚至丧失,从而表现出毒性。重金属在动物体内和人体内都有富集效应——即吸收进入体内后很难自然排出。比如体内如果有过量的铅,在不继续接受铅污染的条件下,骨骼内的铅要经过20年才能排除一半。而人体内镉的生物半衰期也有20~40年。因此,即使人们吃的食物里重金属含量没有高到让人急性中毒的浓度,如果长久接触或者食用某一种重金属,体内浓度还是会越来越高。当积累到一定浓度时,就表现出慢性中毒症状。因此,重金属中毒损害机体器官往往是不可逆的。

篇4

The Research Progress on Plant-microorganism Combined Remediation of Heavy Metals-contaminated Soil & Sediments

Wen Xiaofeng1 et al.

(1School of Hydraulic Engineering,Changsha University of Science and Technology,Changsha 410004,China)

Abstract:As a kind of persistent toxic,heavy metals pollution has caused a high degree of attention recently in China.As a green technology,plant-microorganism combined remediation are increasingly mature on its application in the oil pollution of soil,so appllying to the restoration of sediment/soil heavy metal pollution has been gradually carried out.This article summarizes the current situation of sediment/soil heavy metal pollution,the processing method and so on.Also the definition,principle about the plant-microorganism combined remediation was expatiated,and the different forms of plant-microorganism combined remediation on plant-microbial was described.Finally,the application foreground of the plant-microorganism combined remediation in sediment/soil heavy metal pollution repair was prospected.

Key words:Plant-microorganism combined remediation;Heavy metals pollution;Sediments & Soils

重金属(Heavy metals)一般是指密度大于5g/cm3,超过一定量后对生物具有明显毒性的金属或者类金属元素,如镉、铬、锌、铜、铅、汞、砷等[1]。这些(类)金属元素及其化合物在环境中只是发生形态或者价态的变化,难以被降解,属于持久性的累积性毒物,对人类有着潜在长久的危害[2]。底泥、土壤是众多底栖生物、陆生生物的栖息觅食生活场所,在底泥/土壤中累积的重金属会通过食物链的放大,最终进入人体,使得人体内的重金属含量逐渐增多,从而出现慢性中毒,对人类的健康造成长久且不可挽回的损害[3]。因此,对底泥/土壤中重金属污染的治理研究有着重要的意义。中国对重金属污染底泥/土壤的治理始于20世纪70年代,对重金属污染底泥/土壤的处理机理分为固定、活化2种,前者降低底泥/土壤中重金属离子的有效性,使其沉淀化从而降低其生物有效性,降低对植物的毒害,后者通过一系列措施提高重金属的生物有效性,再通过植物、微生物等吸附提取从底泥/土壤中去除[4]。目前用于处理重金属污染底泥/土壤的方法可分为原位修复(In-situ Remediation)与异位修复(Ex-situ Remediation)。物理修复法见效快,但工程量大,耗财耗力,且通过物理修复后均难以使底泥/土壤达到要求的标准;化学修复法能在短时间内大幅度去除底泥/土壤中的重金属,但去除一般都不彻底,且治理成本高,人力物力耗费较多,易造成二次污染,化学药剂也会对水生/陆生生态系统构成潜在的威胁[5]。植物-微生物联合修复在进入21世纪后得到了快速发展,近年来由于其在富营养化污废水、石油污染水体/土壤中的良好治理效果而引起了高度关注[6],在重金属污染底泥/土壤的处理中极具潜力,是今后治理重金属污染底泥/土壤着重研究发展的方向。

1 植物-微生物联合修复的定义及原理

植物-微生物联合修复属于生物修复,它通过建立植物-微生物共生体系,通过微生物加强植物富集、固定底泥/土壤中重金属的能力,利用植物-微生物共生体系富集、固定底泥/土壤中的污染物[7]。微生物强化植物修复主要是强化植物富集、固定能力,主要表现在2个方面[8]:(1)活化或固定底泥/土壤中重金属;(2)促进植物生长。用于重金属污染修复的植物-微生物联合修复中的植物与微生物两者是互惠互利的关系,土壤-微生物共存环境中,底泥/土壤中附着在根际的微生物能将土壤有机质、植物根系分泌物转化成自身可吸收的小分子物质,同时通过分泌有机酸、铁载体等螯合物质改变底泥/土壤中重金属的赋存状态或者氧化还原状态,降低重金属的毒性,增加重金属的生物有效性,减少重金属对植物本身的毒害,有利于植物对重金属的吸收、转移、富集,从而增加了累积植物重金属的生长量、富集量[8-9]。体外微生物对土壤中Fe、Mn氧化物进行还原,解析出其中的重金属,也可将硫等氧化成硫酸盐,降低土壤的pH值,进而增加了重金属的活性,转换成易于被植物吸收的形态;活动于植物体内的根内菌则通过分泌一定量的生长促生剂促进宿主植物生长,进而增加宿主植物对重金属的富集量,有利于植物对底泥/土壤中重金属的吸收[6,10]。而植物对微生物修复的强化则体现在植物根际分泌物上,根际的分泌物对根际微生物起着很关键的作用,根系分泌物数量丰富,一般包括糖、蛋白质、氨基酸、有机酸、酚类等,其中有机酸通过螯合、活化作用改变土壤中的重金属化学行为、生态行为,进而改变重金属对植物、微生物生物有效性、毒性[11]。同时,蛋白质、糖等有机质分泌物可以作为根际微生物的营养、能源来源,大大提高了根际微生物的活性,根际微生物活性的增加又反过来作用于植物根际,影响了根的代谢活动和细胞膜的膜透性,并改变了根际养分的生物有效性,促进了根际分泌物的释放[12]。植物-微生物二者的联合对植物、微生物修复法各自处理底泥/土壤中的重金属起到了强化作用,提高了对底泥/土壤中重金属的处理效率,在处理重金属污染底泥/土壤中有着很大的潜力[13]。

2 植物-微生物联合修复技术的几种形式

2.1 植物-土著优势菌联合修复 随着底泥/土壤中重金属污染的加重,某些微生物能对重金属表现出耐受性,从污染底泥/土壤中分离出来的此类微生物即为土著优势菌种[14]。真菌、细菌、放线菌是底泥/土壤中分布广、生物量大的微生物,表面积/体积比很大,表面附着的羧基、磷酰基、羟基等负电荷的功能基团使得它们对重金属阳离子有着很强的吸附作用[15]。土著优势菌强化植物富集重金属的机制主要表现在以下几个方面[16]:(1)微生物分泌胞外聚合物与重金属离子络合解毒,降低重金属毒性;(2)分泌的酸类对重金属起到活化作用,提高重金属的生物有效性,增强了植物对重金属的富集能力;(3)微生物对土壤中金属离子进行氧化还原及甲基化作用,从而对重金属离子产生作用,将重金属转化为低毒、无毒的形式。陈文清等[17]利用盆栽实验研究了鱼腥草与内源根际微生物联合修复镉污染土壤,发现在土壤镉浓度为5mg/kg、10mg/kg时,鱼腥草的富集率分别为2.86%、1.63%,吸收量最高可达培养前自身镉浓度的200倍(种植前鱼腥草镉含量0.114 6mg/kg,富集后最高达24.44mg/kg),根际的细菌、霉菌耐性较弱,培养初期放线菌对镉耐性很强,较高浓度镉可能刺激了放线菌的大量生长,在两者联合下,土壤微生态系统能够保持较好的稳定性。高亚洁等[18]利用草本植物紫花苜蓿-土著微生物对重金属污染的河道底泥进行修复,在经过6个月的PVC箱培养后,底泥中的Ni、Cu、Pb、Cr、Mn、Zn都得到了一定的去除,Ni、Cu、Pb、Cr、Zn均累积在紫花苜蓿根部,其中对Zn的总累积量最大,而Mn则在紫花苜蓿叶片中累积最多,占植物中总累积量的42.47%,而根际微生物也对植物修复起了辅助强化作用,其中的Cu与细菌总数有着相关系数为0.90的相关关系。

2.2 植物-根际菌根真菌联合修复 菌根是一个微生物团,主要包括真菌、放线菌、固氮菌,是在植物根际发现的有助于植物生长的菌丝团,是土壤中的微生物与根系形成的联合体[19-20]。菌根表面微生物形成的菌丝大幅度增加了根系吸收面积,而菌根真菌是处理重金属的主要部分,真菌的酸溶、酶解能力使得它们能为植物提供了一部分营养物质,增加了植物的长势,同时改善根际土壤环境,增加了植物抗虫、抗逆的生存能力[21]。菌根真菌在自然界分布广泛,一般来说,重金属污染区域的菌根植物根际的真菌对重金属会有着强的耐受力,也可从未受重金属污染土壤中分离菌根真菌再进行筛选强化。李芳等[22]选了未受重金属污染的点柄粘盖牛肝菌、卷缘桩菇2种外生菌根真菌,研究二者对Pb、Zn、Cd的耐受性,发现卷缘桩菇比点柄粘盖牛肝菌更耐受Pb、Zn的毒害,点柄粘盖牛肝菌则对Cd有更强的耐受性。

2.3 植物-植物内生菌联合修复 植物内生菌(Endophytes)是指那些在其生活史的一定阶段或全部阶段生活于健康植物的各种组织和器官体内或细胞间隙的真菌和细菌,被感染的宿主植物不表现或暂时不表现外在病症[23]。内生菌通过代谢作用利于宿主植物的生长和抗重金属毒性,可通过沉淀重金属离子、产有机酸和蛋白降低植物毒性、产生促进植物生长的植物激素、抗氧化系统抵御重金属毒性、增强植物对营养元素的吸收能力等来强化植物修复[24]。万勇等[25]通过在龙葵种子中接种来自龙葵的抗性内生菌(S.nematodiphila,LRE07)来处理污染土壤,对龙葵富集镉浓度没有显著影响,但极大地促进了植物的生长量,间接地提高了植物对镉的总富集量,在10μM镉浓度下,植株镉富集量比对照组增长了(72±5)%。Sheng等[26]将来自油菜根部的内生菌P.fluorescens G10、Microbacterium sp.G16接种于铅污染土壤,极大地提高了土壤中可溶态铅的含量,有利于植物对铅的富集吸收。Badu等[27]将从欧洲赤松根部内分离得到的抗性菌苏云金芽孢杆菌(Bacillus thuringiensis,GDB-1)接种于赤杨皮树苗体内,用以处理污染土壤,发现相对对照组赤杨皮树根部重金属浓度分别提高了154%(Ni)、135%(Cd)、120%(Zn)、117%(Pb)、114%(Cu)、113%(As),茎部重金属浓度分别提高了175%(Ni)、160%(Cd)、137%(Zn)、137%(Pb)、161.1%(Cu)、110.1%(As)。

2.4 植物-其他微生物联合修复 除了以上3类联合,可以和植物联合修复底泥/土壤重金属污染的微生物还包括产酸微生物、基因工程菌等。杨卓等[28]利用印度芥菜与能产生有机酸、柠檬酸的巨大芽孢杆菌-胶质芽孢杆菌、黑曲霉混合制剂来修复Cd、Pb、Zn污染的土壤,添加巨大芽孢杆菌-胶质芽孢杆菌混合制剂时,污染土壤中印度芥菜对Cd、Pb、Zn的提取量分别提高了1.18、1.54、0.85倍,污染底泥中印度芥菜对Cd、Pb、Zn的提取量分别提高了4.00、0.64、0.65倍;添加黑曲霉时,污染土壤中印度芥菜对Cd、Pb、Zn的提取量比对照提高了88.82%、129.04%、16.80%,污染底泥中印度芥菜对Cd、Pb、Zn的提取量比对照提高了78.95%、113.63%、33.85%。在基因工程菌的研发方面,Lodewyckx等[29]将植物内生菌的抗性基因ncc-nre耐镍系统接种到Burkholderia cepacia L.S.2.4,再将B.cepacia L.S.2.4接种到羽扇豆(Lupinus luteus),发现根部的镍浓度比对照提高了30%。

3 研究展望

植物-微生物联合修复技术中能用于单一重金属或有机物污染底泥/土壤的植物修复相对较多,多种重金属和重金属与有机物的复合污染的植物修复则相对较少。目前已发现的重金属超积累植物大都为单一重金属的超积累植物。超积累植物存在着个体矮小、生长缓慢、根系扩张深度有限、对重金属有选择性、从根部到茎叶的重金属转移率较低等缺陷。而微生物对影响生长代谢的生物因子均有一定的耐受范围,超出范围微生物易死亡或休眠,因此在联合修复中还应根据微生物的需要,对环境因子做出相应的调整,使微生物的代谢活动处于最佳状态。

在实际利用植物-微生物联合修复重金属污染土壤时,“植物-微生物”联合体的选择至关重要。从目前来看,彻底解决底泥/土壤中的重金属污染问题还需要很长一段时间。为了加速改善这种状况,推进植物-微生物修复在重金属污染底泥/土壤实际修复中的应用,近期应该注重以下几个方面的深入研究:(1)对植物-微生物不同联合形式修复底泥/土壤中重金属吸收、转运、忍耐机制进行深入研究;(2)寻找能缩短修复周期、增强植物生长量、解决植物植株矮小等问题的手段;(3)针对超累积植物处理重金属种类单一的缺点,应加强对能同时修复多种重金属的陆生、水生、湿生植物品种的筛选培育;(4)利用基因工程、分子技术研制适用于植物微生物联合体系的微生物的筛选研发,同时加强对底泥/土壤中土著微生物方面的研究;(5)尽快探索出能解决接种微生物与土著微生物竞争及适应性问题的方案。

参考文献

[1]Brümmer G W.Heavy metal species,mobility and availability in soils[M].Springer,1986.

[2]Nieboer E,Richardson D H S.The replacement of the nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal ions[J].Environmental Pollution Series B,Chemical and Physical,1980,1(1):3-26.

[3]Adriano D C.Trace elements in terrestrial environments:biogeochemistry,bioavailability,and risks of metals[M].Springer,2001.

[4]Bolan N,Kunhikrishnan A,Thangarajan R,et al.Remediation of heavy metal(loid)s contaminated soils - To mobilize or to immobilize?[J].J.Hazard.Mater.,2014,266C:141-166.

[5]Yao Z,Li J,Xie H,et al.Review on Remediation Technologies of Soil Contaminated by Heavy Metals[J].Procedia Environ.Sci.,2012,16:722-729.

[6]Guo H,Luo S,Chen L,et al.Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp.L14.[J].Bioresour.Technol.,2010,101(22):8599-8605.

[7]Lovley D R.Bioremediation of organic and metal contaminants with dissimilatory metal reduction.[J].Journal of industrial microbiology,1995,14:85-93.

[8]Rajkumar M,Sandhya S,Prasad M N V,et al.Perspectives of plant-associated microbes in heavy metal phytoremediation.[J].Biotechnol.Adv.,2012,30(6):1562-1574.

[9]Niu Z,Sun L,Sun T.Plant-microorganism combined remediation of heavy metals-contaminated soils:Its research progress[J].Chinese Journal of Ecology,2009,11:34.

[10]Zhao F,Mcgrath S P.Biofortification and phytoremediation.[J].Current opinion in plant biology,2009,12:373-380.

[11]Epelde L,Becerril J M,Barrutia O,et al.Interactions between plant and rhizosphere microbial communities in a metalliferous soil.[J].Environmental pollution,2010,158:1576-1583.

[12]Kuffner M,Puschenreiter M,Wieshammer G,et al.Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows[J].Plant and Soil,2008,304:35-44.

[13]Yao Z,Li J,Xie H,et al.Review on Remediation Technologies of Soil Contaminated by Heavy Metals[J].Procedia Environmental Sciences,2012,16:722-729.

[14]Colin V O N L,Villegas L B,Abate C M.Indigenous microorganisms as potential bioremediators for environments contaminated with heavy metals[J].Int.Biodeterior.Biodegradation,2012,69:28-37.

[15]孙嘉龙,肖唐付,周连碧,等.微生物与重金属的相互作用机理研究进展[J].地球与环境,2007,35(4):367-374. (下转183页)

(上接84页)

[16]Rajkumar M,Freitas H.Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard.[J].Bioresource technology,2008,99:3491-3498.

[17]陈文清,侯伶龙,刘琛,等.根际微生物促进下鱼腥草对镉的富集作用[J].四川大学学报(工程科学版),2009,41(2):120-124.

[18]高亚洁,吴卿,李东梅,等.紫花苜蓿对重金属污染河道底泥的修复能力研究[J].农业科学与技术,2011,12(12):1885-1888.

[19]弓明钦,陈应龙,仲崇禄.菌根研究及应用[M].北京:中国林业出版社,1997:51-55.

[20]Malik A.Metal bioremediation through growing cells[J].Environ.Int.,2004,30(2):261-278.

[21]王红新.丛枝菌根真菌在植物修复重金属污染土壤中的作用[J].中国土壤与肥料,2010(5):1-5.

[22]李芳,张俊伶,冯固,等.两种外生菌根真菌对重金属Zn、Cd和Pb耐性的研究[J].环境科学学报,2003,23(6):807-812.

[23]K S J,W B C,F W J.An overview of endophytic microbes:endophytism defined[J].Microbial endophytes,2000,3:29-33.

[24]Rajkumar M,Ae N,Freitas H.Endophytic bacteria and their potential to enhance heavy metal phytoextraction[J].Chemosphere,2009,77(2):153-160.

[25]万勇.内生细菌在重金属植物修复中的作用机理及应用研究[D].长沙:湖南大学,2013.

