引论:我们为您整理了13篇工业废气处理方法范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。
篇1
摘 要 如何优化油气企业污水处理工艺,降低污水处理成本,提高污水处理效果,对于污水处理有着极其重要的意义。必须指出的是,油气废水处理系统的优化改造是一个非常错综复杂的问题,从目的上它不仅要基于污水水质分析,按照技术和经济的要求,在条件允许的范围内,利用各种方法,找出最佳的设计工艺方案,并在设计工况条件下,找出最佳的设施组合和最佳工艺参数。
关键词 油气企业;废水处理; 方法
随着石化企业和各项工业的不断深入发展,全球性的环境污染日益破坏着地球生物圈几亿年来形成的生态平衡,并对人类自身的生存环境存在威胁。由于逐渐加重的环境压力,当前世界各国纷纷制定严格的环保法律、法规和各项有力的措施,我国作为世界大国,对环境保护也越来越重视,并向国际社会全球性环境保护公约作出了自己的承诺。
1 废水处理方法分类
根据使用技术措施的作用原理和去除对象,废水处理法可分为物理处理法、化学处理法和生物处理法三类。具体如下:
1.1 废水的物理处理法:
利用物理作用进行废水处理,主要目的是分离去除废水中不溶性的悬浮颗粒物。主要工艺有:
1.1.1 格栅和筛网 格栅是一组平行金属栅条制成的有一定间隔的框架。把它竖直或倾斜放置在废水渠道上,用来去除废水里粗大的悬浮物和漂浮物,以免后面装置堵塞。
1.1.2 沉淀法:利用重力作用,使废水中比水重的固体物质下沉,与废水分离。主要用于(a)在尘砂池中除去无机砂粒(b)在初见沉淀中去除比水重的悬浮状有机物(c)在二次沉淀中去除生物处理出水中的生物污泥(d)在混凝工艺以后去除混凝形成的絮状物(e)在污泥浓缩池中分离污泥中的水分,浓缩污泥。此法简单易行而且效果好。
1.1.3 气浮法:在废水中通入空气,产生细小气泡,附着在细微颗粒污染物上,形成密度小于水的浮体,上浮到水面。主要用来分离密度与水接近或比水小,靠重力无法沉淀的细微颗粒污染物。
1.1.4 离心分离:利用离心作用,使质量不同的悬浮物和水体分离。分离设备有施流分离器和离心机。
1.2 废水的化学处理法
1.2.1 酸性废水的中和处理:
酸性废水处理可以用投药中和法、天然水体及土壤碱度中和法、碱性废水和废渣中和法等。药剂有石灰乳、苛性钠、石灰石、大理石、白云石等。他的优点是:可处理任何浓度、任何性质的废水。
1.2.2 碱性废水和废渣中和法
投酸中和法可用药剂:硫酸、盐酸、及压缩二氧化碳(用二氧化碳做中和剂,由于PH值低于6,因此不需要PH值控制装置)酸性废水及废气中有高达24%的二氧化碳,可用来中和碱性废水。其优点可把废水处理与废水沉淀结合起来,缺点是处理后的废水中硫化物、耗氧量均有显著增加。
1.3 生物处理法:
利用微生物可以把有机物氧化分解为稳定的无机物的这一功能,经常采用一定人工措施大量繁殖微生物。
1.3.1 好氧生物处理法: 应用好氧微生物,在有氧环境下,把废水中的有机物分解成二氧化碳和水的方法,主要处理工艺有:活性污泥法、生物滤池、生物转盘、生物接触氧化等,这种方法处理效率高,应用面广。
1.3.2 厌氧生物处理法: 应用兼性厌氧菌和专性厌氧菌在无氧条件下降解有机污物,最后生成二氧化碳、甲烷等物质的方法。主要用于有机污泥、高浓度有机工业废水的处理。如啤酒厂、屠宰厂。
1.3.3 自然生物处理法: 应用在自然条件下生长,繁殖的微生物处理废水的方法。工艺简单,建设费用和运行成本都比较低,但其净化功能受自然条件的限制,处理技术有稳定塘和土地处理法。
2 油气污水处理系统的工艺设计
在油气污水处理系统的工艺设计中往往遇到以下问题:
2.1 工程设计人员大都是仅仅了解废水水质的情况下,根据自己的工程经验和直觉进行设计,这样往往造成工程缺陷,使建成的处理系统处理废水不能达标排放。
2.2 在有些设计中,因为对出水的达标要求严格,使设计出的工艺建设费用和运行费用偏高。
2.3 在许多现有的处理系统中,由于所要处理的水质发生改变,原有工艺不能针对目前的水质进行有效的处理。
如何优化污水处理工艺,降低污水处理成本,提高污水处理效果,对于污水处理有着极其重要的意义。
3 系统工艺改造的总体思路
污水处理单位废水的水质为含有一定量难生物降解物质和油气的有机废水,各油气行业排放的废水所含污染物质不同,其相应的治理工艺流程也不同。生物处理因具有处理成本较低,并能大幅度去处有机污物和一定特性使得油气废水治理采用生物治理作为主要治理单元己成为共识。
篇2
1 磷化氢气体的应用
20世纪50年代末欧洲首次进行磷化氢熏蒸试验,随后美国和日本也进行了类似的研究,1975年磷化氢正式成为烟草工业可利用的熏蒸剂之一。但由于现在还没有发现比其更具优越性的可以取代它的新品种,在目前和今后的一定时期内,它仍将是人类防治储藏物害虫的最重要最常用的手段之一。
“磷化氢熏蒸对泰国香米安全储存的研究”《粮油仓储科技通讯》2008年第4期曾报道,采用10g/m3高浓度磷化氢熏蒸后,在香米中检测不到磷化氢残留。对其食用品质指标基本不产生影响。
我国烟草行业目前还没有制定“磷化氢在烟草及烟草制品中残留限值”的标准,但是国家《粮食卫生标准》GB2715-2005中,对原粮和成品粮中磷化氢的残留进行了规定,磷化物(以ph3计)最大残留量≤0.05mg/kg。世界其他国家制定的在烟草干叶上的最大允许残留量为磷化氢,0.1mg/kg(匈牙利政府,1997)。欧美许多国家都未制定磷化氢在烟草及烟草制品上的最大允许残留量限值。
2 磷化氢净化技术的发展
磷化氢气体是一种具有穿透性、有毒害性气体,当人体在高浓度磷化氢气体中,会产生精神性窒息死亡。为了使仓库熏蒸具有环保及远离对人体危害的影响,我们必须对磷化氢熏蒸气体进行处理。
近些年来,国内PH3净化技术方法很多,可分为湿法和干法两类。其中湿法主要是利用PH3的还原性在吸收塔内用氧化剂处理PH3的液相氧化还原法,它主要包括浓硫酸法、高锰酸钾法、次氯酸钙法、过氧化氢法、磷酸法和漂白精法。而干法是利用PH3的还原性和可燃性,用固体氧化剂或吸附剂来脱除PH3或将其直接燃烧等。但根据目前研究和试验结果来看,固体吸附法(干法)来脱除磷化氢气体不是很彻底,吸收效率不能够完全达到90%,而采用化学吸收法(湿法)通过磷化氢与氧化剂发生氧化还原反应生成磷酸盐和次磷酸盐等无机盐类可以彻底脱除磷化氢气体达到95% 以上。
然而化学反应后的废水中的其它有关指标,如SS(固体悬浮物)、PH(酸碱测定)、COD(化学需氧量)、总磷、总盐等均能达到GB8978-1996《综合污水排放标准》中的三级以上排放标准,但要满足一级排放标准还需进一步进行反应研究。
3 磷化氢净化新技术工艺及废水处理工艺原理
采用的吸收剂为漂白粉,化学名称为次氯酸钙,作为净化吸收剂已经广泛应用于造纸、印染、消毒、化工等领域,且获取容易,价格便宜。次氯酸钙具有强氧化剂。遇水或潮湿空气会引起燃烧爆炸。与碱性物质混合能引起爆炸。接触有机物有引起燃烧的危险。受热、遇酸或日光照射会分解放出刺激性的氯气。磷化氢气体净化技术,就是需要次氯酸钙的强氧化剂与磷化氢气体发生氧化还原反应,方程式如下:
PH3+2Ca(ClO)2 =H3PO4+2CaCl2