[26]Sheng X,Xia J,Jiang C,et al.Characterization of heavy metal-resistant endophytic bacteria from rape(Brassica napus)roots and their potential in promoting the growth and lead accumulation of rape[J].Environmental Pollution,2008,156(3):1164-1170.

篇5

生物炭是生物质通过热裂解的方法在缺氧或者低氧条件下制备的一种富含孔隙结构、含碳量高的碳化物质[1],其性质优良,具有较好的农用效益和环境污染修复潜力,已有研究表明,生物炭能够直接或者间接地降低土壤中重金属的生物有效性,因此有关将生物炭应用于重金属污染土壤的生态修复引起了广泛的关注。制备生物炭的原料来源广泛,农林业废弃物如木材、秸秆、果壳及有机废弃物等都可以作为原料[2,3],同时,其具有碳封存的潜力,因而生物炭的应用可作为我国农林废弃物资源化利用的有效途径。全球已举办过多次有关生物炭的会议,并成立了许多生物炭协会、学会、相关企业与研究机构,其中最著名的机构是国际生物炭协会(International Biochar Initiative,IBI)。总之,作为一种新型环境功能材料,生物炭在作物安全生产方面正展现出广泛的应用潜能。本文概括性地介绍了蔬菜重金属污染的现状和目前用于治理重金属污染的各项措施,通过综述生物炭的特性及其在重金属污染治理上的研究应用进展,展望了生物炭在减少蔬菜重金属污染、提高蔬菜产量、质量和安全性方面的应用潜力以及尚待解决的关键问题,为生物炭应用于蔬菜的安全生产提供有力的理论支持和实践参考。

1 蔬菜重金属污染现状

重金属在化学上是指密度大于4.5 g/cm3的约46种金属元素。环境污染上所说的重金属是指铬(Cr)、镉(Cd)、汞(Hg)、铅(Pb)以及类金属砷(As)等生物毒性显著的金属,即重金属“五毒”。重金属或其化合物造成的环境污染称为重金属污染。近年来,随着工农业的快速发展,大量重金属污染物通过各种途径进入土壤、水体和大气中,土壤和水体重金属污染引起的蔬菜及其他农作物重金属超标问题日益成为影响人类生活质量、威胁人类健康的环境和社会问题。研究结果表明,蔬菜重金属污染主要是人为因素所致,重金属可经由各种路径进入人体内(图1)。

随着生活水平的提高,人们对无公害蔬菜、绿色食品的呼声越来越高。为使蔬菜产业向着高产优质的方向发展,很多设施菜地、无土栽培技术、有机生态农业等已在全国各地蓬勃发展。其中,作为无公害蔬菜和绿色蔬菜的评价指标之一,重金属含量在生产基地、生产过程和产品中都有严格的限定标准。无土栽培基质也较容易受到重金属污染,如李静等[4]发现煤渣是引起基质重金属含量超标的主要因素,通过寻找理想的无土栽培基质来解决重金属超标问题,也是无公害蔬菜生产的重要任务。

1.1 蔬菜重金属污染为害及研究现状

世界各国都存在不同程度的重金属污染,如日本20世纪50年生的水俣病(汞污染)、骨痛病(镉污染),防治重金属环境污染已成为一个刻不容缓的世界性课题[5]。我国的重金属污染问题较为严峻,国家环保部数据显示,2009年重金属污染事件致使4 035人血铅超标、182人镉超标,引发32起[6],其中的典型案例有陕西宝鸡市凤翔县长青镇的血铅超标事件、湖南浏阳市湘和化工厂镉污染事件等[7]。仲维科等[8]研究发现,按食品卫生标准,我国各主要大中城市郊区的蔬菜都存在一定的重金属超标现象,其中Cd、Hg、Pb的污染尤为明显。迄今为止,国内已对北京、上海、天津、贵阳、大同、蚌埠、成都、寿光、哈尔滨、福州、长沙等大中城市郊区菜园土壤及蔬菜中重金属污染状况进行过较为系统的调查研究。蔬菜农药残留和重金属超标问题已成为我国发展蔬菜出口中的忧中之忧。随着中国加入WTO,蔬菜出口面临着巨大的绿色壁垒[9] 。

国内外众多学者对蔬菜的重金属污染问题进行了研究,其中对十多种陆生和水生蔬菜的镉、铜、锌、铅、汞、镍、铬及砷等重金属的为害进行了分析研究。土壤中的重金属元素通过抑制植物细胞的分裂和伸长、刺激和抑制一些酶的活性、影响组织蛋白质合成、降低光合作用和呼吸作用、伤害细胞膜系统,从而影响农作物的生长和发育。王林等[10,11]先后研究了Cd、Pb及其复合污染对茄果类蔬菜辣椒和根茎类蔬菜萝卜生理生化特性的影响,发现辣椒的生长发育、氮代谢、膜系统、根系和光合系统都受到一定的伤害,萝卜的生理生化指标也受到明显抑制,细胞膜透性显著升高,并且Cd、Pb复合污染的毒害作用始终比单一污染强,说明Cd、Pb复合污染表现为协同作用。他们的研究结果与秦天才等[12]研究的Cd、Pb及其复合污染对叶菜类蔬菜小白菜的影响结果一致,小白菜除出现植株矮化、失绿和根系不发达等直接毒害表现外,还出现叶绿素含量降低、抗坏血酸分解、游离脯氨酸积累、硝酸还原酶活性受到抑制等现象。

1.2 陆生蔬菜地重金属污染现状

蔬菜是易受重金属污染的作物之一,对重金属的富集系数远远高于其他农作物,因此蔬菜重金属污染问题更加突出。目前全国主要大中城市的菜地土壤和蔬菜重金属污染的状况已基本掌握[13]。土壤和蔬菜中重金属污染以砷、铬、镉、汞、铅、铜(Cu)、镍(Ni)、锌(Zn)等为主。一般对同一类蔬菜来说,Cu、Cd、Zn为高富集元素,Hg、As、Cr为中等富集元素,Ni、Pb为低富集元素[14]。其中,城市中的矿区周围、污灌地和交通干线两侧农田的重金属污染程度较严重,蔬菜中的重金属含量超标更为严重。黄绍文等[15]研究发现,河北定州市北城区东关村城郊公路边菜田土壤Cu、Zn、Pb 和Cd总量和韭菜可食部分Pb含量总体上均随与公路距离的增加呈降低的趋势。而且,不同的土壤类型,其有机质含量、孔隙度、酶活性、pH值、CEC值(Cation exchange capacity,阳离子交换量)等理化特性不同,直接影响重金属在土壤中的迁移与固定,从而影响蔬菜对其的吸收与富集[16]。一般认为土壤胶体带负电荷,而绝大多数金属离子带正电荷,所以土壤pH值越高,金属离子被吸附的越多,进入蔬菜体内的越少。土壤中的腐殖质能提供大量的螯合基团,对很多重金属元素有较强的固定作用,使进入蔬菜中的重金属减少。因此,我们可以依据不同蔬菜对不同重金属的富集差异以及不同的土壤条件选择相应的蔬菜类别,合理布局种植地,也可以通过施用土壤改良剂、有机肥等改善土壤理化性质,降低重金属离子的活性,从而减轻重金属的污染。

1.3 水生蔬菜重金属污染现状

水生蔬菜通常是指生长在淡水中、产品可作蔬菜食用的维管束植物。我国是众多水生蔬菜的发源地,栽培历史悠久,主要包括莲藕、茭白、荸荠、水芹、慈姑、莼菜、芡实、菱、水芋等[17]。作为我国的特产蔬菜,水生蔬菜已成为农业种植结构中的重要组成部分[18],国内现有栽培面积有66.7万hm2以上,主要集中在长江流域、珠江流域和黄河流域,我国水生蔬菜栽培面积和总产量均居世界前列。我国也是世界水生蔬菜的主要生产国和出口国,全国已有众多特色鲜明的水生蔬菜基地[19,20]。

相对陆生蔬菜而言,水生植物不仅可以从根部摄入重金属,而且因其维管组织、通气组织发达,更容易从生长环境中吸收或转移重金属元素,并长久的富集于体内。国家食品标准规定了水生蔬菜产品重金属最大限度As、Pb、Hg、Cd、Cr分别为0.5、0.2、0.01、0.05、0.5 mg/kg,和其他蔬菜作物相同[19]。水生蔬菜各器官对重金属的吸收也受多种因素影响,如环境中重金属浓度、重金属的有效性、水体富营养化以及不同水生蔬菜对各重金属元素特有的富集特性等[21]。如许晓光等[22]研究发现,随着Cd、Pb浓度的增加,莲藕各器官的重金属累积量也相应增多,并且随着生长期的延长,莲藕各器官中Cd、Pb含量逐渐增加。但是,由于蔬菜、重金属和土壤类型不同,生长环境条件、重金属性质与含量不同以及重金属的存在形态、复合污染等种种复杂因素,使得重金属的为害呈现出复杂性,例如不同蔬菜对同种重金属、同种蔬菜对不同重金属以及同种蔬菜的不同器官中对重金属的吸收和累积均存在着差异。李海华等[23]检测了Cd在12种粮食和蔬菜作物不同器官的含量后发现,除了萝卜,Cd在其他作物的根部中含量是最高的;不同种类重金属在莲藕各器官中的累积量也不同,如Cd含量为匍匐茎>荷叶>藕>荷梗,而Pb含量为匍匐茎>荷梗>藕>荷叶,这些研究为我们有效控制水生蔬菜重金属污染提供了可靠的依据和科学指导。

2 土壤重金属污染治理及其研究进展

目前,国内外治理土壤重金属污染的主要措施包括工程措施、物理修复措施、化学修复措施、生物修复措施以及农业生态修复措施。

①工程措施 主要包括客土、换土、去表土、排土和深耕翻土等措施,其中排土、换土、去表土、客土被认为是4种治本的好方法。工程措施具有效果彻底、稳定等优点,但是工程量大、费用高,破坏原有土体结构,引起土壤肥力下降,并有遗留污土的问题。

②物理修复措施 主要有电动修复和电热修复等。前者是在电场的各种电动力学效应下,使土壤中的重金属离子和无机离子向电极区运输、集聚,然后进行集中处理或分离[24];后者是利用高频电压产生的电磁波和热能对土壤进行加热,使污染物从土壤颗粒内解吸并分离出来,从而达到修复的目的。此两种方法都是原位修复技术,不搅动土层,并缩短修复时间,但是操作复杂,成本较高。现在,一些发达国家还在污染严重地区试行玻璃化技术、挖土深埋包装技术、固化技术等,但是限于成本高等原因,普及率不高。

③化学修复措施 目前常用的是施用改良剂(抑制剂、表面活性剂、重金属拮抗剂等)、淋洗、固化、络合提取等。施用改良剂主要通过对重金属的吸附、氧化还原、拮抗或沉淀作用,来降低重金属的生物有效性。淋洗法是用清水淋洗液或含有化学助剂的水溶液淋洗被污染的土壤。固化技术是将重金属污染的土壤按一定比例与固化剂混合,经熟化后形成渗透性低的固体混合物。络合提取是使试剂和土壤中的重金属作用,形成可溶性重金属离子或金属-试剂络合物,最后从提取液中回收重金属并循环利用提取液。化学修复是在土壤原位上进行的,简单易行,但不是永久性修复,它只改变了重金属在土壤中的存在形态,重金属元素仍保留在土壤中,容易被再度活化,不适用于污染严重区[25]。

④生物修复技术 主要集中在植物和微生物两方面。国内对植物修复研究较多,动物修复也有涉及,而国外在微生物修复方面研究较多。植物修复技术是近年来比较受关注的有效修复技术,根据其作用过程和机理又分为植物提取、植物挥发和植物稳定3种类型[26]。a.植物提取,即利用重金属超累积植物从土壤中吸收重金属污染物,随后收割植物地上部分并进行集中处理,连续种植该植物以降低或去除土壤中的重金属;b.植物挥发,其机理是利用植物根系吸收重金属,将其转化为气态物质挥发到大气中,以降低土壤重金属污染;c.植物稳定,利用耐重金属植物或超累积植物降低重金属的活性,其机理主要是通过金属在根部的积累、沉淀或利用根表吸收来加强土壤中重金属的固化。

微生物修复技术的主要作用原理有5种类型。

a.通过微生物的各种代谢活动产生多种低分子有机酸直接或间接溶解重金属或重金属矿物;b.通过微生物氧化还原作用改变变价金属的存在状态;c.通过微生物胞外络合、胞外沉淀以及胞内积累实现对重金属的固定作用;d.微生物细胞壁具有活性,可以将重金属螯合在细胞表面;e.微生物可改变根系微环境,提高植物对重金属的吸收、挥发或固定效率,辅助植物修复技术发挥作用。

但生物修复受气候和环境的影响大,能找到的理想重金属富集植物比较少,并且这类植物的生长量一般较小,修复周期长,很难有实际应用价值[27]。

⑤农业生态修复 包括农艺修复和生态修复两方面。前者主要指改变耕作制度、调整作物品种,通过种植不进入食物链的植物等措施来减轻土壤重金属污染;后者主要是通过调节土壤水分、养分、pH值和氧化还原状况等理化性质及气温、湿度等生态因子,对重金属所处的环境进行调控。但是此修复方式易受土壤性质、水分条件、施肥状况、栽培方式以及耕作模式等情况的影响,结果有很大的不确定性[25]。

国内现阶段对土壤重金属污染治理采用较多的措施是施用化学改良剂、生物修复、增施有机肥等。国外对改良、治理重金属污染土壤较先进的方法主要有固定法、提取法、生物降解法、电化法、固化法、热解吸法等。尽管这些方法都具有一定的改良效果,但都有局限性。土壤重金属污染的治理依然任重而道远,如何阻止蔬菜、粮食作物吸收的重金属通过食物链富集到人体成为亟待解决的焦点问题。

3 生物炭的特性及其修复重金属污染土壤的研究进展

3.1 生物炭及其特性

①生物炭(Biochar)定义 生物炭是生物质热解的产物。由于生物炭的广泛性、可再生性和成本低廉,加上生物炭本身的优良特性,使其在土壤改良和污染修复上体现出很大的优势。国内外对生物炭的科学研究真正始于20世纪90年代中期[3],目前对生物炭并没有一个统一固定的概念,但是国内外文献中生物炭的定义中包括生物质、缺氧条件(或不完全燃烧)、热解、含碳丰富、芳香化、稳定固态、多孔性等诸多关键词[28~35],这些关键词反映了生物炭的来源、制备条件和方式、结构特征。而国际生物炭倡导组织在定义中指定了其添加到土壤中在农业和环境中产生的有益功能,强调其生物质原料来源和在农业科学、环境科学中的应用,主要包括应用于土壤肥力改良、大气碳库增汇减排以及受污染环境修复。

②生物炭特性 a.孔隙结构发达,具有较大的比表面积和较高的表面能[36]。不同材料、不同裂解方式产生的生物炭的比表面积差别很大[37~39],较高的热解温度有利于生物炭微孔结构的形成。张伟

明[40]通过比较花生壳、水稻秸秆、玉米芯以及玉米秸秆4种材质在炭化前后的结构,发现炭化后所形成的碳架结构保留了原有主体结构,但比原有结构更为清晰、明显。原有生物炭的部分不稳定、易挥发的结构在热解过程中逐渐消失或形成微小孔隙结构。陈宝梁等[41]用橘子皮在不同热解温度下制备得到生物炭,经过元素分析、BET-N2表面积、傅里叶变换红外光谱法测试,对比生物炭的组成、结构,并结合其结构分析生物炭对有机污染物的作用。

b.表面官能团主要包括羧基、羰基、内酯、酚羟基、吡喃酮、酸酐等,并具有大量的表面负电荷以及高电荷密度[42],构成了生物炭良好的吸附特性,能够吸附水、土壤中的金属离子及极性或非极性有机化合物。但是生物炭的表面官能团也会随热解温度的变化而不同。陈再明等[43]研究发现,水稻秸秆的升温裂解过程是有机组分富碳、去极性官能团的过程,随着裂解温度的升高,一些含氧官能团逐渐消失,这与其他生物质制备炭的过程一致[41,44]。

c.pH值较高。生物炭中主要含有C(含量可达38%~76%)、H、O、N 等元素,同时含有一定的矿质元素[45],如Na、K、Mg、Ca等以氧化物或碳酸盐的形式存在于灰分中,溶于水后呈碱性,加上其表面的有机官能团可吸收土壤中的氢离子,添加到土壤中可提高土壤的pH值,Yuan等[46]研究证明,生物炭能够显著地提高酸性土壤的pH值,增加土壤肥力,因而可用于酸性土壤的改良。但一般来说,生物炭的pH值取决于其制备的原料[45],如灰分含量较高的畜禽粪便制成的生物炭比木炭或秸秆炭有更高的pH值。此外,裂解温度越高,pH值也会越高[47]。

d.阳离子交换量(CEC值)较高。这与其表面积和羧基官能团有关[48],当然与其生物质原料来源密不可分[49]。生物炭的CEC值高,容易吸附大量可交换态阳离子,提高土壤对养分离子Ca2+、K+、Mg2+和NH4+等的吸附能力,从而提升土壤的肥力,减少养分的淋失,提高营养元素的利用率。

e.化学性质稳定,不易被微生物降解[50],抗氧化能力强。生物炭具有高度的芳香化结构,有很高的生物化学和热稳定性[51],可长期保存于环境和古沉积物中而不易被矿化。生物炭氧化分解缓慢,如Shindo[52]研究发现,经过280 d培养,添加草地放火形成的生物炭的土壤与没有添加生物炭的土壤排放的CO2量相近,说明生物炭分解非常少。