只是在反应过程增加一种反应有机催化剂HR,这种催化剂有利于反应正向进行,由于在碱性环境下,ClO-和Cl-很容易发生归中反应,生成Cl2。氯气是一种有毒有害、高腐蚀的气体,为了减少后续除氯气,本反映有机催化剂HR有可与产生氯气反应生成R盐和次氯酸,由于氯气反应量大,所以需要经常增加HR有机溶剂。
根据本反应我们可以知道,最终产物有R盐、磷酸盐、氯化盐等盐分,还有过量的次氯酸钙,污水净化工艺中,絮凝和沉析都是极为重要的,但絮凝是用于改善沉淀池的沉淀效果,而沉析则用于污水中溶解性磷的去除。随着沉析物的增加及较小的非溶解性固体物聚积成较大的非溶解性固体物,使稳定的胶体脱稳,通过速度梯度或扩散过程使脱稳的胶体互相接触生成絮凝体.最后通过固―液分离步骤,得到净化的污水和固一液浓缩物(化学污泥),达到化学除磷的目的。
根据化学沉析反应的基础,为了生成磷酸盐化合物,用于化学除磷的化学药剂主要是金属盐药剂。出于经济原因,用于磷沉析的金属盐药剂主要是Fe3+、Al3+和Fe2+盐和石灰,这些药剂是以溶液和悬浮液状态使用的,但是铁离子和亚铁离子存在显色反应,石灰但不利于磷化氢净化反应,所以我们采用可溶性铝盐,反应式如下:
Al3++PO43-AlPO4,需要调整pH=6~7
铝盐特殊化学性质会形成大块的絮凝体,这对于沉析产物的絮凝是有利的,同时还会吸附胶体状的物质、细微悬浮颗粒。
需要注意的是有机物HR在以化学除磷为目的化学沉析反应中的沉析去除是次要的,但在分离时有机性胶体以及悬浮物的凝结在絮凝体中则是决定性的过程。
沉析效果是受PH值影响的,对于铝盐为6.0~7.0,因为在以上PH值范围内AIPO4的溶解性最小。
4 工艺分析与总结
根据国内仓储行业对产业环保要求的提高,我国环保政策的高品质、高标准要求,则该工艺满足以下特点:
(1)采用国内领先环保技术,结合各行业设备间的特点,我公司这种技术完全满足行业需求多功能多级设备净化处理。
(2)资源充分回收利用,优先于治理后排放的原则。
(3)处理费用(投资与运行费),技术水平与环境效果协调优化的原则。
(4)处理深度与环境保护相一致的原则。
篇3
一、有机废气的主要来源
现如今的全球大气污染比较严重,尤其是我国的中部地区,各种大气污染的严重形成了世上前所未有的“雾霾”,而这种情况的出现最为常见的一种大气污染形式就是:工业有机废气的排放。同时,人们在日常生活中所使用的交通工具排放的尾气,冬季取暖燃烧煤炭产生的气体,电厂生产所产生的废气等等,这些废气的排放都是有机废产生的主要来源,涵盖了人类生产生活的各个方面,对人们的生命安全带来了威胁,所以我们必须要做好废气排放的处理工作,保护环境。
二、有机废气处理技术分析
(一)热破坏技术。对于热破坏技术来说,主要适用于浓度较低的有机废气。根据处理流程,其燃烧方式有两类:一种是直接性的火焰燃烧,此种燃烧在温度和时间状态都合理的情况下,热处理效率超过90%。此方法的主要优势是处理充分且投资低,缺点是在有机物浓度偏低及缺乏辅助燃料的情况下,难以充分燃烧。另外一种方法是催化性的氧化燃烧。催化燃烧技术可以使有机物燃烧的初始温度得到有效减弱,在催化剂添加的条件下,基于气流当中针对有机物采取加热措施,便能够发生化学反应,进而使污染物得到有效清除。但同时此类方法也存在一些不足,比如对工艺要求较高,金属成本上也比较高,此外后续处理工作较为困难等。
(二)吸收技术。吸收技术的应用主要是在气态污染物的处理过程中,吸收技术的原理就是对有机废气与液体和吸收液之间的相似相容原理,进而实现有机废气的处理。而根据吸收流程的不同,又将吸收技术分为物理吸收和化学吸收两大种类。通常在吸收技术中的吸收剂采用的是液体的形态,并在一些混合剂一起运用的情况下(比如:液体石油、表面活性剂、水等),可以充分的吸收掉空气中的有机废气。研究表明,液体溶剂的吸收方法可以处理很多的气态污染物,是当前应用最为广泛的一种有机废气处理方法。
三、现代有机废气处理方法
(一)脉冲电晕法。脉冲电晕法是通过在高电压上加上一个脉冲电压,从而在常温常压下产生非平衡等离子体,产生高能电子、氧离子、氢氧根离子等活性粒子,从而对有害有机化合物进行氧化降解,从而达到净化有机废气的目的。实验表明,在常温常压下,该法能够取得较理想的效果。
(二)光分解法。利用光能将气态有机污染物进行氧化分解的处理方法即为光分解法。目前研究比较火热的是光催化降解技术,研究表明,绝大多数有机废气分子都能够发生光催化分解。但是此方法受催化剂的影响比较大,因此还不能应用于工业生产当中。
(三)等离子体净化技术。等离子体净化技术又叫放电等离子体净化技术,其主要是以高压放电的形式对一些有机废气进行处理。在放电等离子体净化技术的应用下,可以生成许多的高性能的电子和活性电子,这些电子和活性离子又可以形成等离子体,在解离平衡的作用下,等离子体可以将C-H与C-C的化学键进行断裂,进而达到净化空气的目的。这项技术的应用过程操作较为简单,并且节能性能较好,在处理有机废气中具有发展前景。
(四)PSA技术和光催化氧化技术。1、PSA技术主要是以有机废气组成和吸附材料在吸附方面的差异性为依据,同时结合周期压力的改变,进而使有机废气被净化和分离。此种技术在实际的废气处理过程的应用中具有产本低、耗能小、自动化的特点,在科学技术飞速发展的今天具有很重要的应用价值。2、光催化氧化技术利用的是光能将气态有机污染物进行氧化分解,最终达到有机废气处理的目的。但是此项技术的应用必须是在光照的条件下进行的,并且在实际的应用过程中还要保证温度和压强在一定的规定范围之内,故此项技术可以在一定的条件下进行使用。
四、工业有机废气处理技术展望
在上述的处理技术和方法中,热处理方法和吸附处理技术是较为成熟的方法,成本较低,性能较好,所以能较大范围的使用,而等离子体净化技术、PSA技术和光催化氧化技术以及生物处理技术等,对于废气处理的更加彻底,效果更加明显,但是这些技术还不够成熟,不能够大范围的进行投入使用,需要有关的技术人员对其不断的进行研究和改造,所以它们会成为未来有机废气处理技术的有效方法,是有机废气处理未来展望的体现。
五、结语
榱擞行Т理各种废气,必须提高处理有机废气的力度,在提高有机废气处理效率的基础上达到减少投入的目的。在大力引进新技术的前提下,将其应用于工业生产。遇有含有多种成分的有机废气时,要采取多种处理工艺开展全面处理,争取处理全部有机废气,以更好的保护人类生存的环境,做到人与自然的有机融合,实现人与自然的和谐发展,实现人类社会的可持续发展。
篇4
引言
从20世纪80年代以来,中国经济实现了持续30年的高速增长。伴随着中国工业化水平的高速增长,能源消耗和环境恶化也呈现高速增长的趋势。目前,尽管节能与环保在中国社会受到越来越多的重视,并采取了一系列的措施,但是,进入21世纪,中国的能源、环境问题仍然是最尖锐的矛盾之一。因此,节约能源、提高能源的利用效率仍是当今社会可持续发展的一大主题,工业能耗的降低更是其中的重要课题。本文通过阐述电子厂房中央空调系统对工业集尘器废气的回收利用,从而揭示其对节约能源的作用。
一、带尘废气的处理方法
多数工业场所在对生产材料或半成品进行切割、打磨及钻孔时,均会产生大量的粉尘。因此需要使用工业集尘器将这些粉尘进行收集、过滤,以提高生产环境的洁净度。这部分由集尘器收集、过滤后的废气的风量是相当可观的。对这部分废气的最终处理,往往都将其直接排放到大气中。
现以电子厂房为例,由于电子产品的生产过程对生产环境的温湿度有较严格的要求,因此大多数电子厂房都安装有中央空调,对生产车间的温湿度进行调节控制。而要使生产车间内空气的温度湿度维持在一定数值,需要耗费大量的能源(有数据显示,这部分能耗占建筑总能耗的30%左右)。将集尘器从生产车间里收集的带尘废气直接排放,相当于将中央空调处理好的空气又抽走排放,空调系统就必须从室外引入新风来补充这部分被抽走的风量以维持室内的正压要求。由于新风要经过空调系统处理后才能达到温湿度要求的送风状态,这势必要消耗能量,形成很大的能源浪费。既然如此,那么如果能够在这个环节上进行节能处理,提高能源的利用效率,对生产企业来说,将是节约成本及提高社会效应的新方向和思路。下面主要从夏季焓湿图处理过程能量消耗的角度来分析集尘器废气的直接排放和回收利用两种处理方法对中央空调的能耗影响及适用范围。
二、集尘器废气直排的空调处理过程
集尘器废气直排,就是集尘器收集的废气不送回空调器而直接排向室外。为补充集尘器的排风,空调器必须从室外引入新风。空气处理示意图如图1所示:
图1
虽然,空调系统中新风量的确定还包括:按满足人员卫生要求和维持室内正压要求等。但是补充排风仍占据大部分的新风量,而且本文主要论述集尘器排风的处理对空调能耗的影响。因此,此处假设补新风量等于集尘器排风量,即GW= G排。
此部分新风需从室外状态点与回风混合后经表冷器处理到机器露点,再经加热器处理到送风状态点,送风入室内。其夏季焓湿图处理过程如图2所示:
图2
这个过程实质上包括了对所补新风的两次处理过程,需耗费冷量QW冷和热量QW热。根据焓湿图可得:处理新风至机器露点L所需冷量为QW冷=GW(iW-iL);再将新风处理至送风状态O点所需再热量为QW热=GW(iO-iL)。其中,GW为新风量,iW为室外新风状态点焓值,iL为机器露点焓值,iO为送风状态点焓值。
三、中央空调系统回收利用集尘器废气
中央空调系统回收利用集尘器废气,就是集尘器收集的废气送回空调器经处理后再送入室内。空调器无需再从室外引入新风来补充这部分排风量。空气处理示意图如图1所示:
图1
因此,无需耗费冷量QW冷和热量QW热。
四、工程实例
下面通过具体实例计算的数据,可以更形象地体现中央空调系统回收利用集尘器废气的处理方法的节能效果。
已知广州地区某电子厂房生产间,室内设计参数为干球温tN=22±1℃,相对湿度φN=55±5%;室内余热量为Q=150kw,余湿量为W=0.0059kg/s,需总送风量48000m3/h,集尘器废气排风量为8000m3/h。计算夏季空调处理补充集尘器废气排风的新风所需的冷量及再热量。
1.计算热湿比:ε=Q/W=150/0.0059=25424
2.确定送风状态点:在焓湿图上根据tN=22℃及φN=55%确定N点,iN=45.5kj/kg, dN=9.1g/kg。
3.根椐i= iN-iO,可得iO= iN-i = iN-Q/G =45.5-(150×3600)/48000×1.2=36 .2kj/kg。过N点作ε=25424线交iO=36 .2kj/kg的等焓线,可得tO=16.1℃,dO=7.9g/kg。
4.过O点作dO=7.9g/kg等含湿量线交φ=95%,可得iL=31.2kj/kg。
5.查得广州地区夏季室外空调设计状态点iW=88.8kj/kg。
6.由上可得,夏季空调处理补充集尘器废气排风的新风所需的冷量为:QW冷=GW(iW-iL)=8000×1.2×(88.8-31.2)/3600=153.6kw;所需的再热量为:QW热=GW(iO-iL)= 8000×1.2×(36.2-31.2)/3600=13.4kw。
由以上计算过程可以得出:采用中央空调系统回收利用集尘器废气的处理方法,可节省处理新风的冷量153.6kw,节省新风的再热量13.4kw,节能效果相当可观。同时分析可以发现,上例是以车间全负荷计算得到的再热量,如果是部分负荷的情况下,所对应的再热量将更大,可节省的能量就更多,节能效果也更明显。
从上面的分析和计算我们可以看到,电子厂房生产车间如果中央空调系统不对集尘器废气进行回收利用,就需要用到大量的冷量及再热量,从而十分耗能,部分负荷时耗能更严重。所以对集尘器废气应尽可能采取回收利用到中央空调系统的处理方法。
五、集尘器废气回收利用的其它方式及使用要求
空调房间内集尘器废气回收利用不仅在有温湿度要求的空调系统中有良好的节能效果,同时也可回用于有散热、通风要求的环境中,例如空压机房、配电房等的散热降温。但在回用前必须要求进行再过滤处理然后才可以送入房间。由于已经集尘器的过滤处理,废气所含粉尘比较少,废气可经初效过滤器及中效过滤器过滤后再送入房间。
结语
1.分析集尘器废气回收利用的处理方式对中央空调运行的节能效果明显。
2.需增加回收利用的风管管道及过滤器的投资,但从空调系统或通风系统的运行能耗来看,在节能效果显著。
3.除中央空调系统可回收利用集尘器废气外,其他有通风、散流降温要求的场合也可利用从空调房间内回收的集尘器废气,其节能原理与前者是相同的。
参考文献
[1] 薛殿华. 空气调节,北京:清华大学出版社,2004年
[2] 孙一坚,沈恒根. 工业通风,第四版,北京:中国建筑工业出版社,2010年
[3] 陈霖新.洁净厂房的设计与施工.北京:北京化学工业出版社,2002年
篇5
1医药化工企业的有机废气污染概况、组成以及关键技术
1.1医药化工企业有机废气的排放概况
当前,市场经济高速发展,医药化学工业的发展也越来越快,导致有机废气的排放量急剧增加,且对有机废气的处理难度也相应加大。产生这种现象的主要原因大致有以下两点:第一,传统医药及化工行业的废物排出方法为间歇性排出,因此,排出的大量高浓度的工业废水会造成严重的空气污染。例如,医药化工企业的周围往往会有强烈的臭味产生,虽然这种臭味刺激性很强,但一旦进入了空气中就会在很短的时间内迅速挥发掉,这也是空气污染治理非常困难的原因;第二,医药化学工业排放的废气成分主要取决于其生产所用的原材料,所以,医药化学工业的废气排放也会因生产原材料的不同而有所不同。医药化工行业的有机废气主要和化学产品中的基本物质相关,其污染的主要特征是排放量大,污染点多,且会产生无规则的溶剂废气污染。而医药和化工废气污染的另一个特征则是排出过程无规律,时间间隔不稳定,且停留时间随意变化,给废气管理造成了阻碍,并影响了后期处理工作的开展[2]。
1.2医药和化学工业有机废气组成分析
在医药工业的生产加工等环节中,最不可忽视的因素是溶剂,受药品特性的影响,在制造环节中很多溶剂极易通过空气挥发出去,进而排放出大量的废气,这些废气会严重污染环境。这些废气的主要成分包括甲苯、二氯甲烷以及丙酮等。试验结果证实,排出的废气含量与周围环境的污染程度成正比,一旦有机废气和空气接触,就会产生化学反应,从而形成恶臭等气味;当人们闻到这种臭味时,身体会受到不同程度的影响。同时,由于有机废气的扩散速度和挥发速率都特别快,当工作人员长期处于这样的环境时,就会严重损害其身体健康。
1.3医药化工行业有机废气治理的关键技术