3.2 生物炭降低重金属的有效作用机制

生物炭降低重金属的生物有效性,主要是通过降低植物体内重金属的含量、促进植物的生长来体现。研究显示,将生物炭添加到受重金属污染的土壤中后,生物炭不仅可以直接吸附或固持土壤中的重金属离子,从而降低土壤溶液中重金属离子浓度,还可以通过影响土壤的pH值、CEC值、持水性能等理化性质来降低重金属的移动性和有效性,减少其向植物体内的迁移,降低其对植物的毒性,从而减少对动物及周围环境造成的影响。

生物炭具有很大的比表面积、表面能和结合重金属离子的强烈倾向,因此能够较好地去除溶液和钝化土壤中的重金属。安增莉等[53]将生物炭对土壤中重金属的固持机理主要分为3种,①添加生物炭后,土壤的pH值升高,土壤中重金属离子形成金属氢氧化物、碳酸盐、磷酸盐沉淀,或者增加了土壤表面活性位点[54];②金属离子与碳表面电荷产生静电作用;③金属离子与生物炭表面官能团形成特定的金属配合物,这种反应对与特定配位体有很强亲和力的重金属离子在土壤中的固持非常重要[55,56]。周建斌等[57]试验表明,棉秆炭能够通过吸附或共沉淀作用来降低土壤中Cd的生物有效性,使在受污染土壤上生长的小白菜可食部分和根部Cd的积累量分别降低49.43%~68.29%和64.14%~77.66%,提高了蔬菜品质。Cao等[55]发现生物炭对Pb的吸附是一个双Langmuir-Langmuir模型,84%~87%是通过铅沉淀,6%~13%是表面吸附,添加未处理的粪便和200℃热解产生的生物炭处理中,铅主要以β-Pb9(PO4)6形式沉淀,而在350℃热解产生的生物炭处理中则是以Pb3(CO3)2(OH)2形式存在,其中200℃热解产生的生物炭,吸附效果最好,达到680 mmol/kg,是遵循简单Langmuir吸附模型的一般活性炭的6倍。Wang等[58]发现竹炭对水溶液中Cd2+的吸附行为最适合Langmuir吸附模型,最大吸附力是12.8 mg/g;而刘创等[59]发现竹炭对溶液中镉离子的吸附行为符合Freundlich吸附模型;陈再明等[60]研究了在不同热解温度下制备的水稻秸秆生物炭对Pb2+的吸附行为,符合准一级动力学方程,其等温吸附曲线适合Langmuir方程。吴成等[61]还发现,玉米秸秆生物炭对重金属离子的吸附与水化热差异有关,金属离子水化热越大,水合金属离子越难脱水,越不易与生物炭表面活性位点反应。

重金属进入土壤后,通过溶解、沉淀、凝聚、络合、吸附等各种反应形成不同的化学形态,并表现出不同的活性[62]。但是土壤化学性质(pH值、EH值、CEC值、元素组成等)、物理性质(结构、质地、黏粒含量、有机质含量等)和生物过程(细菌、真菌)及其交互作用都会影响重金属在土壤中的形态和有效性。已有众多研究显示,将生物炭施加到土壤中可改善土壤的理化性质,提高土壤孔隙度、表面积、土壤离子交换能力[42]、pH值[63],降低土壤容重,增强土壤团聚性、保水性和保肥性[64,65],为土壤微生物生长与繁殖提供良好的环境,并增强微生物的活性[66~68],减少土壤养分的淋失,促进养分的循环,并且可以增加土壤有机碳的含量[69] 。这些性质的改良都有利于促进土壤中有害物质的降解和失活,使土壤中的重金属离子形态发生变化。

3.3 影响生物炭降低重金属污染有效性的因素

①生物炭的原料和制备温度 生物炭来源是决定其组成及性质的基础,Shinogi等[70]证明动物生物质来源的生物炭比植物生物质来源的生物炭C/N比更低,灰分含量、阳离子交换量和电导率更高。Uchimiya等[71]还发现山核桃壳制备的酸性活性炭和生活垃圾制备的碱性生物炭在酸性土壤中对Cu2+的吸附好于在碱性土壤中。但是,关于生物炭热解温度对其特性的影响还存在争议,如Cao等[72]认为与由粪肥制造的生物炭随温度变化的特点相似,比表面积、含碳量以及pH值都随着温度的升高而升高,吸附的Pb2+随温度的升高可达到100%。而吴成等[73]却发现Pb2+或Cd2+吸附初始浓度相同时,热解温度为150~300℃的生物炭中极性基团含量增加,生物炭吸附Pb2+和Cd2+的量增大;热解温度为300~500℃的生物炭中极性基团含量减少,生物炭吸附Pb2+和Cd2+的量降低。目前,普遍认为热解温度升高,生物炭比表面积、灰分含量增大[72],而在CEC值方面还存在争议。

②生物炭本身的pH值、CEC值、有机质含量以及表面官能团的性质 通常情况下,土壤pH值、CEC值、有机质含量越高,越不利于重金属向有效态转化。由于生物炭本身具有较高的pH值、CEC值和有机质含量,故将其施加于土壤中可以提高土壤的pH值、CEC值和有机质含量[74]。Wang等[58]的试验证明,pH值高(≥8)有利于Cd2+的吸附和去除。祖艳群等[75]进行大田调查也发现,提高土壤pH值有助于降低蔬菜中镉的含量,并认为对于土壤重金属镉污染严重的地区,通过提高土壤pH值降低蔬菜中镉含量是可行的。王鹤[76]通过试验证明了生物炭不仅可以通过简单吸附来降低有效态铅含量,还可以通过提高土壤pH值和有机质含量来促进有效态铅向其他形态转化,从而降低土壤中铅的生物有效性。Uchimiya等[56]用不同温度生产的生物炭对水中和土壤中的Cd2+、Cu2+、Ni2+和Pb2+进行了研究,发现高温热解能够使生物炭表面的脂肪族等基团消失并形成吸附能力强的表面官能团,同时随着生物炭的pH值升高,其对重金属离子的吸附和固定加强,也说明了生物炭对重金属的吸附与生物炭的表面官能团和pH值有关。官能团可能与亲和特定配位体的重金属离子结合形成金属配合物,有些亲水性含氧官能团还能使生物炭吸附更多的水分子,形成水分子簇,可有利于重金属离子向生物炭微孔扩散,从而降低重金属离子在土壤中的富集;而土壤pH值的升高,促使重金属离子形成碳酸盐或磷酸盐等而沉淀,或者增加土壤表面的某些活性位点,从而增加对重金属离子的吸持。

③重金属的形态与性质 重金属的形态是指重金属的价态、化合态、结合态和结构态4个方面,即某一重金属元素在环境中以某种离子或分子存在的实际形式。重金属形态是决定其生物有效性的基础。重金属的总量并不能真实评价其环境行为和生态效应,其在土壤中的形态、含量及其比例才是决定其对环境造成影响的关键因素。对于重金属形态,目前比较常用的是欧洲共同体参考局(European Community Bureau of Reference,BCR)提出的标准,分为酸溶态(如可交换态和碳酸盐结合态)、可还原态(如铁锰氧化物结合态)、可氧化态(如有机物和硫化物结合态)和残渣态4种,所用提取方法称为BCR提取法。研究表明,酸溶态是植物最容易吸收的形态,可还原态是植物较易利用的形态,可氧化态是植物较难利用的形态,残渣态是植物几乎不能利用的形态。前两者即为重金属有效态,生物有效性高;后两者为重金属稳定态,迁移性和生物有效性低[77,78]。关于生物炭对重金属生物有效性的影响,已有研究结果[79~82]认为,生物炭的施入对土壤中重金属离子的形态和迁移行为有明显作用,即生物有效性高的水溶态、交换态、碳酸盐结合态和铁锰氧化物结合态重金属的浓度都显著下降,而植物较难利用的有机结合态、残渣态重金属的浓度显著上升,从而降低植株体内的重金属含量。

④土壤类型 在生物炭―土壤―植物系统中,土壤的砂、黏、壤质类型不同,理化性质差异很大,对重金属有效性和生物炭的作用发挥会产生不同影响。例如,Uchimiya等[71,83]研究生物炭修复土壤中Cu2+的吸附等温线及阳离子的释放时发现,在黏土和碱性土壤中,生物炭对Cu2+有显著的吸附能力,在侵蚀土壤、酸性肥沃土壤中,生物炭对Cu2+的吸附能力很弱。Beesley等[84,85]在被As、Cd、Cu、Zn等污染的棕色土地区和含As、Cd、Cu、Pb和Zn较高的城市土中,添加450℃热解硬木材产生的生物炭(生物炭体积比30%),发现在柱淋溶试验中,Cd和Zn的量分别减少300倍和45倍。佟雪娇等[86]用添加4种农作物秸秆制备的生物炭提高了红壤对Cu2+的吸附量,有效降低了Cu2+在酸性红壤中的活动性和生物有效性。黄超等[87]研究发现,施加生物炭到贫瘠的红壤中能明显降低土壤酸度,增加盐基饱和度,提高土壤团聚体数量和田间持水量,降低土壤容重,明显提高红壤的速效氮、磷、钾含量,增加土壤保肥能力,改善植物生长环境,并发现施用生物炭对肥力水平较低的红壤改善作用更明显。

4 生物炭对蔬菜产量的影响

国内已有学者系统综述过施用生物炭对土壤的改良作用、作物效益[88]以及肥效作用[49]的研究进展。施用生物炭可改善土壤肥力和养分利用率,维持农田系统的高产、稳产。许多研究表明,生物炭对许多作物生长和产量有促进作用,其中,对增产效应方面主要研究的蔬菜有菜豆[89]、豇豆[90,91]、萝卜[92,93]、菠菜[94]、白萝卜[95]等。关于施用生物炭使作物增产的原因包括提高了土壤pH值,增加了有效磷、钾、镁和钙含量,降低了重金属元素的有效性;为养分的吸附和微生物群落的生存提供了较大空间;可以作为滤膜,吸附带正电或负电的矿物离子;增加了土壤孔隙度和土壤持水性,改善了土壤物理性状,促进植物和根系的生长;增加了土壤电导率、盐基饱和度及可交换态养分离子等;促进了原生菌、真菌等的活性,从而促进了作物生长[96]。单施生物炭就能够促进作物生长或增产,将生物炭与肥料混施,或复合后对作物生长及产量促进作用更显著,因为将生物炭和肥料混施或复合施用,可以发挥两者的互补或协同作用,生物炭可延长肥料养分的释放期,减少养分损失[34],反之肥料消除了生物炭养分不足的缺陷[97]。也有众多学者研究过生物炭对粮食作物的增产作用,如Major[98]施加生物炭于哥伦比亚草原氧化土中,通过4 a的种植,发现玉米第2,3,4年分别增产28%、30%、140%。但是,还缺乏在不同土壤类型上种植不同作物的大田试验来进一步验证这些增产效果。

然而在需要人为添加营养的无土栽培中,情况有所不同。Graber等[99]添加不含营养成分的木质生物炭到椰纤维+凝灰岩的无土基质中,种植的番茄和辣椒生长量增加既不是因为直接或间接的植物营养成分含量的提高,也不是因为无土基质持水性增强,推测和验证了2个可能机制,一是生物炭可引起微生物群体向有益植物生长的方向转变;二是生物炭中的化合物引起毒物兴奋效应,因而具有生物毒性的化学物质或者高浓度生物炭就会刺激生长并引起系统抗病性。Nichols等[100]证明了生物炭比其他水培基质性能更优越,并且能够通过再次热解进行杀菌,从而破坏潜在的致病菌。Elad等[101]也验证了添加生物炭可以促使辣椒和番茄对灰霉病菌和白粉病菌产生系统抗性,并使辣椒具有抗螨性。可见生物炭不仅可以通过影响土壤pH值、CEC值、盐基饱和度、电导率、交换态氮和磷有效性,提高钾、钙、钠、镁等营养物质的利用率,从而提高作物产量[102],而且可以运用到无土栽培中杀菌抗病,促进植物生长。目前市场上交易的生物炭多用于改良栽培基质和促进粮食作物增产,将其应用于蔬菜安全生产必然有广泛的应用前景。

5 展望

种种研究表明,生物炭对重金属污染土壤和水体的治理效果明显,促进作物生长的潜力巨大,张伟明[40]系统研究了生物炭的理化性质(结构与形态、比表面积与孔径特征、因素组成以及吸附性能等)及其对不同作物生长发育的作用、对土壤理化性质的影响以及炭肥互作对大豆生长发育和产量与品质的影响,初步探讨了生物炭对重金属污染农田修复的作用,再一次有力地证明了生物炭优良的理化性质对土壤系统的改良作用、对促进作物产量与品质的有利影响以及修复重金属污染土壤的巨大潜力,并指出中国的生物炭应用技术已具备了一定基础,且处于快速发展时期。但是将生物炭广泛应用于蔬菜生产安全上,仍有几个关键点需要解决。

①虽然已有研究认为生物炭能产生良好的农用和环境效益,但是对于生物炭的最优施用条件、最佳施用量及相关机理还没有明确定论。比如,有些试验在较低用量下即产生影响,有些则显示高用量下才有效果,甚至还有些产生不良影响[87],不同作物、不同地域、不同基质和不同管理条件等可能表现出不一样的结果;生物炭对重金属等污染物的作用是络合、螯合、吸附、截留或沉淀等都尚不明确。

②生物炭对施入环境的有益作用已受到人们的广泛关注,但是其对生态环境可能产生的负面效应还不十分明确,如生物炭在热解过程中可能产生少量有毒物质,生产的高温分解过程也会增加温室气体的排放等[103]。

③由于生物炭是直接施加到土壤和溶液中的,吸附或固持了污染物之后依然留在其中,不清楚污染物以后是否会被重新释放出来而恢复生物毒性。成杰民[104]认为,除了研究吸附剂的氧化稳定性、吸附稳定性和释放规律外,最安全的方法就是将吸附后的钝化剂从土壤中彻底移除,但目前还没有相应的措施。

④生物炭的老化或氧化分解问题。Uchimiya

等[105]认为,生物炭的老化主要表现在对环境污染物尤其是对天然有机物吸附的减少,及其自身的氧化分解作用。但由于生物炭稳定性高,氧化分解的速度缓慢(分解机理尚不明确,生物降解和非生物降解过程可能共存),在有限的试验周期内还无法观察到其氧化后的结果,对生物炭施用后的长期效应方面的研究亟待开展。

⑤目前国内关于生物炭方面的研究,还停留在实验室和田间阶段[103],并没有得到大规模的生产和应用,推广和使用所需要的技术支持也还处于起步阶段。降低生物炭的生产成本,也将关系到生物炭未来发展的应用潜力。

参考文献

[1] Lehmann J. A handful of carbon[J]. Nature, 2007, 447: 143-144.

[2] Jonker M T O, Koelmans A A. Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment: mechanistic considerations[J]. Environmental Science and Technology, 2002, 36(17): 3 725-3 734.

[3] 何绪生,耿增超,佘雕,等.生物炭生产与农用的意义及国内外动态[J].农业工程学报,2011,2(27):1-7.

[4] 李静,赵秀兰,魏世强,等.无公害蔬菜无土栽培基质理化特性研究[J].西南农业大学学报,2000,22(2):112-115.

[5] 郑喜,鲁安怀,高翔,等.土壤中重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79-84.

[6] 周锐.中国环保部长:“重金属污染“今年将被集中整治[EB/OL].(2010-01-25)http:///cj/cj-hbht/news/2010/01-25/2090643.shtml.

[7] 陈明,王道尚,张丙珍.综合防控重金属污染 保障群众生命安全――2009年典型重金属污染事件解析[J].环境保护,2010(3):49-51.

[8] 仲维科,樊耀波,王敏健.我国农作物的重金属污染及其防止对策[J].农业环境保护,2001,20(4):270-272.

[9] 唐仁华,朱晓波.中国蔬菜生产面临的机遇和挑战[J].中国农学通报,2003,19(1):131-135.

[10] 王林,史衍玺.镉、铅及其复合污染对辣椒生理生化特性的影响[J].山东农业大学学报:自然科学版,2005,36(1):107-112.

[11] 王林,史衍玺.镉、铅及其复合污染对萝卜生理生化特性的影响[J].中国生态农业学报,2008,16(2):411-414.

[12] 秦天才,吴玉树,王焕.镉、铅及其相互作用对小白菜生理生化特性的影响[J].生态学报,1994,14(1):46-50.

[13] 汪琳琳,方凤满,蒋炳言.中国菜地土壤和蔬菜重金属污染研究进展[J].吉林农业科学,2009(2):61-64.

[14] 施泽明,倪师军,张成江.成都城郊典型蔬菜中重金属元素的富集特征[J].地球与环境,2006(2):52-56.

[15] 黄绍文,韩宝文,和爱玲,等.城郊公路边菜田土壤和韭菜中重金属的空间变异特征[J].华北农学报,2007,22(z2):152-157.

[16] 梁称福,陈正法,刘明月.蔬菜重金属污染研究进展[J]. 湖南农业科学,2002(4):45-48.

[17] 江解增,曹碚生.水生蔬菜品种类型及其产品利用[J].中国食物与营养,2005(9):21-23.

[18] 孔庆东.中国水生蔬菜基地成果集锦[M].武汉:湖北科学技术出版社,2005.

[19] 柯卫东,刘义满,吴祝平.绿色食品水生蔬菜标准化生产技术[M].北京:中国农业出版社,2003.

[20] 柯卫东.水生蔬菜研究[M].武汉:湖北科学技术出版社, 2009.

[21] 熊春晖,卢永恩,欧阳波,等.水生蔬菜重金属污染与防治研究进展[J].长江蔬菜,2012(16):1-5.

[22] 许晓光,卢永恩,李汉霞.镉和铅在莲藕各器官中累积规律的研究[J].长江蔬菜,2010(14):53-56.

[23] 李海华,刘建武,李树人.土壤―植物系统中重金属污染及作物富集研究进展[J].河南农业大学学报,2000,34(1):30-34.

[24] 王慧,马建伟,范向宇,等.重金属污染土壤的电动原位修复技术研究[J].生态环境,2007,16(1):223-227.

[25] 徐应明,李军幸,孙国红,等.新型功能膜材料对污染土壤铅汞镉钝化作用研究[J].农业环境科学学报,2003,22(1):86-89.

[26] 骆永明.金属污染土壤的植物修复[J].土壤,1999,31(5):261-265.

[27] Ernst W H O. Phytoextraction of mine wastes-options and impossibilities[J]. Chemie Der Erde-Geochemistry, 2005, 65: 29-42.

[28] 陈温福,张伟明,孟军,等.生物炭应用技术研究[J].中国工程科学,2011,13(2):83-89.

[29] Sohi S, Lopez-Capel E, Krull E, et al. Biochar, climate change and soil: A review to guide future research[J]. CSIRO Land and Water Science Report, 2009, 5(9): 17-31.

[30] Lehmann J, Gaunt J, Rondon M. Biochar sequestration in terrestrial ecosystems-A review[J]. Mitigation and Adaptation Strategies for Global Change, 2006, 11(2): 395-419.

[31] Hammes K, Smernik R J, Skjemstad J O, et al. Characterisation and evaluation of reference materials for black carbon analysis using elemental composition, colour, BET surface area and 13C NMR spectroscopy[J]. Applied Geochemistry, 2008, 23(8): 2 113-2 122.

[32] 李力,刘娅,陆宇超,等.生物炭的环境效应及其应用的研究进展[J].环境化学,2011,30(8):1 411-1 421.

[33] 谢祖彬,刘琦,许燕萍,等.生物炭研究进展及其研究方向[J].土壤,2011,43(6):857-861.

[34] Lehmann J. Bio-energy in the black[J]. Frontiers in Ecology and the Environment, 2007, 5(7): 381-387.

[35] Antal M J Jr, Gr?nli M. The art, science, and technology of charcoal production[J]. Industrial Engineering Chemistry Research, 2003, 42(8): 1 619-1 640.

[36] Duku M H, Gu S, Hagan E B. Biochar production potential in Ghana-A review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(8): 3 539-3 551.

[37] ?z?imen D, Ersoy-Meri?boyu A. Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials[J]. Renewable Energy, 2010, 35(6): 1 319-1 324.

[38] Chun Y, Sheng G, Chiou C T, et al. Compositions and sorptive properties of crop residue-derived chars[J]. Environmental Science and Technology, 2004, 38: 4 649-4 655.

[39] 崔立强.生物黑炭抑制稻麦对污染土壤中Cd/Pb 吸收的试验研究[D].南京:南京农业大学,2011.

[40] 张伟明.生物炭的理化性质及其在作物生产上的应用[D]. 沈阳:沈阳农业大学,2012.

[41] Chen B L, Chen Z M. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures[J]. Chemosphere, 2009, 76(1): 127-133.

[42] Liang B, Lehmann J, Solomon D, et al. Black carbon increases cation exchange capacity in soils[J]. Soil Science Society of America Journal, 2006, 70(5): 1 719-1 730.

[43] 陈再明,陈宝梁,周丹丹.水稻秸秆生物炭的结构特征及其对有机污染物的吸附性能[J].环境科学学报,2013,33(1):9-19.

[44] Chen B L, Zhou D D, Zhu L Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures[J]. Environmental Science and Technology, 2008, 42(14): 5 137-5 143.

[45] Gaskin J, Steiner C, Harris K, et al. Effect of low-temperature pyrolysis conditions on biochar for agricultural use[J]. Trans Asabe, 2008, 51(6): 2 061-2 069.

[46] Yuan J H, Xu R K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol[J]. Soil Use and Management, 2011, 27(1):110-115.

[47] Yuan J H, Xu R K, Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 2011, 102(3): 3 488-3 497.

[48] Cheng C H, Lehmann J, Thies J E, et al. Oxidation of black carbon by biotic and abiotic processes[J]. Organic Geochemistry, 2006, 37(11): 1 477-1 488.

[49] 何绪生,张树清,佘雕,等.生物炭对土壤肥料的作用及未来研究[J].中国农学通报,2011,27(15):16-25.

[50] Nguyen B T, Lehmann J, Kinyangi J, et al. Long-term black carbon dynamics in cultivated soil[J]. Biogeochemistry, 2009, 92(1/2): 163-176.

[51] Glaser B, Haumaier L, Guggenberger G, et al. The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics[J]. Naturwissenschaften, 2001, 88(1): 37-41.

[52] Shindo H. Elementary composition, humus composition, and decomposition in soil of charred grassland plants[J]. Soil Science and Plant Nutrition, 1991, 37(4): 651-657.

[53] 安增莉,方青松,侯艳伟.生物炭输入对土壤污染物迁移行为的影响[J].环境科学导刊,2011,30(3):7-10.

[54] 宋延静,龚骏.施用生物质炭对土壤生态系统功能的影响[J].鲁东大学学报:自然科学版,2010,26(4):361-365.

[55] Cao X D, Ma L N, Gao B, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine[J]. Environmental Science and Technology, 2009, 43(9): 3 285-3 291.

[56] Uchimiya M, Lima I M, Klasson K T, et al. Immobilization of heavy metal ions (CuⅡ, CdⅡ, NiⅡ, and PbⅡ) by broiler litter-derived biochars in water and soil[J]. J Agric Food Chem, 2010, 58(9): 5 538-5 544.

[57] 周建斌,邓丛静,陈金林,等.棉秆炭对镉污染土壤的修复效果[J].生态环境,2008,17(5):1 857-1 860.

[58] Wang F Y, Wang H, Ma J W. Adsorption of cadmium (Ⅱ) ions from aqueous solution by a new low-cost adsorbent-Bamboo charcoal[J]. J Hazard Mater, 2010, 177(1/3): 300-306.

[59] 刘创,赵松林,许坚.竹炭对水溶液中 Cd (Ⅱ) 的吸附研究[J].科学技术与工程,2009,9(11):3 009-3 012.

[60] 陈再明,方远,徐义亮,等.水稻秸秆生物炭对重金属 Pb2+ 的吸附作用及影响因素[J].环境科学学报,2012,32(4):769-776.

[61] 吴成,张晓丽,李关宾.黑炭吸附汞砷铅镉离子的研究[J]. 农业环境科学学报,2007,26(2):770-774.

[62] 魏树和,周启星.重金属污染土壤植物修复基本原理及强化措施探讨[J].生态学杂志,2004,23(1):65-72.

[63] Rondon M A, Lehmann J, Ramírez J, et al. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with biochar additions[J]. Biology and Fertility of Soils, 2007, 43(6): 699-708.

[64] Karhu K, Mattila T, Bergstr?m I, et al. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity-Results from a short-term pilot field study[J].

Agriculture, Ecosystems and Environment, 2011, 140(1/2):309-313.

[65] Laird D A, Fleming P, Davis D D, et al. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil[J]. Geoderma, 2010, 158(3/4): 443-449.

[66] Warnock D D, Lehmann J, Kuyper T W, et al. Mycorrhizal responses to biochar in soil-concepts and mechanisms[J]. Plant and Soil, 2007, 300(1/2): 9-20.

[67] Fowles M. Black carbon sequestration as an alternative to bioenergy[J]. Biomass and Bioenergy, 2007, 31(6): 426-432.

[68] Atkinson C J, Fitzgerald J D, Hipps N A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review[J]. Plant and Soil, 2010, 337(1/2): 1-18.

[69] Asai H, Samson B K, Stephan H M, et al. Biochar amendment techniques for upland rice production in Northern Laos: 1.Soil physical properties, leaf SPAD and grain yield[J]. Field Crops Research, 2009, 111(1/2): 81-84.

[70] Shinogi Y, Yoshida H, Koizumi T, et al. Basic characteristics of low-temperature carbon products from waste sludge[J]. Advances in Environmental Research, 2003, 7(3): 661-665.

[71] Uchimiya M, Klasson K T, Wartelle L H, et al. Influence of soil properties on heavy metal sequestration by biochar amendment: 1.Copper sorption isotherms and the release of cations[J]. Chemosphere, 2011, 82(10): 1 431-1 437.

[72] Cao X D, Harris W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation[J]. Bioresource Technology, 2010, 101(14): 5 222-5 228.

[73] 吴成,张晓丽,李关宾.热解温度对黑炭阳离子交换量和铅镉吸附量的影响[J].农业环境科学学报,2007,26(3):

1 169-1 172.

[74] 陈红霞,杜章留,郭伟,等.施用生物炭对华北平原农田土壤容重、阳离子交换量和颗粒有机质含量的影响[J].应用生态学报,2011,22(11):2 930-2 934.

[75] 祖艳群,李元,陈海燕,等.蔬菜中铅镉铜锌含量的影响因素研究[J].农业环境科学学报,2003,22(3):289-292.

[76] 王鹤.施用硅酸盐和生物炭对土壤铅形态与含量的影响[J].农业科技与装备,2013(4):10-12.

[77] 黄光明,周康民,汤志云,等.土壤和沉积物中重金属形态分析[J].土壤,2009,41(2):201-205.

[78] 韩春梅,王林山,巩宗强,等.土壤中重金属形态分析及其环境学意义[J].生态学杂志,2005,24(12):1 499-1 502.

[79] 王汉卫,王玉军,陈杰华,等.改性纳米碳黑用于重金属污染土壤改良的研究[J].中国环境科学,2009,29(4):431-436.

[80] 林爱军,张旭红,苏玉红,等.骨炭修复重金属污染土壤和降低基因毒性的研究[J].环境科学,2007,28(2):232-237.

[81] 苏天明,李杨瑞,江泽普,等.泥炭对菜心―土壤系统中重金属生物有效性的效应研究[J].植物营养与肥料学报, 2008,14(2):339-344.

[82] Hua L, Wu W X, Liu Y X, et al. Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment[J]. Environmental Science and Pollution Research, 2009, 16(1): 1-9.

[83] Uchimiya M, Klasson K T, Wartelle L H, et al. Influence of soil properties on heavy metal sequestration by biochar amendment: 2.Copper desorption isotherms[J]. Chemosphere, 2011, 82(10): 1 438-1 447.

[84] Beesley L, Marmiroli M. The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar[J]. Environ Pollut, 2011, 159(2): 474-480.

[85] Beesley L, Moreno-Jiménez E, Gomez-Eyles J L. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil[J]. Environ Pollut, 2010, 158(6): 2 282-2 287.

[86] 佟雪娇,李九玉,姜军,等.添加农作物秸秆炭对红壤吸附 Cu(Ⅱ)的影响[J].生态与农村环境学报,2011,27(5):37-41.

[87] 黄超,刘丽君,章明奎.生物质炭对红壤性质和黑麦草生长的影响[J].浙江大学学报:农业与生命科学版,2011, 37(4):439-445.

[88] 王典,张祥,姜存仓,等.生物质炭改良土壤及对作物效应的研究进展[J].中国生态农业学报,2012,20(8):963-967.

[89] Yan G Z, Kazuto S, Satoshi F. The effects of bamboo charcoal and phosphorus fertilization on mixed planting with grasses and soil improving species under the nutrients poor condition[J]. Journal of the Japanese Society of Revegetation Technology, 2004, 30(1): 33-38.

[90] Lehmann J, da Silva J P, Steiner C, et al. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the central Amazon basin: fertilizer, manure and charcoal amendments[J]. Plant and Soil, 2003, 249(2): 343-357.

[91] Topoliantz S, Ponge J F, Ballof S. Manioc peel and charcoal: a potential organic amendment for sustainable soil fertility in the tropics[J]. Biology and Fertility of Soils, 2005, 41(1): 15-21.

[92] Van Zwieten L, Kimber S, Morris S, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J]. Plant and Soil, 2010, 327(1/2): 235-246.

[93] Chan K Y, Van Zwieten L, Meszaros I, et al. Agronomic values of greenwaste biochar as a soil amendment[J]. Soil Research, 2008, 45(8): 629-634.

[94] Asaki T. Utilization of bamboo charcoal in spinach cultivation[J]. Agriculture and Horticulture, 2006, 81(12): 1 262-1 266.

[95] Chan K Y, Van Zwieten L, Meszaros I, et al. Using poultry litter biochars as soil amendments[J]. Soil Research, 2008, 46(5): 437-444.

[96] 张文玲,李桂花,高卫东.生物质炭对土壤性状和作物产量的影响[J].中国农学通报,2009,25(17):153-157.

[97] 姜玉萍,杨晓峰,张兆辉,等.生物炭对土壤环境及作物生长影响的研究进展[J].浙江农业学报,2013,25(2):410-415.

[98] Major J. Biochar application to a Colombian savanna Oxisol: Fate and effect on soil fertility, crop production, nutrient leaching and soil hydrology volume I[EB/OL]. (2013-08-19)http://1813/13491.

[99] Graber E R, Harel Y M, Kolton M, et al. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media[J]. Plant and Soil, 2010, 337(1/2): 481-496.

[100] Nichols M, Savidov N, Aschim K. Biochar as a hydroponic growing medium[J]. Practical Hydroponics and Greenhouses, 2010, 112: 39-42.

[101] Elad Y, David D R, Harel Y M, et al. Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent[J]. Phytopathology, 2010, 100(9):913-921.

[102] Oguntunde P G, Fosu M, Ajayi A E, et al. Effects of charcoal production on maize yield, chemical properties and texture of soil[J]. Biology and Fertility of Soils, 2004, 39(4): 295-299.

篇6

引言

我国土壤污染的总体形势严峻,部分地区土壤污染严重,在重污染企业或工业密集区、工矿开采区及周边地区、城市和城郊地区出现了土壤重污染区和高风险区。土壤污染类型多样,呈现出新老污染物并存、无机有机复合污染的局面。土壤污染途径多,原因复杂,控制难度大。土壤环境监督管理体系不健全,土壤污染防治投入不足,全社会防治意识不强。由土壤污染引发的农产品质量安全问题和逐年增多,成为影响群众身体健康和社会稳定的重要因素。由于污染,土壤的营养功能,净化功能,缓冲功能和有机体的支持功能正在丧失。土壤是生态环境系统的有机组成部分,是人类生存与发展最重要和最基本的综合性自然资源。我们不能坐以待毙,要加强研究,采取措施,切实阻止土壤污染继续扩大的趋势,清除被称为“化学定时炸弹”的土壤污染。

1.造成我国土壤污染的原因

1.1过量施用化肥

虽然施用化肥是农业增产的重要措施,但长期大量使用氮、磷等化学肥料,会破坏土壤结构,造成土壤板结、耕地土壤退化、耕层变浅、耕性变差、保水肥能力下降、生物学性质恶化,增加了农业生产成本,影响了农作物的产量和质量;未被植物吸收利用和根层土壤吸附固定的养分,都在根层以下积累或转入地下。残留在土壤中的氮、磷化合物,在发生地面径流或土壤风蚀时,会向其他地方转移,扩大了土壤污染范围。过量使用化肥还使饲料作物含有过多的硝酸盐,妨碍牲畜体内氧气的输送,使其患病,严重导致死亡。

1.2农药是土壤的主要有机污染物

全国每年使用的农药量达50万~60万t,使用农药的土地面积在2.8亿hm2以上,农田平均施用农药13.9 kg/hm2。直接进入土壤的农药,大部分可被土壤吸附,残留于土壤中的农药,由于生物和非生物的作用,形成具有不同稳定性的中间产物或最终产物无机物。喷施于作物体上的农药,除部分被植物吸收或逸入大气外,约有1/2左右散落于农田,又与直接施用于田间的农药构成农田土壤中农药的基本来源。农作物从土壤中吸收农药,在植物根、茎、叶、果实和种子中积累,通过食物、饲料危害人体和牲畜的健康。

1.3重金属元素引起的土壤污染

全国320个严重污染区约有548万hm2土壤,大田类农产品污染超标面积占污染区农田面积的20%,其中重金属污染占80%,粮食中重金属镉、砷、铬、铅、汞等的超标率占10%。被公认为城市环境质量优良的公园存在着严重的土壤重金属污染。汽油中添加的防爆剂四乙基铅随废气排出污染土壤,使行车频率高的公路两侧常形成明显的铅污染带。砷被大量用作杀虫剂、杀菌剂、杀鼠剂和除草剂,硫化矿产的开采、选矿、冶炼也会引起砷对土壤的污染。汞主要来自厂矿排放的含汞废水。土壤组成与汞化合物之间有很强的相互作用,积累在土壤中的汞有金属汞、无机汞盐、有机络合态或离子吸附态汞,所以,汞能在土壤中长期存在。镉、铅污染主要来自冶炼排放和汽车尾气沉降,磷肥中有时也含有镉。

1.4污水灌溉对土壤的污染

我国污水灌溉农田面积超过330万hm2。生活污水和工业废水中,含有氮、磷、钾等许多植物所需要的养分,所以合理地使用污水灌溉农田,有增产效果。未经处理或未达到排放标准的工业污水中含有重金属、酚、氰化物等许多有毒有害的物质,会将污水中有毒有害的物质带至农田,在灌溉渠系两侧形成污染带。