目前,国内外已研发出多种有机废气的处理技术,并获得了显著成效。其主要技术包括冷凝法、吸附法、焚烧法和生物处理法[3]。①冷凝方法是一项废气预处理技术,该技术在处理含有水蒸气较多的废气时,有较大的优越性,且能高效地利用废气中的有用溶剂,进而使废气中的废水也能够得到相应处理。但该工艺技术极易受废气冷却水温的影响,当废气含量较低时,再使用该工艺技术会产生不必要的资源耗费。②吸附法是一种利用吸收塔对有机废气进行生物处理的技术,该技术在处理溶水更高的废气时有较大的技术优越性,其处理过程也比较安全,是一项应用广泛的废气处理技术。③化学焚烧法是对有机废气进行焚烧处理,该方法在处理可燃废气方面具有较大的优越性,同时,它还能利用化学催化剂使废气中的有机气体迅速溶解,因此,可获得较好的处理效率。然而,该法不适用于处理含硫元素、溴元素等高毒性化合物的汽车废气。④生物法是利用微生物对有机废气中所含的污染物进行化学处理,然后采用生物吸收、溶解等方式,使污染物逐步转变为安全、无毒的物质。该方法的优点是所需资源较少,但用到的设备较多,占用土地面积较大,所以不适合所有的医药化工企业[4]。
2医药化工行业有机废气治理存在的问题
2.1废气处理措施的效率不高
目前,处理有机废气的主要方式包括冷凝法和吸附法。从工艺上讲,这种两方式在工艺技术上都相当成熟,对有机废气的处理效率也较高,但从实际的工作状况来看,由于冷凝法冷却效果改变幅度过大,导致冷却成本较高,而吸附法投入较大,相应增加了整个医疗成本,因此,这两种废气处理的效益都不高,且也不利于医疗领域化工行业未来的可持续发展。
2.2缺乏相应的管控措施
当前,政府部门对有机废气的管控与处理逐渐重视起来,但其管控措施只在大中型医药化工企业中十分突出。而对于很多小企业虽然在环境保护和废气管理方面作了部分调整,但因公司实力有限,政策调整力度又不大,导致对于有机废气的处理问题不能获得完全缓解。在现实执行过程中,由于缺乏相应的管控措施,导致部分监理人员对废气污染问题没有按相关规定严格执行,且还有一些医药化工企业不顾社会效益,只在有关环保部门突击检查时调整排污条件,降低废气排放量,而在相关部门检测后仍然按以前方式排污[5],导致有机废气的污染现象没有得到有效改善。
2.3缺乏先进的处理技术
在医药化工行业中,所形成的有机废气存在着容易扩散、高浓度、不易降解等特性,因此,有机废气的处理工作困难很多,由于对其的处理技术要求较高,所以需要各公司在处理工艺上投入巨大的人力与财力。目前,国内废气处理技术水平和过去相比有了很大的提高,但在实际操作过程中仍存在诸多不足。如部分公司在进行废气治理时,仍应用传统的冷却技术和冲洗技术,导致废气治理效率较低。相关研究表明,大部分的医药化工企业在进行废气处理时,一般都使用传统的吸附工艺。因为传统活性炭、滤棉等材质的吸附法处理成本相对较低,但如果废气中的污染物超标,会导致滤芯等材料的处理能力随着吸附率的增大而产生饱和效应,就可能产生效率迅速降低的现象。因大部分吸附剂都是无法再生的,且在使用吸附法处理化学废气的过程中,作业人员也非常容易中毒,所以该办法的使用效益并不理想。而且,对于非水溶性溶剂废气的处理设备构造较为简单,具有明显弊端,很难长时间应用。此外,大部分情况下,企业都是在面对环境检测时才使用设备,更多的情况是用环保设备应对环保检查,而后续的处理却不能保证同样的标准,从而造成严重污染环境[6]。
2.4环境监管难度大,成本高随着我国医药化学工业的快速发展,化工产品的更换越来越频繁,导致医药化学工业出现了小、多、散乱的特征。由于这些中小企业布局的特殊性,产业内部结构竞争十分激烈,导致这些企业的经营方式存在两面性,且对于环保部门的监管工作也是这样。所以,环保部门的监管工作难度较大,必须投入更多的人力、物力与财力,来对这些分散的中小企业的进行管理和监察。
3医药化工行业有机废气治理的对策分析
3.1要采用更科学的排放标准
当前,要解决好在医药化工行业生产过程中产生的大量有机废气的问题,需要全面掌握其特性,并提出有针对性地解决对策,要建立合理的污染准则,限制有机废气的排放量,以此降低对自然环境带来的严重污染。在这一阶段,限制有机废气的污染与释放时间是制药化学工业中最关键的任务之一。因此,要科学合理地治理有机废气的污染情况,建立科学合理的污染规范是非常关键的一环。
3.2推广并使用先进的处理技术
针对医药与化学工业在制造过程中产生的有机废气,除了要建立适当的规范之外,还应合理使用各种先进的处理技术。如热破坏法,这种方法一般用于处理部分含量较少的有机废气,其效果较好,在其应用过程中主要用到催化氧化焚烧和直接火焰焚烧。催化法燃烧是利用空气与催化剂的反应来减小有机废气的起燃程度,然后再通过对空气加热使有机废气进行化学反应,最后成功地消除废气中的污染。而直接燃烧法的处理效果也比较彻底,该方法的优点是投入小、使用时间长,在短时间和高温的条件下,其处理效果就可达到99%。生物处理技术是通过运用微生物技术对废气中的生物进行重组,同时也利用生物进行代谢降解的处理,使处理后的产物对水、生物等污染较少,或以零污染的形式存在。其主要装置包括气体洗涤器、滤池处理等。而该方式和热破坏法一样,在低浓度有机废气的处理中效能很高,且操作简便,成本较低,所以使用范围十分广阔。有机废气的处理方法若采用一成不变的方式就会不利于医药化工行业的技术进步和创新,所以,应加强对传统废气的处理方法进行技术革新。当前,已经有不少以生物治理为主的净化方案投入到了科学研究与实验中,通过利用生物菌株净化废气,在节省处理成本的同时,也提高了有机废气的处理效率。和传统的活性炭吸附法比较,该技术在废气处理中更具生物活性,且处理效果也更高效,在其在末端处理方面也经常使用此类方式来取代传统的处理方式,因为该方式具有很强的净化能力。因此,相关部门要加强发展、研究新型科学技术,坚持创新的思路,以及大力推广并使用先进的处理技术。
3.3提高国家药品化工行业市场的准入门槛
对于提升中国医药化工行业的市场准入门槛,需要建立科学、合理的规范。在实际工作中,要针对以往医药化工企业有机废气治理和控制经验,再根据目前有机废气的产生和治理过程的具体特征,积极、合理地运用最先进的有机废气处理技术,并提出更有效的治理办法。要制定和贯彻科学、有效的作业标准,从实际出发。一方面,企业要明确内部的质量管理责任;另一方面,企业管理者也要对公司的生产工艺流程作出严格规范,并确保公司在生产过程中的排污管理上均能达到合格规范;同时,政府还要规范在制药化学品领域的生产人员技术水平,以保证生产者能够运用符合标准的工艺生产流程。
3.4建立严格的控制机制
长期以来,有机废气的污染问题一直制约着医药行业的发展,若要更好地解决将这一问题,应从政府各部门在废气污染管控与治理的角度出发。通过调查发现,在经济发展缓慢的区域,医药化工企业往往扮演着重要角色,导致各地政府部门对环保违法行为和环境污染现象视而不见。这些举措在短时间内会促进当地的经济发展,但从长期考虑,废气污染带来的环境污染是长久的、难以恢复的,会严重危害居民的身体健康。因此,各地政府部门应改变思维,对环保违法者加强查处力度,严格控制有机废气的排放量。
4结论
综上所述,由于医药化工是化工行业中非常关键的分支,关乎着人类的生活健康,所以要避免有机废气对生态环境造成影响。针对我国医药及化工行业的有机废气污染的实际情况,要运用先进的处理方式,再依据科学合理的排放规范进行有机废气的治理。在企业未来的发展中,要顺应时代的发展趋势,不断地变革和创新企业现行的管理体系和技术手段。由于医药化工行业有机废气的危险性很大,不仅处理过程繁琐,其处理难度也较大,所以需要选用最合理的方式加以处理,并最大程度地减少有机废气对环境所产生的影响,以此为保护生态环境和人们的身体健康作出努力。
参考文献:
[1]许志刚,史为臣.医药化工行业的有机废气处理分析[J].化工管理,2019(25):49-50.