1.5大气污染对土壤的污染

大气中的二氧化硫、氮氧化物和颗粒物等有害物质,在大气中发生反应形成酸雨,通过沉降和降水而降落到地面,引起土壤酸化。冶金工业排放的金属氧化物粉尘,则在重力作用下以降尘形式进入土壤,形成以排污工厂为中心、半径为2~3 km范围的点状污染。

1.6固体废物对土壤的污染

污泥作为肥料施用,常使土壤受到重金属、无机盐、有机物和病原体的污染。工业固体废物和城市垃圾向土壤直接倾倒,由于日晒、雨淋、水洗,使重金属极易移动,以辐射状、漏斗状向周围土壤扩散。

1.7牲畜排泄物和生物残体对土壤的污染

禽畜饲养场的厩肥和屠宰场的废物,其性质近似人粪尿。利用这些废物作肥料,如果不进行物理和生化处理,则其中的寄生虫、病原菌和病毒等可引起土壤和水域污染,并通过水和农作物危害人群健康。

1.8放射性物质对土壤的污染

土壤辐射污染的来源有铀矿和钍矿开采、铀矿浓缩、核废料处理、核武器爆炸、核实验、燃煤发电厂、磷酸盐矿开采加工等。大气层核试验的散落物可造成土壤的放射性污染,放射性散落物中,90Sr、137Cs的半衰期较长,易被土壤吸附,滞留时间也较长。

2.植物修复机理及优点

植物修复是利用可超富集重金属的植物吸收、积累环境中的污染物,并降低其毒害的环保生物技术。根据修复植物在某一方面的修复功能和特点可将植物修复分为三种基本类型:植物提取修复,植物稳定修复和植物挥发修复。

2.1植物修复机理

2.1.1植物提取修复

利用重金属积累植物或超积累植物将土壤中的重金属提取出来,富集并搬运到植物根部可收割部分和植物地上的枝条部位。植物提取修复是目前研究最多且最有发展前途的一种植物修复技术。

2.1.2植物挥发修复

植物挥发是利用植物的吸收、积累和挥发而减少土壤中一些挥发性污染物,即植物将污染物吸收到体内后将其转化为气态物质释放到大气中。目前,在这方面研究最多的是金属元素汞和非金属元素硒。植物挥发修复技术只限于挥发性重金属的修复,应用范围较小,而且将汞、硒等挥发性重金属转移到大气中有没有环境风险仍有待于进一步研究。

2.1.3植物稳定修复

利用重金属耐性植物降低重金属的活性,从而减少重金属被淋滤到地下水或通过空气载体扩散进一步污染环境的可能性。目前,该技术在矿区大量使用,如废弃矿山的复垦工程,各种尾矿库的植被重建等。值得注意的是植物稳定也并没有将重金属从土壤中彻底清除,当土壤环境发生变化时仍可能重新活化并恢复毒性。植物稳定修复的作用主要有两方面:一是通过根部累积、沉淀、转化重金属,或通过根表面吸附作用固定重金属。二是保护污染土壤不受风蚀、水蚀,减少重金属渗漏污染地下水和向四周迁移污染周围环境。植物稳定修复并没有从土壤中将重金属去除,只是暂时将其固定,在减少污染土壤中重金属向四周扩散的同时,也减少其对土壤中的生物的伤害。但如果环境条件发生变化,重金属的可利用性可能又会发生变化,因而,没有彻底解决重金属污染问题。重金属污染土壤的植物稳定修复是一项正在发展中的技术,若与原位化学钝化技术相结合可能会显示出更大的应用潜力。未来的研究方向可能是耐性植物、特异根分泌植物的筛选,以及稳定修复植物与原位钝化联合修复技术的研究。

2.2植物修复技术的优点

植物修复技术较其他物理的,化学的和生物的方法更受社会欢迎。该技术成本较低,据美国的实践,植物修复比物理化学处理的费用低了几个数量级,此技术在清洁土壤中金属的同时,还可清楚污染土壤周围的大气或水体中的污染物,有美化环境的作用,易为社会所接受。

此外,植物修复重金属污染的过程也是土壤有机质含量及土壤肥力增加的过程,被植物修复过得干净农田更适合多种农作物生长。生物固化技术能使地表长期稳定,控制风蚀,水蚀,有利于生态环境改善,而且维持成本较低。植物的蒸腾作用还可以防止污染物向下迁移,同时,植物把氧气供给根际可促进根际有机物的降解。

3.植物修复技术的局限性及影响因素

3.1植物修复技术的局限性

植物是活的生物体,需要有合适的生存条件,因此植物修复有其局限性:要针对不同污染状况的突然选择不同的生态型植物。重金属污染严重的土壤,适宜选用超积累植物,而污染较轻的土壤则需要选用耐重金属植物;植物修复过程通常较为缓慢,对土壤肥力,气候,水分。盐度,酸碱度,排水与灌溉系统等条件和认为条件有一定的要求;植物修复往往会受土壤毒物毒性的限制,一种植物常常只能吸收一种或两种重金属,对土壤中其他浓度较高的重金属会表现出某些中毒症状,从而限制了植物修复技术在多种重金属污染土壤治理方面的应用;用于清理重金属污染土壤的超累积植物通常都比较矮小,生物量低,生长缓慢,生长周期较长的类型,因而修复效率低,不利于机械作业;用于清理重金属污染的植物往往会通过器官腐烂,落叶等途径使重金属污染物重返土壤。因此必须在植物落叶前收割处理。

3.2植物修复技术的影响因素

篇7

目前,对于重金属主要有以下几种看法:(1)重金属是指原子密度大于5.0g/cm■或6.0g/cm■的金属元素,这一大类元素大约有40种。(2)元素周期表中原子序数大于钙的金属元素,即从钪起为重金属。(3)重金属即为有毒金属。

上述三种定义都欠准确。例如,尽管金属铝的原子密度只有2.7g/cm■,但在对环境造成污染和对生物健康表现出极大的伤害酸性环境中,它的毒性随着溶解性的增加而增加。鱼鳃对铝离子中比较敏感,阿尔茨海默氏病是铝累积在脑中而引发的疾病。而某些元素的原子密度虽然大于5.0g/cm■或6.0g/cm■,但并没有表现出潜在的毒性。

重金属作为一类特殊的污染物,具有明显地不同于其他污染物的特点:第一,重金属在环境中不会被降解,主要通过沉淀—溶解、氧化—还原、络合或螯合作用、胶体形成、吸附—解吸等一系列物理、化学以及生物作用进行迁移转化,参与和干扰各种环境生物地球化学过程和物质循环过程,最终以一种或多种形态长期滞留在环境中,造成永久性的潜在危险。第二,有些重金属是生物生长发育所必需的营养素,这些因素具有很强的生物富集能力,只有超过一定浓度时,它们才被称为污染物,会产生更高的生物积累,并对生物的生长发育产生副作用;有些重金属为生物的生长发育非必需,它们具有与许多矿物营养因素相同或相似的外层电子层结构,能通过扩散和细胞膜渗透而进入生物体内,发生生物累积。这些金属在环境中只要微量存在,即可产生毒性效应,影响生物的生长发育。第三,环境的中某些重金属可在微生物的作用下转化为毒性更强的重金属化合物,如汞的甲基化作用。第四,重金属在进入生物体后,不易被排出,在生物链中的生物放大作用十分明显,在较高级的生物体内可成千上万倍地富集起来,然后通过食物链进入人体,在人体的某些器官中蓄积起来,造成慢性中毒,影响人体健康。

因此,土壤重金属污染不仅影响土壤的性质,而且关系到植物、动物甚至人类的健康,而且一旦土壤被重金属污染,就很难彻底消除。由于重金属污染物具有多源性、隐蔽性、一定程度的长距离传输性和污染后果的严重性等特征,因此应该特别注意防止土壤的重金属污染。

重金属元素进入城市土壤后,由于其迁移性极低和难以被微生物分解的特性而被累积于城市土壤中,然后通过风力、水力或植物等介质最终危及人类健康和恶化生态环境。在人体中,每时每刻都在进行着化学元素参与其间的高度精细的化学反应。化学元素不仅是构成人体的基本材料,而且在人体的生长、发育、疾病、死亡中起着非常重要的作用。人类在长期发展过程中,经过反复的适应与驯化,形成了具有调节自己的生理功能来适应不断变化的环境的能力。人类的疾病多是机体在化学性因素、物理因素和生物性因素作用下,功能、代谢及心态上发生的病理变化到一定程度所表现出来的特殊临床症状。

决定某种化学元素对人体有害或无害的重要因素,主要是元素的量。德国科学家在研究生物必需元素时,发现植物缺少某种元素不能成活,元素适量时茁壮生长,当元素过量时就显示出对植物的毒性,甚至死亡。重金属摄入人体内,一般不会发生器质性损伤,而是通过化合、置换、络合、氧化还原、协同或拮抗等化学的或生物化学反应,影响代谢过程或酶系统,所以毒性的潜伏期较长,往往经过几年或几十年时间才显示出对健康的病变。已有研究表明:某些有毒的重金属严重地影响人类健康。

重金属与人体健康的部分调查情况:(1)对人的肝有影响的是As、Be;(2)对人的肾有影响的是Cd、Hg、Pb;(3)对人的生殖有影响的是As、Cd、Cr、Hg、Mn、Pb、Se、Tl;(4)对人的神经有影响的是As、Hg、Mn、Ni、Pb、Sn、Tl;(5)对人的视觉有影响的是Hg、Pb;(6)对人的免疫有影响的是Ni;(7)对人的呼吸有影响的是Cr、Ni、V、Pt;(8)对人的皮肤有影响的是As、Cr、Ni;(9)对人的心血管有影响的是As、Cd、Pb;(10)对人的血液有影响的是As、Cu、Pb。

近一个世纪来,各国癌症发病率一直处于上升状态。特别是20世纪70年代以来,癌症的发病率在大多数国家居于前三位,病人人数逐年增多。近年来,世界卫生组织的报告认为引起癌症的主要原因是环境因素,因此,癌症病因及其防治成为科学研究的关系大致可以分为三类:已肯定具有致癌作用元素、可疑致癌元素和促癌元素。

重金属元素与癌的部分调查情况:(1)已被确定为致癌的元素有As、Cd、Hg、Ni、Pb、Cr、Sb;(2)可疑致癌的元素有Be、Co、Cd、Se、Tl、Zn;(3)促进致癌的元素有Cu、Mn。

参考文献:

篇8

2

0 引言

土壤重金属污染主要有铅,锌,铜,汞,砷等,同种金属由于其在土壤中的形态不同,其迁移转化的特点和污染性质也有不同。而赤泥作为工业产品的废品,具有成本低,工艺简单,以废治废的特点,其对土壤中重金属离子,有毒非金属离子等具有修复作用。赤泥修复作用机理主要是赤泥对土壤中的Cu2+、Ni2+、Zn2+、Cd2+、Pb2+有较好的固着性能,使其从可交换状态转变为键和氧化物状态,从而使土壤中重金属离子的活动性和反应性降低,有利于微生物活动和植物生长。

1 试验设计

取研磨过的污染土样和对照土样各100g,分别加入土样3%、5%(w:w)的赤泥。试验设4个处理,分别为未污染土壤,未污染土壤加入赤泥修复,污染土壤,污染土壤加入赤泥修复。实验为期6个月。

2 结果与分析

分别在0、2、4和6个月后取出部分土样,然后风干土壤,过2mm筛。用原子吸收分光光度法测定重金属含量。

2.1 赤泥对长喙田菁生长的影响

6个月后,用赤泥修复后的土样,对于长喙田菁的地上部分的干重平均是2.29克/盆,地下部分的干重平均是1.30克/盆。对比没有添加赤泥的土壤,田菁生长的地上和地下部分均有明显的增重,至53%和61%对比来说,尤其是对于添加5%的赤泥后,产量提高的最为明显,约提高产量61%。

2.2 赤泥对长喙田菁吸收重金属能力的影响

同时可以看到6个月长喙田菁收获后对铅和锌的吸收。赤泥的添加应用大大减少了长喙田菁地上部分所含铅锌和其他重金属的浓度,特别是以添加5%赤泥土样处理效果最好,铅和锌减少达到41.51mg/L-3,79.771mg/L-3,且赤泥水平越高,重金属含量下降越多,这与施用赤泥后,土壤pH明显提高,DTPA提取土壤活性铅锌的明显下降趋势是一致的。但长喙田菁地下部分(根)中铅锌和其他重金属的含量却因施用赤泥而有所提高(302.76mg/L-3,233.78mg/L-3)。一是可能由于赤泥的施用,改善了根系的生长情况,从而增强了其吸收重金属的能力;另一可能是赤泥施用量的提高,根系对铅锌等重金属的固定能力增加,而减少向地上部分的运转。

2.3 添加赤泥对土壤生物有效态铅和锌含量的影响

DTPA提取态重金属通常被用来评估土壤重金属被植物吸收的风险评价,因此DTPA提取态重金属被定义为生物有效态重金属。添加赤泥均可以显著地降低土壤中生物有效态铅的含量,与对照相比,培养2、4和6个月后,添加赤泥处理中生物有效态铅分别下降到23.97、21.036和19.87mg/kg,下降的百分比分别为25.11%、31.13%和33.17%;添加赤泥也可以显著降低土壤中生物有效态Zn的含量。与未添加相比,培养2、4和6个月后,单独添加赤泥处理中生物有效态Zn含量下降的百分比分别为59.17%、63.19%和72.12%。

3 讨论

由于赤泥呈碱性,施用赤泥提高了土壤pH,改变了土壤酸碱状况。与试验开始前相比,施用赤泥能有效降低土壤交换态铅、锌含量,提高土壤碳酸盐结合态和残渣态铅、锌的含量,且施用量越高效果越为显著。这可能是因为,施用赤泥后土壤pH有显著升高,一方面使土壤胶体表面负电荷增加,对重金属离子的吸附能力增强;另一方面可以使土壤中的铁锰等离子形成羟基化合物,提供更多的重金属吸附位点。但施用赤泥提高土壤pH与对土壤中铅、锌的吸附作用各自对土壤中铅、锌形态变化的贡献还有待进一步的研究。

同时本试验发现,施用赤泥可以有效降低土壤中铅、锌的作物有效性,减少田菁对铅、锌的吸收,改善田菁的生长状况并提高田菁的生物量。而且从试验结果可以看出,随着赤泥施用量的提高,其降低作物体内铅、锌含量的效果也更加明显。

4 结论

赤泥碱性较强,通常在pH10以上,添加了赤泥的土壤样品,其pH值显著上升,使碳酸盐在土壤中积累,从而导致了碳酸盐态重金属含量上升,间接降低了土壤中交换态的Pb和Zn的含量。赤泥对吸附土壤重金属离子起着重要的作用,同时具有很好的络合性能,对重金属离子可起到显著的络合吸附作用。经过赤泥处理的污染土壤中有效态重金属有明显下降,因此,对于污灌地土壤重金属污染问题,可考虑应用有色金属行业的副产品或废渣赤泥进行有效修复。而5%土壤的赤泥加入量为合适的土壤改良剂量。

参考文献

篇9

对重金属目前缺少严格的定义,一般来说,重金属指的是比重比5大的几种金属,如金、银、铜、铅、汞等都属于重金属。随着工业化的推进,重金属广泛的存在于空气、水、土壤中,在人们经常接触的物质,比如化妆品、食物、化工品当中,也会有大量的重金属存在。环境中的重金属是不能够被分解的,部分微生物会与重金属反应,产生毒性更强的化合物,这些会随着食物链的不断递进,不断向人体传递,由于累积效应的存在,会使人体内的重金属物质积聚,严重危害人体的健康。因此,对重金属污染的研究势在必行,也得到了人们的广泛关注。

1 重金属的污染

重金属的来源主要是由于其在开采、运输、炼制、加工过程中产生的,能源资源如煤炭和石油的开采、炼制和使用中,也会有重金属物质的存在和污染。这些重金属物质进入大气、水、土壤之中,然后随着生物作用,不断富集。重金属污染与其他有机化合物的污染不同。不少有机化合物可以通过自然界本身物理的、化学的或生物的净化,使有害性降低或解除。而重金属具有富集性,很难在环境中降解[1]。因此,重金属污染会对人体健康产生极大的危害。

重金属物质包括人类必须的,比如钾、钙、钠、镁,以及人类必须的微量元素如铜、铁、镍、锌、锡、矾等这一类,也包括对人体产生危害的如铅、汞、镉、砷、铬、铍、铊、钡等,还包括在人体内存在但功能现在尚不明确的如锂、硼、铝、钛、锆等。重金属的存在会与人体内的蛋白质、酶进行反应,使其失去活性,也能够在器官内聚集,超过特定浓度后产生中毒现象,对人体产生极大的危害,比如日本的汞污染和镉污染,都是重金属污染的典型事故。对人体和环境产生较严重污染的重金属大致有以下五大类。

(1)铬:这一种重金属的主要来源是劣质化妆品、金属部件的镀铬部分、工业染料、橡胶和陶瓷原料以及皮革制剂等,如果不小心饮用服入,可造成腹部的不适或者腹泻现象;对呼吸道有着严重的刺激作用,引起气管炎、咽炎等;皮肤方面引起湿疹或者皮炎。

(2)镉:这一种重金属的主要来源包括电镀、采矿、冶炼、化学工业、电池、染料等产生排放的废水当中。镉的存在能够取代骨中的钙,使得骨头软化,严重者骨头寸断,日本的骨痛病就是由于镉的存在而产生的;对于胃脏,能够使其功能失调。总的来说,镉是毒性很大的重金属物质[2]。

(3)铅:主要来源是油漆、涂料、蓄电池、五金、电镀、化妆品、餐具、膨化食品、自来水管等。能够经过皮肤、呼吸道、消化道进入人体,造成以贫血症、神经功能失调、肾损伤为主的毒性效应。

(4)汞:汞属于剧毒物质,主要来源包括食盐电解、水生生物、照明用灯、化妆品、贵金属炼制等。汞的存在会对人体的脑部组织造成严重的伤害,也会对肾部造成伤害,有机汞其毒性是比汞更大的,引起全身中毒的现象,日本的水俣病就是汞污染的实例。

(5)砷:砷的化合物有剧毒,三价化合物的毒性更加强烈。汞的途径包括皮肤、呼吸道、消化道,会在人体的肌肉、肝脏、肾部、子宫等部位积聚,与酶结合,使其失去活性和功能,引起砷中毒。对于皮肤部位还会有致癌作用。杀虫剂、化肥、化工、采矿冶金、农药等砷含量较高。

2 检测方法

2.1 光谱法

光谱法是比较传统的重金属物质检测方法,一般包括火焰原子吸收光谱法(AAS)、石墨炉原子吸收光谱法(GFAAS)、分子光谱法、电感耦合等离子原子发射光谱法等。以下对其进行介绍。

(1)火焰原子吸收光谱法(AAS):这种检测方法是根据被测原子对其原子共振辐射的吸收强度进行含量的测定。AAS具有灵敏度高、检出限低、线性宽的特点,而且分析速度快,仪器的操作和使用简单方便,应用较为广泛,能够检测的物质多达70多个。火焰原子吸收法能够达到ppb级,石墨炉原子吸收法能够达到ug/L的级别。但是AAS在实际使用中,不能够同时测定多种元素,需要不断技术升级。

(2)分子光谱法:利用分光光度计进行比色分析。经常使用的测试手段是,利用假如显色剂使待测物质转化为在紫外和可见光区域有吸收的化合物进行检测。生成的化合物一般是螯合物,较为稳定。显色反应的选择性和灵敏想较高。

(3)电感耦合等离子原子发射光谱法:利用等离子体的形成,样品经过雾化系统雾化以后,以气溶胶的形式进入等离子轴向通道,经过蒸发、原子化、电离、激发产生元素的特征谱线,鉴别物质的存在与否以及含量的多少(通过分析特征谱线的强度)。此技术可以测试氩以外的所有已知的物质,检出限度达到0.01~10mg/L。

2.2 色谱法

色谱法也是传统的重金属含量测试方法。其原理是,以液体为流动相,通过高压输液系统把不同极性的溶剂、缓冲液等流入到配置特定相色的色谱柱,各成分经过分离后进入检测器进行检测。该检测方法在实验研究之中使用较多。能够对多元素进行同时检测,但是络合剂的选择是有限的,这点限制了高效液相色谱在重金属检测方面的使用。

2.3 电化学法

电化学法是发展较迅速的一种方法,目前我国已经颁布了化学试剂之中的金属杂质检测的阳极溶出伏安法国家标准。电化学法的检出限较低,测试的灵敏度较高,阳极溶出伏安法将衡电位电解富集与伏安测定相结合,能够连续测定多种金属离子。仪器的使用和操作也较为简单方便,是很好的分析手段,具有良好的发展前景。

2.4 酶分析法

脲酶、脱氢酶、磷酸酶是作为土壤重金属污染水平的常用指标。通过酶与重金属的反应情况,判别出重金属的含量。反应现象包括会有颜色、导电性、吸光率等物理化学性质的变化,然后通过肉眼观察或者PH值检测以及其他手段进行判别。

2.5 生物传感器

生物传感器技术利用重金属和特定的生物识别物质结合,把检测到的信号转变为易于检测的光信号或者电信号,然后分析判断重金属物质。常见的生物传感器有酶生物传感器、DNA生物传感器、细胞生物传感器、微生物传感器等。

2.6 免疫分析法

免疫分析法以免疫学的抗原抗体相互结合为基本原理,利用抗原检测测定未知抗体或者反过来使用。常见的技术包括发光免疫技术、酶联免疫吸附技术、免疫荧光技术、放射免疫技术等。检测模式可以分为多克隆抗体免疫检测以及单克隆免疫检测。该技术专一性强,灵敏度高。分析的关键在于选择合适的化合物和金属离子相互结合。

3 展望

检测方法要注重多种方法的联合使用以及各自的使用范围和优缺点,才能有针对的采取正确的手段进行检测。此外,还需不断探索新的技术手段,以及对之前技术升级改造,丰富其内容,扩大优势。

篇10

Abstract:With the increasing concern of soil heavy metal pollution, it is necessary to do the research on reducing the heavy metal toxicity of soil, while the bioavailability of heavy metals is an important index for researching. There were many researchers have done the researches on the effects of fertilization and tillage on bioavailability of heavy metals, however only a few have been focusing on the effect of organic fertilizer.This dissertation have referenced many literatures in relation to organic fertilizer and soil heavy metals in recent years, the conception of soil heavy metals bioavailability, and the related infecting factors of bioavailability, as well as the effects of fertilization on bioavailability of heavy metals was conclused. It also gave a conceivable prospect of relationship between organic fertilizer and the soil bioavailability to improve the research on organic fertilizer and soil heavy metals bioavailability.

Key words:organic fertilizer;heavy metals in soils;bioavailability

随着工业化和城市化的快速发展,各种工业污染、人为活动以及不合理施肥等原因导致的有毒有害重金属(Pb、As、Cd、Hg等)通过各种途径进入土壤,使重金属污染程度不断加深。调查显示,全世界各国的土壤都存在着不同程度的污染。土壤中重金属含量的上升,使土壤发生质量退化、农产品的产量和品质降低,并且经食物链等方式被带入到人的身体内,影响危害着人类的身体健康[1-2]。在关于土壤重金属有效性的研究方面,科学家们更加关注的是添加改良剂与修复改良等,而对施用有机肥与重金属生物有效性方面研究较少。本研究主要综合了现有有机肥对土壤重金属有效性研究的相关文献,从土壤重金属生物有效性的概念、影响因素、有机肥对土壤性状及重金属有效性的影响3个方面进行了归纳总结。

1 土壤重金属生物有效性的概念

关于土壤重金属生物有效性的定义,第一次被提出是基于物理化学的概念,它是指污染物在水体中生物传输或生物反应被利用的程度。后来,又被应用到固体环境,例如土壤和污泥以及大气环境中的生物可给性问题[3]。环境化学概念中,生物有效性是指能够被生物所吸收利用的那部分物质。而生物学概念中的生物有效性,则是指能够经细胞膜而进入生物体,并参与生物新陈代谢过程的物质[4]。除此之外,由于研究对象和研究环境的不同,生物有效性的定义也不相同,如生物吸收物质的途径和方式,生物吸收物质的量,潜在的能被生物吸收的部分[5]。土壤重金属生物有效性不仅与土壤环境有关,也与生物自身的特征有关,这也就导致了土壤重金属生物有效性概念的复杂性。

2 影响土壤重金属生物有效性的因素

影响土壤中重金属生物有效性的因素很多,主要有重金属形态、总量,土壤理化性质和土壤环境条件等。除此之外,土壤类型、土壤生物等因素都会对其产生一定影响。

2.1 土壤重金属形态

土壤重金属形态是最重要的因素。重金属和土壤中的不同成分结合成不同的形态,各个形态的含量影响着重金属生物有效性。重金属在土壤中的存在形态研究主要有以下几种。Tessier 等[6]在1979年提出可以把重金属在土壤或者沉积物中的形态划分为5种形态:可交换态、碳酸盐结合态、铁锰氧化物结合态、有机物结合态、残渣态。这种划分也是到现在为止学者们所认为的最常见、最有代表性的。Shuman[7]在1985年提出把其划为交换态、水溶态、碳酸盐结合态、氧化锰结合态、紧结合有机态、不定性氧化铁结合态、松结合有机态、硅酸盐矿物态。Gambrell[8]则将其划分为水溶态、易交换态、大分子腐殖质结合态、无机化合物沉淀态、硫化物沉淀态、氢氧化物沉淀吸收态(吸附态)和残渣态等7种形态。它们中有的形态如残渣态,其迁移性较小,不被植物所吸收,因此,它的生物有效性小;有的能与土壤有机质、铁锰氧化物吸附结合,形成结合态沉淀物,在土壤l件发生改变时,迁移活性较大;有的吸附于土壤颗粒表面,与土壤液相离子进行吸附解析化学活动,属于可交换态重金属,迁移活性强,容易被植物所吸收利用。

2.2 土壤重金属总量

土壤重金属总量对生物有效性的影响虽然不能与形态相比,但总量更能够说明重金属富集程度和潜在危害等,因此,总量的研究被普遍应用到各国的土壤环境质量标准中。第一,土壤中的重金属形态和重金属总量两者之间有着相互关联及影响。例如,Sauve等[9]对几种不同类型的土壤进行了试验研究,元素Cu的全量与可交换态的Cu、水溶态Cu都有着很好的相关性,并且发现全量也是影响土壤中Cu2+活度的因素之一。Sauve等人[10]还对某铅矿周围的不同类型(88种)的土壤进行了研究,在对元素铅进行分析时发现,影响土壤中水溶态和可交换态铅以及铅离子活度的重要因素之一就是元素铅的总量。第二,在一定的条件下,土壤重金属的生物有效性可以用重金属总量来评估。

2.3 土壤理化性质

2.3.1 有C质土壤的理化性质 能够影响重金属的生物有效性的因素中,土壤中有机质的含量是主要的影响因素[11]。土壤中的有机质和重金属元素形成的络合物,影响土壤重金属的迁移性以及生物有效性。有机质对生物有效性的影响主要有以下两个方面。一是通过加入有机质来影响对重金属元素的吸附能力。有机质作为一种天然的吸附剂,能够在很大程度上降低离子活度。二是土壤中有机质含量的多少改变着土壤中重金属元素各形态的分布,能够影响重金属元素的迁移性。例如王浩等[12]通过研究发现,受到铅和铜污染的土壤在加入有机质后,随着有机质积累的增加,会使土壤中水可提取铅和铜的含量显著减少,这一结果说明有机质可稳定土壤中的铅和铜。同样,钟晓兰等[13]也发现,除了元素Cr,其余重金属元素的各个形态和土壤有机质之间都有着显著相关性。

2.3.2 pH值 土壤溶液的pH值影响了土壤溶液中的各种离子在固相上的吸附程度,各种土壤矿物质的溶解度及其元素离子活性。因此,土壤pH值是土壤重金属元素解吸、吸附、溶解、沉淀离子化学过程的重要控制条件。如廖敏等[14]研究发现,随着土壤pH值升高,元素镉的吸附能力及其吸附量都明显增强,并且最终会产生沉淀。赵雅婷[15]研究发现:随着土壤pH值的上升,土壤中元素Zn的铁锰氧化物结合态及碳酸盐结合态含量增加,而可交换态Zn的含量减少;随着pH值的升高,土壤铁锰氧化物结合态Cd、碳酸盐结合态Cd的含量增多,而可交换态Cd含量减少。句炳新[16]研究发现,Cu的可交换态量会随着pH值的升高而减少,Cu的碳酸盐态则会随着pH值的升高而增加,这与廖敏、赵雅婷等研究相同。

2.3.3 氧化还原电位 土壤氧化还原电位是通过影响重金属在土壤中的价态来影响重金属的形态和分布的。土壤中重金属元素在氧化环境下,一般处于较高的氧化态。例如汞元素可以从单质汞转化为汞离子,从而甲基化成为甲基汞,大大地增强了它的有害性[17]。曹媛媛等[18]研究水稻田中重金属情况发现,土壤在还原环境中含有大量的二价铁离子,能和还原态的硫离子结合形成FeS。FeS再和CuS /ZnS反应产生沉淀,CuS /ZnS在土壤中大量累积,以此来降低重金属Cu或Zn的生物有效性。

2.3.4 粘土含量 在理化性质中,土壤中的粘土含量也影响其生物性。粘土矿物主要是通过进行离子交换来吸附溶液中的重金属离子,因此,粘土含量对重金属生物有效性影响深远。有研究发现,土壤中粘土含量影响着锌元素的生物有效性,但是这种影响会因为时间的长短而发生变化,而且有学者对土壤矿物学进行了相关研究,发现可交换态Cd的含量和粘土含量有较好的相关性[19-20]。因此,可知在研究重金属生物有效性时,粘土含量这一内容也是不可忽视的。

2.4 其他因素

除以上的因素之外,影响因素还包括重金属元素的种类、土壤类型和生物种类差异、农业活动等。如不同的耕作强度也影响着土壤的结构,不合理的耕作方式会使有机质大量的流失,从而产生重金属毒害;同种植物种植在不同类型的土壤中,所吸附重金属能力也有着很大差异,相同的植物对不同的元素的富集吸收能力又不相同。并且,各影响因素之间也存在相互关联,因此,在研究土壤重金属生物有效性时,应当综合考虑各个影响因素,进行全面的研究分析。

3 有机肥对土壤重金属生物有效性的影响

有机肥的施用不仅可以改善土壤的理化性质,增加土壤营养元素,减轻土壤次生盐渍化[21],提高作物产量和品质[22-24],增加土壤中的有益微生物种类[25-26],还可以对土壤重金生物有效性产生影响。有机肥对生物有效性产生影响,最主要的方面是通过改变土壤中的有机质和pH值。

3.1 有机肥对有机质的影响

一般土壤中有机质的含量范围约在0.5%至20%之间,它影响土壤的理化性质,同时也是植物所必需营养元素的重要来源[27]。大量的研究显示,长期施用有机肥或者有机无机肥配比施用都会促进土壤中有机质的积累。如汪红霞等[28]采用10年长期肥料定位试验后发现,单施有机肥或P肥与有机肥混合施用能使土壤有机质增加,增加范围在8.4%~17.3%之间,而单独施用P肥反而会引起土壤有机质的下降。王彩绒等[29]采用6年定位试验后发现,在单施有机肥或者与无机肥配施下,都能明显地促进耕作层土壤有机质的积累。田小明等[30]对3种类型的土壤施用有机肥后发现,不同类型及有机质含量土壤中的有机质组分含量与不施有机肥相比,都有不同程度的提高。同时随着施肥量的增加,土壤有机质总量和活性有机质组分(活性有机质、中活性有机质、高活性有机质) 都有所增加,这与汪红霞等[28]研究结果大致一致,有机肥对土壤有机质确实有着深远的影响。

3.2 有机肥对pH值的影响

在当今世界,土壤酸化已成为一个严重的环境问题,引起了全世界人民的广泛关注。大量的研究表明,由于当今农业施肥缺乏科学合理的指导,并且施入的肥料品种过于单一,偏爱无机肥,且投入量较大。这一现象不仅使肥料被大量浪费,并且使土壤溶液中pH值下降及次生盐碱化[31-33]。蔡泽江[34]等研究发现,单独施用有机肥或有机无机肥配施后,土壤的pH值与试验之前相比,呈现出稳定或者有所升高。其中,以单施有机肥的处理pH值升幅最大,升高了1.0个单位。Wang 等[35]研究结果显示,施用玉米秸秆能改善土壤酸度。丁玉梅等[36]在研究不同施肥对烟株根际土壤pH值的影响时发现,在不同土质条件下,不同油菜含量的有机肥对植株根际土壤的pH值具有一定的调节作用。肖辉等[37]研究得出,设施土壤施用化肥降低了土壤的pH值,而施用鸡粪等有机肥能够使土壤的pH值适当上升,从而避免土壤酸化。

3.3 有机肥对生物有效性的影响

有机肥料在农业中的施用,常被当作控制以及改良土壤重金属污染的重要方法,其主要表现为两个方面。

3.3.1 有机肥对土壤重金属形态的影响 土壤中重金属形态是研究生物有效性时最为主要的指标。有大量研究表明,有机肥能影响土壤中重金属的形态。大部分研究表明,施用有机肥能降低土壤重金属的有效性,如张琴[38]连续施用有机肥后发现:土壤中重金属Hg、Zn、Cd的有效态含量较试验前都有所降低,并且各处理之间呈显著性差异;重金属Hg、Zn、Cd的有效态含量随着有机肥施用量的增加逐渐减少,各个处理之间差异均达到显著水平,并且连续施用有机肥料还会增大重金属有效态的含量的递减率。PEREZ-DE-MORA 等[39]向受到重金属污染的土壤中施加生物堆肥,Y果显示随着土壤中有机质的含量增加,有效态重金属的比例降低。胡星明等[40]研究得出,在土壤里施用稻草能够改变重金属元素铜、镉、锌和铅在土壤中的化学形态分布。华珞等[41]在受Cd、Zn污染的土壤里施入了不同数量的有机肥后,发现土壤中有效态Cd、Zn的含量明显降低,Cd、Zn的总量也明显下降,所以可以显著地减少Cd2+和Zn2+对农作物的毒害。这与张琴[38]、胡星明等[40]研究结果相一致。同时,也有少部分研究指出,有机肥对重金属生物有效性没有产生作用甚至会加重重金属污染风险。如谭长银等[42]、王开峰等[43]研究发现,在稻田土壤长期施用有机肥会提高Zn和Cd 的有效性,增加土壤重金属污染风险。Zhang 等[44]研究发现,在东北地区的农田土壤中施用了畜禽粪便后,反而增加了该地区土壤受重金属元素铜污染的风险。宋琳琳等[45]施用有机肥后发现,土壤中生物有效态的Cd和Zn 含量显著增加,生物有效态Pb含量显著下降,残渣态Pb的含量也有所增加。出现这一结果的原因可能是,地区差异和各类型的土壤对重金属的富集吸附水平也存在着差别,另外,同一土壤对不同重金属元素的富集吸附能力也不相同,所以在研究重金属有效性时,要结合当地实际情况综合考虑。