[2]李春静.医药化工行业有机废气处理的探究[J].化工管理,2019(4):40-41.
[3]唐碧银,王义飞.浅议医药化工行业的有机废气处理[J].化工设计通讯,2017,43(9):205.
[4]林洁.浅析医药化工行业的有机废气处理对策[J].科技创新与应用,2017(25):71-72.
篇6
前言
近年来,我国在大力发展工业的同时,给自然生态环境造成了极大的影响。工业生产中大量废水废气的产生对人们的生存环境带来了严重的污染,尤其是石油化工业生产过程中生成的废气对大气和环境的污染最为严重。为了消除或减少石化工生产中的废气产生,有必要加大对废气处理技术的研究力度。
一、石油化工过程中产生废气中污染物的来源
在石油化工生产过程中都会产生大量的废气,关于这些废气中污染物的来源,我们在进行一些介绍与分析。
1、石油炼油过程中带来的废气污染物来源
对于石油炼油来说,其工艺一般来说比较繁杂,因此在这一过程中会产生大量的废气。这其中包含了6 大类。第一是氧化沥青尾气,它主要的成分是苯并花,其来源主要的地方是在沥青装置中;其次就是在催化裂化过程中产生许多一氧化碳、二氧化碳及二氧化硫的催化再生废气;第三就是在催化再生废气中还包含的燃烧烟气,它的主要来源是提供能源的锅炉、焚烧炉及加热炉之中;第四就是臭气,臭气中含有酚、硫及醇类物质,它是在脱硫、污水处理的过程中所产生的;第五就是含硫废气,它主要也是在回收硫的过程中所产生的,其中这类废气中不仅包含了硫类化合物,还有氨及硫化氢的出现;最后一种就是总烃,这是在这个生产过程中出现的最多的一种污染物,并且其来源也是非常广的,在提炼的各个过程中都会有它的产生。
2、化工生产过程中带来的废气污染物来源
在化工生产的过程中,也有很多污染废气的产生,在这个过程中我们主要只提到两种,第一种是燃烧烟气石油,这种废气的污染物主要还是二氧化硫、一氧化碳、二氧化碳等这些常见的污染物,此外还会有粉尘的出现,给环境造成污染,这种燃烧烟气石油的主要来源是在锅炉、加热炉、裂解炉、焚烧炉和火炬之中。另外一种产生的废气就是工艺废气,它是在整个化工生产过程中出现的最为常见及最多的废气,其中所包含的污染物也是很多的,其中主要还是一系列的烃类物质,包含了卤化物、醇类及其它的像氰化物、一氧化碳、氮氧化物这些无机物。其中这些工业废气的主要来源还是甲苯装置、对苯二甲酸装置、环氧氯丙烷装置。
二、石油化工废气的处理方法
石油化工企业在废气处理过程中的方法很多,从其作用原理上讲则分三类:物理处理方法、化学处理方法和生物处理方法。
1、物理处理法
(1)吸附法主要用于对一些刺激性有机化合物的吸附,使用的载体一般是活性炭,因其表面积大,吸附能力强,再生能力好,可用于刺激性废气的脱臭处理。过滤法则主要用在粒径较小的油烟雾的处理上。
(2)过滤法的处理介质常为玻璃纤维,因为处理的油烟雾直径小,遇冷时会快速凝结,通过玻璃纤维能有效滤除有害的物质。
2、化学处理法
化学处理法主要是催化法,催化法的种类也很多,如催化氧化、接触催化、光催化等。在催化中常用的催化剂也分贵金属和非贵金属、非金属三类。在物理吸附中提到的活性炭也可作为催化剂用于废气的处理中。除催化法之外,放电分解也是一种较为常见的废气处理方法,其主要作用机制是利用高电压放电产生非热平衡等离子的过程中产生的高能电子破坏碳原子与碳原子、碳原子与氢原子形成的化学键,再经化学置换反应,将有害化合物转化为无害化合物排出。
3、生物处理法
生物处理方法是利用微生物分解处理废气的方法,微生物处理废气是基于废水处理方法发展起来的,对易溶于水的有害气体可以考虑将其溶解在水中利用细菌进行降解,对于难溶于水的有害气体,则需在真空中进行细菌讲解。
三、具体废气处理技术
1、VOCs废气处理技术
对VOCs废气进行处理的技术有很多,但能够进行深度净化处理的技术不多,该技术就是其中之一。该技术比以往其他技术有多处创新,不仅仅体现在工艺流程、配套催化剂及关键设备等方面,更重要的是开创性性的开发出针对不同VOCs废气的四种典型石化工业废气深度净化处理工艺,如:硫及总烃浓度均化―催化氧化、环氧丙烷/苯乙烯(PO/SM)废气双系列催化氧化等。在该技术的支持下,相关工作人员还发明了四种典型VOCs废气催化氧化剂及具有脱硫和浓度均化双功能的试剂。
2、生物分解处理技术
是一种成熟的处理有机废气的方法,它的技术前身为微生物处理废水技术。以微生物为载体,将大气中低浓度的有机废气作为附着在多孔、潮湿介质上的活性微生物的营养供给,通过一系列变化,转化为简单的无机物或细胞组成物质等。首先,有机污染物首先溶于水中。其次,溶于水中的有机物,在水中受到压力差的作用进一步扩散,在扩散过程中被水中的微生物捕获并吸收。最后,有机污染物在微生物体内经历自身代谢后作为能源和营养物质被分解, 在生物化学反应过程中生成了无害的化合物。
3、放电等离子体处理技术
放电等离子处理工业尾气是一项比较成熟的技术,它的主要放电形式是高电压,在放电过程中得到一些等离子体,也就是说,在这一过程中,产生了大量的高能电子或O、OH、N 基等活性粒子,导致C ―H、C ―C 等化学键一一被破坏,在这一反映过程中,H、CL、F 等尾气分子中的一些元素发生置换反应,最终生成CO2 和H2 O。即工业废气在经过放电这一环节后生成了大量的无害物质。
四、石化废气处理技术的发展动向
1、处理重心前移
尽管末端处理至少在目前还是减少废气排放的主要手段,但也出现了处理重心前移的一些趋势。硫转移催化剂的应用,使FCC再生烟气不再经过脱硫即可符合二氧化硫排放标准的要求;使用低硫、低烯烃和低芳烃清洁燃料,从而在很大程度上解除了汽车尾气处理的烦恼;炼油一化工一体化联合工艺,给原油的充分利用提供了可能,因此也大大减少了VOC的排放。凡此种种,无不说明废气的处理不应仅限于末端。处理重心前移在某种程度上也是推行清洁生产和资源能源利用率得以提高的一种反映。
2、组合流程增加
一个单元过程原则上只能解决一种污染物或几种性质相近的污染物的处理问题。然而废气组成通常是比较复杂的,石油化工废气尤其如此。它面临的是废气多种组分的去除。这就决定了在选择废气处理工艺时,必须考虑多种单元过程的组合,由此构成一个能够满足预定目标的组合流程。。
3、处理与回收并重
环境污染的根源在于对资源和能源的无节制攫取和非合理利用。因而减少环境污染的唯一出路也就是合理开发并尽可能提高资源和能源的综合利用率。在石油化工废气处理领域,则集中表现为注重处理与回收相结合。熄灭炼厂火炬、将废气中的硫化物直接转化为工业硫酸、FCC再生烟气废热锅炉、丙烯腈尾气催化燃烧处理废热回收、利用炼厂尾气生产化工产品等等。这些都是废气处理与资源和能源回收并重的实例。
结论