3.3.2 有机肥对土壤重金属植物有效性的影响 因为各种植物对各重金属元素的吸附能力也存在着差异,所以研究重金属生物有效性,在研究土壤重金属形态之外,植物的有效性也是不容忽视的重要内容。近年来“镉米”等事件的发生,使水稻的重金属污染状况备受关注,谢运河等[46]把施用有机肥3 000,6 000 kg・hm-2和单独施用无机肥的稻米中镉的含量进行了对比,发现两个有机肥施用水平镉的含量分别下降了14. 3%和21. 4%,虽然施用有机肥对土壤有效态镉含量并无显著影响,但有机肥使镉在水稻中的分配率发生明显变化。唐明灯等[47]通过对生菜进行有机肥与化肥混合施用后发现,不管是单施有机肥或与化肥配施,花生麸及鸡粪处理都降低了生菜地上部镉的含量,并且施用鸡粪能够有效地降低生菜地上部铅的含量。牛粪和花生麸配比施用对降低生菜中铅含量的效果,要远远超过单独施用任何一种有机肥。祖艳群等[48]在对两种作物施用有机肥后发现,施用有机肥(猪粪)能导致小花南芥中铅和锌的含量增加,在施用猪粪14 g・kg-1时的含量及累积量达到最大。而施用猪粪后使中华山蓼里铅的含量和累积量上升,锌的含量和累积量减少。吴清清等[49]研究发现:在潮土中施入鸡粪或者垃圾有机肥后,潮土中苋菜内铜和锌的含量增加数分别为26.3%至36.0%和 1.2%至20.3%,但它们的含量都在国家食品卫生标准对铜和锌的规定含量之下;同时植株中镉、铅的含量与对照试验相比,都有所下降。红壤中苋菜植株中Zn、Cd和Pb分别下降 42.7%~59.9%,0~48.9%和4.1%~71.3%,达到显著水平。从以上的研究数据可知,虽然各种植物与土壤对重金属元素的吸收富集存在着差异,但都证明了有机肥的施用对植物有效性的影响。在研究有机肥与植物有效性的相关性问题上,要充分考虑土壤类型和作物的自身特性。

4 总结与展望

综上所述,有机肥对土壤性状和土壤重金属生物有效性都有着不同程度的影响,有机肥是现代农业中减少或防止土壤重金属污染的重要手段,国内外学者也做了相关方面的研究,也取得了一定成果。但由于受到地区差异、土壤类型、有机肥种类等差异,样品分析方法的多样性、影响因素的复杂性的影响,得出的研究结果也不尽相同,导致许多研究数据之间缺乏对比性。对有机肥与重金属污染防治方面也远没有其它措施研究得多,有机肥对土壤重金属的影响研究停滞不前。有机肥对不同类型土壤、生物及元素种类的作用,各种影响因素之间的相互影响等问题,都还需要进行更深入的研究,以推动有机肥对土壤重金属生物有效性研究的发展。

参考文献:

[1]樊霆,叶文玲,陈海燕,等.农田土壤重金属污染状况及修复技术研究[J].生态环境学报,2013,22(10):1727-1736.

[2]董彬.中国土壤重金属污染修复研究进展[J].生态科学,2012,31(6):683-687.

[3]李国臣,李泽琴,高岚.土壤重金属可利用性的研究进展[J].土壤通报,2012,43(6):1527-1531.

[4]杨小敏,简红忠,何文,等.土壤中重金属生物有效性研究[J].环境科学与管理,2016,41(8):103-106.

[5]黄碧捷.土壤重金属生物可利用性研究趋势展望[J].江汉大学学报(自然科学版),2013,12(6):38-43.

[6]TESSIER A,CAMPBELL P C,BISSON M.Sequential extraction procedure for the peciation of particulate trace metals[J].Analytical chemistry,1979,51(7):844-851.

[7]SHUMAN L M.Fractionation method for soil microelements[J].Soil science,1985,140(1):11-22.

[35]WANG N,LI J Y,XU R K.Use of agricultural by-products to study the pH effects in an acid tea garden soil[J].Soil use and management,2009,25(2):128-132.

[36]丁玉梅,李宏光,何金祥,等.有机肥与复合肥配施对烟株根际土壤pH值的影响[J].西南农业学报,2011,24(2):635-639.

[37]肖辉,潘洁,程文娟,等.不同有机肥对设施土壤全盐累积与pH值变化的影响[J].中国农学通报,2014,30(2):248-252.

[38]张琴.连续施用有机肥对冬小麦和高粱吸收重金属的影响[D].贵阳:贵州大学,2009.

[39]DE MORA A P,ORTEGA-CALVO J J,CABRERA F,et al.Changes in enzyme activities and microbial biomass after & iduuo in situ & idquo; remediation of a heavy metal-contaminated soil[J].Applied soil ecology,2005,28(2):125-137.

[40]胡星明,袁新松,王丽平,等.磷肥和稻草对土壤重金属形态、微生物活性和植物有效性的影响[J].环境科学研究,2012,25(1):77-82.

[41]华珞,陈世宝,白玲玉,等.有机肥对镉锌污染土壤的改良效应[J].农业环境保护,1998,17(2):8-12.

[42]谭长银,吴龙华,骆永明,等.不同肥料长期施用下稻田镉、铅、铜、锌元素总量及有效态的变化[J].土壤学报,2009,46(3):412-418.

[43]王开峰,彭娜,王凯荣,等.长期施用有机肥对稻田土壤重金属含量及其有效性的影响[J].水土保持学报,2008,22(1):105-108.

[44]ZHANG F S,LI Y X,YANG M,et al.Copper residue in animal manures and the potential pollution risk in Northeast China[J].Journal of resources and ecology,2011,2(1):91-96.

[45]宋琳琳,铁梅,张朝红,等.施用污泥对土壤重金属形态分布和生物有效性的影响[J].应用生态学报,2012,23(10):2701-2707.

[46]x运河,纪雄辉,黄涓,等.有机肥与钝化剂及其配施对土壤Cd生物有效性的影响[J].作物研究,2014,28(z2):890-895.

篇11

大气颗粒物(Particulate Matter,PM),是指大气中除气体之外的物质,包括各种各样的液体、固体和气溶胶,其粒径范围在0.01~200.00 μm[1]。

我国的《环境空气质量标准》(GB3095-2012)中定义:悬浮颗粒物为能悬浮在空气中,空气动力学当量直径小于100 μm的颗粒物,用TSP表示;可吸入颗粒物为悬浮在空气中,空气动力学当量直径小于等于10 μm的颗粒物,用PM10表示;环境空气中空气动力学当量直径小于等于2.5 μm的颗粒物,用PM2.5表示[2]。TSP的粒径范围为0.1~100.0 μm,它不仅包括被风扬起的大颗粒物,也包括烟、雾以及污染物相互作用产生的二次污染物等极小颗粒物[3]。

重金属原义是指比重大于5的金属,如Cu、Pb、Zn、Fe、Co、Ti、Mn、Cd、Hg、W、Mo、Ni、V、Ta、Au、Ag等。生物的生命活动中需要某些微量或者痕量的重金属如Cu、Zn、Mn等来促进生物的生长需要,但大部分重金属如Pb、Cd等并非生命活动所必须,而且所有重金属具有生物积累性,在生物体内富集,超过一定浓度时都具有显著的生物毒性对人体、环境都具有危害。

随着经济的快速发展,工业化进程的加速,重金属的开采、冶炼、加工、使用,使得大量重金属及其化合物以各种形式存在于大气、水体、土壤等中,对环境产生严重污染。由于重金属的毒性和它们通过食物链生物积累导致了严重的生态和健康问题,因此对于重金属污染的研究也成为目前环境研究的热点问题。

大气颗粒物中重金属的来源有很多,大体分为自然源和人为源。自然源主要来自于地壳土壤中的金属,由于气象等因素到大气中。人为源主要是由于人类活动引起的,如汽车尾气排放、燃煤燃料的燃烧等。我国的大气颗粒物中重金属污染比较严重,尤其是城市大气颗粒物中的重金属污染。因此众多学者对我国城市大气颗粒物中的重金属进行了一系列的研究。

1 大气颗粒物中重金属的分布特征

1.1 时间分布

金属元素在大气颗粒物中的时间分布变化显著,往往具有明显的季节变化和日变化规律[4]。闫向阳等[5]对沈阳市环境空气颗粒物中的重金属污染进行研究发现,沈阳市大气PM10中人为源排放重金属除硒(Se)元素含量最大值出现在春季(4月)以外,Pb、As、Zn、Cu等重金属含量最大值均出现在冬季(1月)。而重金属含量最小值均出现在夏季(7月)。刘艳秋等[6]对图们市大气颗粒物中重金属含量及分布特征研究发现:图们市大气颗粒物中重金属含量由高到低的顺序是Fe>Cr>Zn>Pb>Mn>Cu>Cd。伊丽米热・阿布达力木等[7]对新疆乌鲁木齐市大气颗粒物中重金属浓度分布特征进行研究,发现采暖期、非采暖期PM2.5 和PM10中重金属的总浓度除Ni之外其他重金属的浓度采暖期均高于非采暖期。刘 刚等[8]也研究了随着季节的变化杭州市大气PM2.5中重金属,发现PM2.5中金属元素总平均质量百分含量在各个采样点基本上均依春、夏、秋、冬的次序逐渐降低。张志刚[9]也研究了鞍山市各个季节大气中PM10和PM2.5中重金属含量得出1月最高,7月最低,颗粒物中重金属含量随季节变化特征明显。

1.2 空间分布

大气中的重金属浓度随空间分布的不同也有很大差异。近年来,不少学者对不同空间上的重金属的浓度进行了相关研究。在纵向空间研究上,侧重于不同高度大气颗粒物中重金属含量的调查和对比,得出重金属空间分布的规律。

袁媛[10]对河南省开封市大气颗粒物随高度垂直分布变化进行研究,通过对秋季和冬季玉祥酒店和电业局2个采样点各在4个不同高度的PM10和PM2.5中的重金属浓度进行监测,发现各金属元素来源不同垂直分布特征也不相同。

余 涛等[11]对辽宁省的3个典型城市沈阳市、锦州市、葫芦岛市大气颗粒物中重金属元素的分布进行了研究,发现不同城市重金属在颗粒物中的分布、含量有很大的差异。梁 越等[12]对南昌市3个功能区采样点大气颗粒物PM10中的重金属污染特征研究,发现工业区采样点大气颗粒物PM10重金属的浓度远高于交通区和居民住宅区。按重金属污染程度排序依次为Zn>Mn>Pb>Cd>Cu>Cr>Ni。

1.3 颗粒物粒径分布

大气颗粒物中重金属不仅与时间和空间的变化有关,而且还与颗粒物的粒径有关。大气中的重金属大75%~90%分布细颗粒物中[13-14]。

齐学先[15]对河北省保定市大气颗粒物中重金属砷3种价态的污染特征进行了研究,结果如下:三价砷在TSP、PM10、PM2.5中的含量依次上升,分别是0.60、2.41、17.24 μg/g,五价砷的含量依次是0.39、1.06、4.63 μg/g,总砷的含量依次为0.99、3.47、21.87 μg/g。表明对于不同粒径的颗粒物来说,粒径越小,其携带的砷浓度越高,说明粒径越小对砷的载带能力越高。康富华[16]也研究探讨石家庄市大气颗粒物中重金属铅的污染发现金属元素铅随着大气颗粒物比表面积的增大,含量也在增加。

鲁 静等[17]等究了我国西南地区小龙潭、阳宗海和贵阳3个燃煤电厂排放可吸入颗粒物(PM10)中重金属元素(As、Se、Be、Pb、Cd和Co)的分布与富集特征发现,以As、Se、Cd和Pb为代表的元素表现出随PM10粒径的减小其含量总体增大的趋势,其中As和Se随颗粒物粒径的减小,含量上升趋势明显。

林治卿等[18]研究了天津市采暖期不同颗粒物中重金属污染状况发现,PM2.5和PM10中重金属含量在TSP的重量百分比而言,PM10占TSP总量的68.86%,PM2.5占TSP总量的12.80%。而PM2.5对重金属的载带能力明显高于PM10。杜刚[19]和余 涛等[11]通过研究后也认为辽宁省大气颗粒物中重金属更容易富集在PM2.5上,PM2.5中所含有的重金属在PM10中重金属的含量都超过了50%,重金属Cr甚至达到90%。这也表明颗粒物粒径越小,重金属更易富集。

2 重金属的来源解析

大气颗粒物中重金属的来源分析方法一般有聚类分析(HCA)、化学质量平衡(CMB),因子分析(FA)、多重线性回归分析(MLR)、主成分分析法(PCA)、富集因子法(EF)等[20]。其中主成分分析法和富集因子法运用的比较多。王焕顺等[21]用主成分分析法对大连市区大气颗粒物中重金属来源进行了分析,结果表明大连市区大气颗粒物中的Fe、Mn、Pb来源于土壤扬尘,Ni、Cu来源于燃煤排放,Cd的来源可能是化工尘。

富集因子法是最常用的重金属来源研究的分析手段。富集因子法可以判别大气颗粒物中污染元素的人为成因和自然成因[22]。通过计算大气颗粒物中重金属元素的富集程度,将富集因子值大于10的元素判定为人为来源元素。

黄顺生等[23]对南京市大气降尘重金属来源进行研究,用富集因子法,以Fe为参比元素,分析了As、Cd、Cr、Cu、Hg、Mn、Mo、Ni、Pb、Se、Zn等元素富集因子。结果表明,第1类是Cr、Mn,它们的富集因子普遍小于或接近1,平均值分别为1.8、1.0,表明大气降尘中Cr、Mn主要来源于土壤颗粒;第2类是As、Hg、Ni、Cu、Mo,它们的富集因子主要在1~10,表明这些元素除土壤来源外,还可能叠加工业污染的影响;第3类是以Cd、Pb、Zn、Se为典型的元素,它们的富集因子普遍大于10,平均值分别高达28、14、11、29,表明这些元素受到明显的污染。

谢东海等[24]用富集因子法对海口市颗粒物重金属来源分析发现,海口市大气颗粒物中Mn、Cr、V、Ni、Co元素富集因子小于10,相对于地壳来源没有富集,而Pb、Cu、Zn、Cd元素富集因子均大于10,说明这些元素说明这些元素在空气颗粒物中的浓度主要与人类的活动有关。

刘 齐等[25]对柳州市大气PM10中的重金属来源进行了研究,以Mn为参比元素,用富集分析法进行了分析发现除参比元素Mn外,Fe、Zn、Pb、Cd的富集因子均>10,Zn和Cd的富集因子极大。表明PM10中Fe、Zn、Pb、Cd主要不是来自地壳(扬尘),而是与人类活动的污染有关。

路新燕[26]用富集因子分析法对郑州市采暖季和非采暖季TSP、PM10和PM2.5中的8种重金属的富集情况进行了评价。结果表明,颗粒物中的重金属Pb和Cd在采暖期和非采暖期的富集程度最严重,属极重污染元素;Cu的富集程度在经分析的8种重金属的富集程度属中等程度,Cr、Mn、Co、Ni、Be受到的污染较轻。Pb、Cd在粒径小的细粒子上更容易被富集,除此以外,重金属在颗粒物上的富集还受到季节的气候、空气相对湿度等方面原因的影响。

3 重金属的形态分析

同一种重金属元素在不同的化学相中具有不一样的活性,对人体和环境危害程度也不同。因此,对大气环境中重金属的不同形态分析的研究是很有必要的。Tessier et al[27]采用连续提取法把固体颗粒金属的存在形态划分为可交换态、碳酸盐结合态、铁锰氧化物结合态、有机物结合态和残渣态等5类。Tessier连续提取法也被国内外学者广泛应用于大气环境重金属形态分析中。BCR 三步萃取法是欧共体标准局在Tessier分析方法的基础上提出的,该方法按步骤定义为弱酸提取态(HAc提取)、可还原态(NH2OH・HCl提取)、可氧化态(H2O2)[28]。采用改进的BCR连续提取法将重金属元素形态分为酸可提取态、氧化物结合态、有机物结合态和残渣态。其中,酸可提取态最为活跃,在外界pH值降低时容易释放出来;氧化物结合态和有机物结合态相对稳定,但在外界氧化还原条件改变时易发生转化;残渣态比较稳定,不易迁移和转化,对环境危害较小。

谢华林等[29]用Tessier五步提取法分析了大气颗粒物中重金属的形态,发现Zn元素主要以水溶态、碳酸盐态、氧化态和有机态4种有效态存在;Pb元素主要以不溶态存在,同时有一部分以水溶态和氧化态存在;Cu元素在细粒子中均匀分布在4种有效态中,在粗粒子中则均匀分布在水溶态、氧化态和有机态中;V主要分布在不溶态和氧化态中;Mn元素主要分布在水溶态和氧化态中;Co元素则主要分布在水溶态、氧化态和不溶态中。