通常,不同的生产单元因其不同的操作技术及废气种类会采用不同的废气处理方法。我国的石油化工企业在处理废气时常通过对处理工艺单元的组合实在有机废气的优化处理,同时在众多处理方法中选择最合理有效,性价比最高的方法。在废弃处理的过程中遵循充分利用可回收成分和避免产生新污染两个原则,做到在做好废气污染处理的同时提高经济和环境效益,达到双赢的目的。
篇7
石油化工企业生产过程中产生的废气成分相对复杂,主要有粒子类物质、含硫化合物、含氮化合物和一氧化碳及有机化合物等,它们通过一定的排列组合构成了主要的大气污染源。就废气中各种物质及化合物的产生有着不同的来源。一般而言粒子类物质主要产生于电力、建材、轻工业、石油化工、冶金等行业工业生产过程中所产生的烟雾、烟尘及生产性的粉末等。按照粒子类物资粒径的大小被分为粗粒粉尘、细粒粉尘、烟、雾等。
含硫化合物主要由二氧化硫和硫化氢两种,这两种物质排放到空气中达到一定浓度时会对人类的健康产生不利影响,同时也是酸雨形成的重要物质。大气中的二氧化硫主要来源于燃烧的矿物燃料,而硫化氢多半来源于炼油、硫化染料等行业的生产。就石油化工行业而言,其生产过程由炼油到下游人造丝等石化产品的生产制造会产生一定的硫化氢对大气造成污染。
有机化合物的主要组成部分是碳氢化合物,如烷烃、烯烃、芳香烃等,此外还有一些含硫或含氮的有机化合物。这些有机化合物的主要来源是石油化工厂或者炼油厂的生产过程,这些污染源有着恶臭或者刺激性的气味,会对人体器官产生毒害影响,常含有一定的致癌物质。
废气中的含氮化合物主要成分是一氧化氮和二氧化氮,它们多数由于煤炭或者石油制品的燃烧而产生,同时也可能产生于硝酸、炸药或者氮肥的生产制作过程中。含碳物质的完全燃烧和不完全氧化都会有一氧化碳的产生,比如汽车尾气、石油化工生产中的催化裂化过程中所产生的烟气等中都含有大量的一氧化碳。
卤素和它的化合物也是一种常见的大气污染物,它的主要来源是含有氯和氯化氢的废气是氯碱厂以及利用其作为工业原料的工厂,氯化氢则来源于磷肥生产的过程和电解铝工业等。
二、常用废气处理技术种类
针对石油化工生产过程中产生的不同污染源,通过对其分类,有针对性的重点处理某种具体的污染物,能够有效的减少大气污染提高环境质量。具体而言,石油化工产业废气处理技术主要有以下几种。
1.废气的催化燃烧技术。该种技术又被成为催化氧化技术或者接触氧化技术,是在较低的温度下降反应器在中的催化剂予以催化,使得废气中具有可燃性的成分进行氧化分解的处理方式。催化燃烧所选用的催化剂可以根据它们的活性组分进行分类,主要是铂2等贵金属和钴3等非贵金属,根据废气的不同成分和性质选择不同的催化剂实现其催化燃烧的氧化分解。
2.刺激性和恶臭气体的吸附技术。通常而言,对于恶臭和刺激性气体的处理方式有燃烧、吸附、生物脱臭等方法。吸附技术是利用活性炭较大的表面积和对废气中多种组分的吸附能力,这种技术可以适用于不同浓度恶臭和刺激性气体的吸附,加之其较强的再生能力因而具有较为广阔的使用范围。其中具有某些化学性质的活性炭还能够在其吸附性充分发挥的同时实现良好的催化活性,从而将恶臭和刺激性物质进行氧化处理为低臭、无臭的物质。
3.有害烟雾的去处技术。由于有害烟雾的粒径较小在空气中呈现为一种雾状能够随着空气的运动实现其扩散的微小野地。该种烟雾是温热气体遇到冷气流温度急剧降低凝结而成的,在石油化工企业中有害烟雾主要是油雾、盐酸雾等。鉴于有害烟雾的粒径相对较小,可以利用玻璃纤维过滤的方法将该种有害烟雾予以滤除。
三、中国石油化工废气处理技术及效果
上述三种技术能够有效的滤除或者防治石油化工生产过程中产生的废气,但是在我国生产实践中常用的废气处理方法主要有生物处理技术、催化脱硫工艺等。
生物处理技术,利用微生物实现对有机污染物的生物降解从而实现污染防治。该种技术的发展方向是有针对性的培养菌种并且优化菌种的生存条件以此来提高生物降解率,同时通过对生物填料的物理性能、使用寿命等方面的改善来降低投资和耗
能。其具体工作原理是先将污染物实现由气相到液相的转移然后由微生物吸进入液相的污染物,最后污染物进入微生物体内的有机物的代谢过程,实现对其分解将污染物转化为无害的无机物。其具体工艺流程是把气浮混凝反应池油污泥浓缩池等设施加盖后的废气通过高压风机送人洗涤塔,经洗涤后的废气由管道送入生物处理装置底部,废气经生物滤池填料吸附、生物氧化处理,净化后的尾气通过排气筒排入大气环境。通过反应池和活性炭等设备和物质的综合应用实现废气的无害化转化。生物处理技术在充分利用生物机能的前提下实现对有机废物的治理,充分利用生物规律保证治理结果,在实际应用中取得了较好的效果。但是我们也应该看到生物处理技术作为处理工艺的相对复杂,在投资和实验方面有一定的劣势。
催化脱硫技术是较为新型硫化物处理方式,能够含硫化物废气中的绝大多数硫脱去,并且可以将从硫化物中脱去的硫予以回收利用。作为石油化工企业主要污染物的硫化物,对环境的影响较大,而回收后的硫可以制成硫酸等继续用于工业生产。该种废气处理技术能够将废气中的硫充分利用并且没有新的废气或者废水的产生,其脱硫的效率也相对较高,加之费用成本低等使该种技术在工业生产中具有较大的应用空间。
放点等离子处理法。这种方法主要用于工业废气的处理,是利用高电压放电的形式来获得大量的高能电子或者高能电子激励产生的氧、氮基等活性离子,并且破坏碳氢结构的化学键,使得废气中的有机化学成分发生一种置换反应,最终结合形成没有危害的二氧化碳或者水。该种技术在我国石油化工废气处理中也得以应用和发展,对于等离子反应器的性能有了进一步的研究。对于等离子器,在使用双极性脉冲高压技术时,能够使氯苯和甲苯的分解率得到一定的提高,这种研究的进步和发展能够有效的解决石油化工废气污染的问题,使得废气处理技术和设备有了更新的发展。
tio2光催化法。该种处理技术日渐被重视的一种处理技术,它充分利用tio2的化学稳定性、无毒化、成本较低、获取方便等特点实现对含氯有机物废气的光催化降解。在实践应用中研究者对tio2光催化的改性和其负载修饰的方法来扩大使用范围,从某种程度上实现了对石油化工生产过程中产生的含氯有机废气的处理。这一技术在工业废气处理中具有反应率高、速率快、溶剂分子不会对其影响等优点但是该种技术在使用中也存在一些技术难题,为其推广应用和深入研究提供了一定的空间。
我国石油化工废气处理技术是针对不同的生产过程中产生的污染物不同有针对性适用废气处理方式,并且在处理方式选定还通过处理工艺单元的组合实现对有机废气等的优化处理。废气处理过程中所要遵循的原则是尽可能不再产生新的污染物并充分利用废气中的可利用成分,在有效治工业废气污染的同时也实现了对废气资源的有效利用,较少工业生产中断的浪费。而每一废气处理技术的使用并非孤立的,针对废气成分的不同,采用安排合理分工明确的处理技术的组合和工艺的完善,有效的实现废气处理的效率和效益,实现经济和环境的和谐发展。
参考文献:
[1]吴悦,曾向东,金海花,林大泉.中国石油化工废气处理技术进展[j].石油学报(石油加工),2000, 16(6).
[2]侯国江.浅析石油化工废水处理的技术措施[j].中国石油和化工标准与质量,2012,33(11).
篇8
引言
大气污染是我国亟待解决的环境问题,其中工业废气是污染的重要来源。有机废气是工业废气最难处理的部分,这种气体能够对人们的身体健康产生严重的损害,也给国民经济造成严重损失。
1、有机废气处理技术的重要性
我国经济的持续发展,为化工企业的崛起提供了外部环境,但是,随着我国工业化进程的不断加快,却忽略了对环保的投入,工业废气的排放量不断增加,对环境造成的污染也日益严重。当大量的废气排放到空气中,不仅会对空气质量产生严重影响,同时也会对人体健康造成严重的危害。为了重现绿水蓝天,就需要不断加强工业废气的处理,而对工业废气处理的技术研究也就摆在人们面前。有机废气是工业废气中污染性较强、处理难度较大的一种,而且有机废气进入到人体呼吸道之后,对人体的呼吸、血液、肝脏等都会产生严重的影响,因此有机废气的处理也受到了越来越多的重视。
2、有机废气治理技术现状
目前而言,治理有机废气比较普遍的方法有吸附法、吸收法、氧化法等。这些方法虽然目前使用广泛,不可回避一个问题是效率不高,经济性低,因此在有限的环境治理投入下,带来的环境改善效果也很有限。
2.1 活性炭吸附法
吸附是指液体或气体附着集中于固体表面的作用,一般的活性碳都能发生这种作用。根据选取的吸附材料以及吸附机理的不同,吸附法又可分成化学吸附和物理吸附。化学吸附利用的是疏水键去除有机污染物的,例如用酚醛树脂吸附剂去除邻苯二甲酸二甲酯类物质。但是化学吸附剂,更多的是运用在去除水相污染物当中,用来去除有机废气的情况比较少见,究其原因是吸附剂与气体接触时间不够长,无法进行有效的反应,导致吸附效果达不到预期。这就使得人们在实际生产中选择物理吸附材料处理有机废气,比如活性炭、沸石等。选择这种孔状结构,比表面积大,物理吸附能力强的吸附剂符合去除有机气体的要求。实验数据表明,纤维吸附材料与蜂窝状、颗粒状吸附材料相比,具备更快的传质速率,因此,常常选择纤维吸附材料,以提高去污效率。
2.2 吸收法
吸收法一般情况是指的是液体吸收法,其基本的原理是废气和吸收剂接触很充分,吸收剂对于有害物质进行吸收,再经过接吸收过程,从吸收剂中除去废气并提取吸收剂,这样就使得吸收剂能够被循环利用。目前废气处理设备中喷淋装置是使用吸收的原理进行制作的。物理吸收剂是利用的物质具备相似相容的物质特性,比如常见的吸收剂水,可以用于去除那些易溶于水的气体,像丙酮、甲醇、醚,但是对于水溶性差的物质水无法起到作用。这就需要使用化学吸附的方法,其主要的原理是吸附剂上面的基团与有机废气发生,就当前国内外对吸收法的应用,可以获得以下经验总结。一是国内外研究者研究了不同溶剂吸收法对各种有机废气污染成分的处理效果,吸收剂主要包括有机溶剂、表面活性剂和水,还包括新型环保型吸收剂环糊精;因此废气种类不同,采用的吸附剂的种类也就不同。
2.3 催化氧化燃烧法
对于处理那些有毒、有害、没有回收价值的气体,如VOCs,氧化法是最佳的处理手段。该方法的基本原理是VOCs同氧气发生氧化反应生成水和二氧化碳,氧化反应就好比燃烧过程一样,最后得到的成分是对空气无害的水和二氧化碳。通常采用以下两种方法促使氧化反应的顺利进行:一种是加热升温,即热氧化法,使得废气达到氧化反应必需的最低温度;另一种是催化氧化,催化氧化是指不改变反应的温度和压强,向反应环境中添加金属催化剂,例如Pt、Pd、Ni等,废气中的有机污染物同氧化剂发生的氧化反应,催化剂的存在可以大大降低催化燃烧所需要的温度。如何获得高效的催化剂是催化氧化法的关键。近些年来,人们一直致力与整体催化剂的研究,同颗粒状催化剂比较,其在传质、传热、压降性能等诸多方面表现出优点。
3、有C废气治理技术发展趋势分析
在上述分析过程中,对有机废气几类传统处理技术有了初步的了解。为此,加大有机废气处理技术研发工作非常关键。下面针对有机废气处理技术未来发展前景进行论述。
3.1 生物处理技术
针对有机废气采取的生物技术,指的是基于特定状态下,以有机废气的有机成分为依据,把有机物有效地分解成为水以及二氧化碳,同时遵循“有机氨氨气硝酸”、“硫化物硫化氢硫酸”的两大转化过程。通过生物技术装置,有机废弃物的处理效率超过90%,恶臭物处理效率则更高。和传统处理技术相比,此项技术在设备上显得比较简单,并且很少发生再次污染的情况,所以生物处理技术具备很好的未来发展前景。
3.2 放电等离子体技术
在新的有机废气处理技术中,利用高压放电技术进行废气处理,是具有良好发展前景的技术。高压放电技术可以产生大量的高能电子和活性离子,构成平衡等离子体,这样就会使得C-C和C-H等化学键发生断裂,进而实现与废气中F,H和CI等原子的置换,得到大量无害的二氧化碳和水。另外,在等离子体中引入金属氧化物,可以形成一个催化体系,使得副产物的产量极大的降低,这时可以增强对污染物的剔除率。与传统的处理技术相比,高压放电技术操作更加简便.而且具有很好的节能效果,适用于对低浓度有机废气的处理。
3.3 PSA技术及光催化氧化技术
PSA技术在有机废气处理过程中其应用得到了初步的肯定。此项技术主要是以有机废气组成和吸附材料在吸附方面的差异性为依据,同时结合周期压力的改变,进而使有机废气被净化和分离。PSA技术具备的优势包括成本低廉、能耗小以及具备较高的自动化能力。在有机废气的分离及其回收过程中,合理地采纳此项技术前景良好,值得考虑。此外,光照状态下部分半导体材料可能有自由基活性的物质存在,利用光催化氧化技术,在常温常压条件下,能够使有机废气发生无毒反应,此过程是不会受到溶剂分子的影响的,其主要优势是反应速度快以及易于回收,因此光催化氧化技术在部分有机废气处理上也值得考虑应用。
3.4 综合处理技术
综合处理技术就是对多种有机废气处理进行综合运用,使每种处理技术的优点都可以获得最大程度的发挥,从而达到更好的废气处理效果。如今,在工业废气处理中应用的处理技术主要有如吸附催化技术、吸收一解吸一变压一吸附组合工艺等等。通过吸附催化技术可以对废气中的有害物质进行吸附,并且降低有机废气中污染物的浓度;利用复合吸收技术可以增强对废气中甲苯、乙酸丁醋的吸收效率,使得废气中的污染物含量达到国家标准的要求。
4、结束语