彭景[30]研究了大气TSP和PM10中重金属不同形态占总量的百分比的空间分布,发现在TSP重金属中,可交换态浓度超过总量的50%的重金属有Pb、Zn、Cd、Ni、Mn;在PM10重金属中,可交换态浓度超过总量的50%的重金属有Pb、Cd、Ni、Mn,说明这几类重金属环境活性更强,危害更大。

钱 枫等[31]采用改进的BCR连续提取法对北京交通环境PM10中重金属形态进行了分析,用F1、F2、F3、F4分别代表酸可提取态、氧化物结合态、有机物结合态和残渣态重金属浓度,得出Cr中F3>F4>F1>F2,Ni中F3>F1>F4>F2,Cu中F1>F3>F2>F4,Zn 和Pb为F1>F2>F3>F4,Cd中F2、F3、F4中浓度很小,几乎检测不出。Zn的酸可提取态浓度最大,为0.282 9 μg/m3。而张慧峰等[32]测定了北京春季大气中重金属含量及2种组成形态含量,酸可提取态和不溶态,大气TSP和PM10中酸可提取态百分比大小分别为Cd>Pb>Cu>Cr>Ni和Cd>Cu>Pb>Cr>Ni,Ni的酸可提取态百分比最小,Cd的酸提取态含量占总含量的50%以上,远大于其他重金属元素。

田艳丽[33]分别采用Tessier五步分级连续提取法和BCR法测定了大气颗粒物样品重金属Hg、As、Pb的形态分布,并对其结果进行了比较。Tessier五步提取法得出Hg、As、Pb的可交换态、碳酸盐结合态、铁锰氧化物结合态和有机结合态4种形态百分率之和(即为可提取态)分别为4.6%、25.3%和30.3%,说明大气颗粒物中Pb的迁移性最大,As次之,Hg最小。BCR提取法测得Hg、As、Pb的酸溶态、可氧化态和可还原态3种形态百分率之和(即为可提取态)分别为7.1%、25.6%和11.5%,说明大气颗粒物中As的迁移性最大,Pb次之,Hg最小,与Testier法结果有所不同。

4 结语

大气颗粒物中的重金属铅对人体和环境的危害是不容忽视的,只有对天气颗粒物中的重金属颗粒物的物理特征、化学成分进行很好的研究,才能从根本上预防和治理天气颗粒物中的重金属,从而为人气环境质量提供依据。在过去的几年里,各国专家学者在大气颗粒物重金属方面开展了大量的研究,并在大气重金属的来源、化学特征、迁移与转化及其生物有效性方面取得了一定的成果,但仍然有较多的问题需要深入研究。如PM2.5和PM0.1 中重金属含量和成分的分析、重金属在环境中的迁移和转化对生物有机体的生理生态的影响,尤其是大气重金属污染的综合治理亟待加强和深入。

5 参考文献

[1] 奚旦立,孙裕生,刘秀英.环境监测[M].北京:高等教育出版社,2004:148.

[2] 国家环境保护局.环境空气质量标准GB3095-2012[S].北京:中国环境科学出版社,2012.

[3] 尹洧.大气颗粒物及其组成研究进展(上)[J].现代仪器,2012,18(12):1-5.

[4] 李万伟,李晓红,徐东群.大气颗粒物中重金属分布特征和来源的研究进展[J].环境与健康杂志,2011,28(7):654-657.

[5] 闫向阳,杜刚.沈阳市环境空气颗粒物分布特征及重金属污染状况分析[J].环境保护科学,2007,33(3):20-22.

[6] 刘艳秋,韩成哲,金丽灿,等.图们市大气颗粒物中重金属含量及分布特征[J].中国环境监测,2009,25(2):63-66.

[7] 伊丽米热・阿布达力木,迪丽努尔・塔力甫,阿布力孜・伊米提.乌鲁木齐市大气颗粒物中重金属浓度的分布特征[J].环境科学与技术,2012,35(8):107-111.

[8] 刘刚,滕卫林,杨忠乔.杭州市大气PM2.5中部分元素的分布[J].环境与健康杂志,2007,24(11):890-892.

[9] 张志刚.鞍山市环境空气颗粒物中重金属元素分布特征[J].中国环境监测,2009,25(5):103-106.

[10] 袁媛.开封市近地层大气颗粒物垂直分布特征研究[D].开封:河南大学,2010:1-74.

[11] 余涛,程新彬,杨忠芳,等.辽宁省典型地区大气颗粒物重金属元素分布特征及对土地质量影响研究[J].地学前缘,2008,15(5):146-154.

[12] 粱越,刘小真,唐星华,等.南昌市大气颗粒物中重金属的污染特征研究[J].科技广场,2010(8):150-154.

[13] 张书海,沈跃文.淮安市区总悬浮颗粒物中重金属元素初探[J].仪器仪表与分析监测,2002(3):36-37.

[14] 罗莹华,梁凯,刘明,等.大气颗粒物重金属环境地球化学研究进展[J].广东微量元素科学,2006,13(2):1-6.

[15] 齐学先.保定市大气化境质量评价及砷污染特征分析[D].保定:河北大学,2009:1-26.

[16] 康富华.石家庄市大气颗粒物中重金属铅污染的研究[C]//第十四届二氧化硫氮氧化物、汞、细颗粒物污染控制技术与管理国际交流会论文集.北京:中国环境科学学会,303-307.

[17] 鲁静,邵龙义,张涛,等.燃煤排放可吸入颗粒物(PM10)中重金属元素分布与富集特征[J].地球化学,2009,38(2):147-152.

[18] 林治卿,袭著革,杨丹凤,等.采暖期大气中不同粒径颗粒物污染及其重金属分布情况[J].环境与健康杂志,2005,22(1):33-34.

[19] 杜刚.辽宁省大气可吸入颗粒物中重金属及多环芳烃污染特征研究[J].环境保护科学,2007,33(2):1-3.

[20] 李凤菊,邵龙义,杨书申.大气颗粒物中重金属的化学特征和来源分析[J].中原工学院学报,2007,18(1):7-11.

[21] 王焕顺,万显烈.重金属在大连市区大气颗粒物中的时空分布特征及来源的研究[C]//辽宁省环境科学学会2008年学术年会论文集.沈阳:辽宁省环境科学学会,2008:140-144.

[22] LIU Q T,DIAMOND M E,GINGRICH S E,et al. Accumulation of metals,trace elements and semivolatile organic compounds on exterior window surfaces in Baltimore[J].Environmental Pollution,2003(122):51-61.

[23] 黄顺生,华明,金洋,等.南京市大气降尘重金属含量特征及来源研究[J].地学前缘,2008,15(5):161-166.

[24] 谢东海,陈楠,薛英,等.海口市春季大气颗粒物浓度及重金属元素分析[J].安徽农业科学,2012,40(4):2172-2175.

[25] 刘齐,熊莎莎,刘文军.柳州市空气可吸入颗粒物中重金属污染特征分析[J].环境科学导刊,2012,31(1):76-79.

[26] 路新燕.郑州市空气颗粒物污染状况调查及研究[D].郑州:郑州大学,2010:1-59.

[27] TESSIER A,CAMPBELL P G C,BISSON M.Sequential extraction procedure for the specification of particulate trace metals[J].Anal Chem,1979(51):844-850.

[28] 冯素萍,刘慎坦,杜伟,等.利用BCR改进法和Tessier修正法提取不同类型土壤中Cu、Zn、Fe、Mn的对比研究[J].分析测试学报,2009,28(3):297-300.

[29] 谢华林,张萍,贺惠,等.大气颗粒物中重金属元素在不同粒径上的形态分布[J].环境工程,2012,20(6):55-57.

[30] 彭景.成都市大气重金属污染特征及环境危害性评价的探讨[D].成都:成都理工大学,2008:1-67.

篇12

一、污染土壤修复的定义

污染土壤的修复通常被定义为,通过转移或转换的方式,消除或减弱污染土壤中污染物的毒性,减少土壤中对生态环境或人体健康产生威胁的有毒有害物质。目前国际上的污染土壤修复方法通常有三种:物理修复法、化学修复法和生物修复法。物理修复法利用污染物与土壤之间的物理性状差异将污染物分离,通常需要外力投入。化学修复法通过化学原理将土壤中的污染物质进行分解、转化、结晶,以实现污染物与土壤间的分离,通常需要使用化学药品、试剂。生物修复法利用自然环境中的天然介质,包括动物、植物以及微生物对土壤中的污染物,进行降解、吸收,让其中的有毒有害物质变成生物循环体系的一部分,从而改善土地环境质量,实现修复目的。

二、污染土壤生物修复法使用优势

污染土壤的生物修复方法拥有物理和化学修复法无法比拟的优势,其中包括:1.应用生物修复法修复污染土壤,基本不会改变当地环境的物理特性和化学特性,对当地动植物生长不产生影响,有助于当地生态环境的保护;2.通过生物修复法修复污染土壤能够在一定程度上实现有机污染物的矿化;3.因为自然环境的生物多样性,所以在应用生物修复法修复污染土壤时,可以根据当地环境情况,选择最合适生物修复途径;4.因为生物修复法在修复污染土壤的过程中通常不借用外力或化学药品,所以成本较低;5.生物修复法能够用在各种生态环境的污染土壤修复工作中。虽然在生物修复法的使用过程中也存在一定的局限性,有时需要与另外两种方法同时操作,但是在学术界依然普遍认为,生物修复法是目前最有助于节省成本和保障环境可持续发展污染土壤修复方法[1]。

三、生态修复的原理与原则

(一)生态修复的原理

1.生物方法与物理、化学方法优化组合原理

在土壤污染的实际情况中,多数都属于复合型污染。这种污染由于污染物结构复杂、多样,单一的生物修复法并不能及时有效的对这种污染物进行处理,这时就需要结合实际情况,有针对性的制定组合式的土壤修复方案。上文已经讲到,在污染土壤的生态修复过程中,生物修复法起到的作用十分重要,但在具体的修复作业当中通过联合式的修复方法能够对土壤污染起到更加显著的修复效果。比如,传统的土壤重金属污染修复过程中,通常会用到生物修复法中的植物修复法,对土壤中的重金属成分进行吸收和富集。但是由于土壤对重金属存在非常强大的吸附性,导致植物修复法作用时间往往非常漫长,所以效率不是很高。但是在植物修复法的使用前通过鳌合剂的释放,降低土壤对重金属污染成分的吸附作用,让重金属具有更高的游离性,能够帮助植物对重金属粒子的快速吸收,提升土壤污染的修复效率[2]。

2.激活土壤生态系统自净化功能原理

土壤与依靠土壤生存的植物与微生物之间通常存在对外力污染物的循环净化作用,它是一种强大又富有活力的过滤器,正常情况下能够保障土壤环境的健康良性发展。生态修复污染土壤的作用就是在这种过滤器因为负载过重而失去净化能力的时候通过一定方法,让土壤生态系统的自净化功能重新运作起来。

(二)生态修复的原则

1.整体优化原则

在现代生态学中,整体优化原则拥有协调性、高效性和稳定性三重意义。通过对不同土壤修复方法的有机结合、合理应用,体现了生态修复法的整体协调性。生态修复的高效性体现在能够实现对资源的高效利用,具有能量消耗低和操作周期短的优点。生态修复法的抗逆性和抗冲击性是其稳定性的一种具体表现,另一种表现在对当地环境的无害性和安全性[3]。

2.循环再生原则

生产力的快速发展,加快了资源的消耗速度,目前社会上普遍使用的煤矿、石油和天然气等资源都属于不可再生资源,如何寻求循环再生可持续利用这些资源的途径将是人类未来生产生活中必须要考虑的问题。因此在污染土壤的生态修复作业中,人们对于土壤的修复目标不应该是单纯的清除或降低污染物的毒性和有害性,而应该更加积极的寻求恢复土壤生态服务功能,实现土壤循环利用的修复方法。

结论:综上所述,生态修复技术对于我国治理污染土地、恢复受污染生态环境以及创建健康可持续的土地发展体系都有着重要的促进作用,是国家提倡科学发展观的根本体现。可以预见,随着我国生态修复技术体系的逐渐成熟,国家土地土壤环境将会因此得到质的提升,真正实现人与自然和谐共存,提升国家公民的生活质量和水平。

参考文献

篇13

土地环境质量标准是一个阈值。土壤中的化学物质含量低于此值,一般不会有污染问题;高于此值,则应作进一步调研,若确有危害,则确认土壤已被污染。由于土壤环境质量标准是由国家制定的,带有一定的强制性。

区域土壤环境背景值

土壤环境背景值是指在不受或很少受人类活动影响的情况下,土壤的化学组成或元素含量水平。由于人类活动与现代工业发展的影响已遍布全球,现在严格意义上的土壤自然背景值已很难确定,只能去寻找人类影响尽可能少的土壤来确定土壤环境背景值。

因此,作为土壤的环境背景值或本底值、维持当前土壤环境质量的目标,土壤环境背景值只能是一个相对概念。

场地土壤污染临界值

土壤污染临界值是指某场地土壤中污染物对生物、水体、空气或人体健康是否产生危害的临界值。高于此临界值,说明土壤已受污染,应根据受害程度和可能条件,采取相应的修复措施。土壤污染临界值通过风险评估而得,其值因土壤、受体的不同而异。

名词解释

什么是土壤污染?

定义

土壤污染是指具有生理毒性的物质或过量的植物营养元素进入土壤而导致土壤性质恶化和植物生理功能失调的现象。土壤污染可导致土壤组成、结构、功能发生变化,进而影响植物正常生长发育,造成有害物质在植物体内累积,通过食物链危害人畜健康,或经地面径流、土壤风蚀,使污染物向其他地方转移。土壤有一定的自净能力,但土壤一旦被污染,就很难恢复,特别是重金属污染。

分类

土壤污染大致可分为无机污染物和有机污染物两大类。

无机污染物主要包括酸、碱、重金属,盐类、放射性元素铯、锶的化合物,含砷、硒、氟的化合物等。

有机污染物主要包括有机农药、酚类、氰化物、石油、合成洗涤剂、苯并芘以及由城市污水、污泥及厩肥带来的有害微生物等。 特点

隐蔽性和滞后性土壤污染往往要通过对土壤样品进行分析化验和农作物的残留检测,甚至通过研究对人畜健康的影响后才能确定。

累积性污染物质在土壤中不易扩散和稀释,容易因不断积累而超标,使土壤污染具有很强的地域性。

不可逆转性重金属对土壤的污染是一个不可逆转的过程,许多有机化学物质的污染需要较长时间才能降解。比如,被某些重金属污染的土壤可能要100年~200年时间才能够恢复。

难治理积累在污染土壤中的难降解污染物,很难靠稀释作用和自净化作用消除。有时需要靠换土、淋洗土壤等方法才能解决问题。

知识堂

造成土壤污染的原因

1.过量施用化肥

长期大量使用氮、磷等化学肥料,会破坏土壤结构,造成土壤板结、耕地土壤退化、耕层变浅、耕性变差、保水肥能力下降等。 2.农药

农药进入土壤后,大部分可被土壤吸附,在植物根、茎、叶、果实和种子中积累,通过食物、饲料危害人体和牲畜的健康。

3.重金属元素

重金属污染十分难以消除。一旦土壤受到镉、砷、铬、铅、汞等重金属元素污染,就会进入农作物或粮食中,对人体健康造成影响。

4.污水灌溉

未经处理或未达到排放标准的工业污水中含有重金属、酚、氰化物等许多有害物质,这些有毒有害的物质带至农田,会造成土壤污染,危害人体健康。

5.酸沉降

大气中的二氧化硫、氮氧化物等有害物质,在大气中发生反应形成酸雨,通过沉降和降水而降落到地面,引起土壤酸化。

6.固体废物

污泥作为肥料施用,常使土壤受到重金属、无机盐、有机物和病原体的污染。工业固体废物和城市垃圾向土壤直接倾倒,易使重金属向周围土壤扩散。

7.牲畜排泄物和生物残体

禽畜饲养场的厩肥和屠宰场的废物,如果不进行物理和生化处理,其中的寄生虫、病原菌和病毒等就可能引起土壤和水域污染,并通过水和农作物危害人体健康。

法律法规

《土壤环境质量标准》

1995年颁布实施的《土壤环境质量标准》按照土壤应用功能、保护目标和土壤主要性质,规定了土壤中污染物的最高允许浓度指标值及相应的监测方法。标准适用于农田、蔬菜地、茶园、果园、牧场、林地、自然保护区等地的土壤。

根据土壤应用功能和保护目标,《土壤环境质量标准》将土壤环境质量划分为3类:

I类为主要适用于国家规定的自然保护区(原有背景重金属含量高的除外)、集中式生活饮用水源地、茶园、牧场和其他保护地区的土壤,土壤质量基本上保持自然背景水平。

Ⅱ类主要适用于一般农田、蔬菜地、茶园果园、牧场等到土壤,土壤质量基本上对植物和环境不造成危害和污染。

Ⅲ类主要适用于林地土壤及污染物容量较大的高背景值土壤和矿产附近等地的农田土壤(蔬菜地除外)。土壤质量基本上对植物和环境不造成危害和污染。

同时,土地环境质量标准分为3级。其中,Ⅰ类土壤环境质量执行一级标准;Ⅱ类土壤环境质量执行二级标准;Ⅲ类土壤环境质量执行三级标准。详见下表:

我国有哪些相关规定?

目前,我国尚未有针对土壤污染防治的专门立法,但相关法律、行政法规、部门规章中有对这一问题的零散规定。

《宪法》第9条和第10条规定,“国家保障自然资源的合理利用”和“一切使用土地的组织和个人必须合理地利用土地。”

《环境保护法》第20条规定:“各级人民政府应当加强对农业环境的保护,防治土壤污染。”