总之,减少环境污染最有效的途径就是从源头入手,降低有机气体的排放,这就需要高效、节能、经济的有机废气处理手段,因此在传统的处理技术上,研发新的处理技术就显得格外重要了。相信随着科学技术的不断发展,创新性的有机废气处理技术也会被应用到工业生产中去,降低甚至消除大气中有机气体的排放指日可待。
参考文献
篇9
早在两年前,由环境保护部科技标准司制定的《陶瓷工业污染排放标准》后,该文件首先对陶瓷工业生产的大气污染、水污染和污染排放物等做了规定,这也成为陶瓷企业在生产过程中产生的污染物排放首个国家标准。其中,建筑陶瓷抛光类单位产品基准排水量限值为1.0 mg/L,非抛光类为0.3 mg/L,卫生陶瓷为6.0 mg/L,特种陶瓷为2.0 mg/L;大气污染物排放浓度限值水煤浆二氧化硫为500 mg/m3,颗粒物为100 mg/m3。在该项标准实施两年后,通过调查发现,能具体做到这些标准的企业非常的少。而从2012年1月1日起,在开始的标准基础上又开始执行新的限值,建筑陶瓷抛光类单位产品基准排水量限值为0.3 mg/L,非抛光类为0.1 mg/L,卫生陶瓷为4.0 mg/L,特种陶瓷为1.0 mg/L;大气污染物排放浓度限值水煤浆二氧化硫为300 mg/m3,颗粒物为50 mg/m3。通过对比可知,新标准限值比原有标准更低。换句话说,新标准将更加严格。如果严格按照这个标准执行,大部分中小企业将很难生存。因此,陶瓷企业在环保压力下如何生存?如何处理陶瓷生产过程中所产生的废水、废渣、废气等污染问题,将是我们陶瓷行业向绿色、健康方向发展的必经之路。
2 陶瓷行业“三废”污染物的解决方法
在建筑行业内,企业在生产中对自然环境产生影响的主要是“三废”--废水、废渣、废气。因此,陶瓷企业的环保建设也主要围绕这三个方面开展。
2.1 废水
随着近年来建筑业的发展,对建筑陶瓷的需求量也日益增大,仅珠江三角洲的佛山地区现有近300家陶瓷厂 ,规模较大的也有100多家,主要分布在佛山、南海、顺德、高明等城市。由于陶瓷生产行业废水排放量大,悬浮物含量高,如果不对其进行有效的控制与处理,对水环境将会产生相当大的环境威胁。
2.1.1陶瓷企业废水的产生原因
陶瓷行业废水主要产生于生产过程中的球磨(球磨机浆料中直径细小不合格浆料,洗球水)、压滤机滤布清洗、施釉(清洗)、喷雾干燥、磨边抛光等等工序;各车间粉尘、冲压等废料;在原料运输洒落及厂内地面粉尘被雨水冲刷时也带来一定的高浊度、高悬浮物废水等等方面。面对如此巨大的废水问题,如何有效地处理与控制这些废水是陶瓷企业一直需要解决的问题。目前,陶瓷企业废水回用的工艺流程如图1所示。
2.1.2陶瓷企业废水处理的方法
目前,陶瓷企业处理废水的主要方法为固液分离方法,其主要包括:隔板式反应及平流式沉淀池、斜管沉淀池、竖流式沉淀池、水力循环澄清池等等。
隔板式反应及平流式沉淀池:由于其构造简单,施工方便,是应用最为普遍的一种,其混凝搅拌过程是在平流沉淀前的多层隔板造成水流拐弯的搅拌作用下完成的。但此方法也存在一些不足,如:处理效果不明显,池底污泥淤积难清理等缺陷。目前该类处理方法约占陶瓷行业废水处理工业总数的90%以上。
斜管沉淀池:在很多陶瓷企业废水处理工程中,其中7%~8%是由专业工程公司为其设计采用斜管沉淀池进行固液分离处理的,其生产能力较平流式沉淀池有一定幅度的提高,处理效果也理想些。但在运行中也存在一些不足,如:一方面由于水流在斜板沉淀池中停留时间短,无缓冲余地,容易造成混凝反应不善,效果不易发挥;另一方面由于陶瓷污泥黏度大,运行时间稍长后会在斜管孔内积泥,给运行带来困难。
竖流式沉淀池:一般多用于小流量废水中絮凝性悬浮固的分离。其生产能力较平流式沉淀池有一定幅度的提高,处理效果也理想些。由于它占地面积小,排泥容易,处理效果较好,目前在陶瓷行业中应用较多。
水力循环澄清池:水力循环澄清池的工作原理为上升水流的能量在池内形成一层悬浮态的泥渣层,其中的絮凝体被“过滤”截流下来,其混凝反应充分,固液分离彻底,处理后水质各项指标优于常规处理方法,出水浊度能被控制在4度以内。由于要满足一定的喷嘴流速来维持水力循环,因此,设施须满负荷运行,进水量便很容易控制,运行管理方便,池底锥底角度大,排泥效果好。将其用于陶瓷废水的处理,竟也取得了令人满意的效果。
目前,尽管陶瓷污水处理方法比较多,但仍然存在效率不高的问题。因此,废水处理的成本、运行效果等问题仍需环保公司站在企业的立场上去解决这些问题,使得我们的废水问题能够得到较好的解决,为我们陶瓷行业做出更多的贡献。
2.2 陶瓷工业废渣
目前,我国陶瓷工业废料废渣的处理与利用技术比较低,资金紧缺,致使大量废渣挤占耕地,使水和空气受到污染。因此,陶瓷工业废料废渣的处理与利用已成为陶瓷生产厂家及陶瓷工作者共同关注的课题。
2.2.1陶瓷工业废渣的来源
陶瓷工业废渣主要是指陶瓷制品的生产过程中,由于成型、干燥、施釉、搬运、煅烧及贮存等工序中产生的废料。通常可大致分为三类,即坯体废料、废釉料(废溶剂)及烧成废料。
坯体废料:主要是指陶瓷制品未煅烧之前所形成的废料,包括上釉坯体废料及无釉坯体废料。
废釉料:是在陶瓷制品的生产过程中(抛光砖的研磨抛光及磨边倒角等深加工工序除外)所形成的污水,污水经净化后所形成的固体废料。
烧成废料:是陶瓷制品经焙烧后生成的废料,主要是在贮存和搬运等生产工序中的损坏而造成的。
2.2.2陶瓷工业废渣的处理方法
目前,陶瓷行业在处理废渣时主要采取方式有:
第一种就是不经处理,直接倒掉或者填埋。陶瓷工业废渣填埋时的具体做法大致是,陶瓷工业废渣倾入填埋场后,采用专用机械并摊薄压实,累计厚度达到一定要求后,再覆盖一定厚度的粘土并压实,依次反复填埋、压实、覆盖直至填埋场填满为止,这时应对填埋场进行封场处理,包括覆盖500~600 mm厚的自然土并压实,封场顶面坡度不大于20%,最后在填埋场上进行栽花、种草、植树甚至种植庄稼等;
第二种处理方式就是多数陶瓷企业会选择的减量处理排放;
第三种处理方式为陶瓷企业通过技术更新来进行陶瓷废渣的回收利用,进行轻质砖、透水砖、釉面砖、广场砖,以及陶粒等产品的生产。
2.3 陶瓷工业废气
随着我国工业进一步发展,环境污染日益成为人们关注的焦点。各种工业废气中的氮化物、硫化物、碳化物、氟化物、粉尘的排放已经严重影响了人们的生活及生存环境。如何保护我们的环境,这就需要我们对废气的来源进行分析,然后再对针下药,来提高我们的空气质量。
2.3.1陶瓷工业废气的来源
建筑卫生陶瓷工业废气的来源大致可分为两大类,第一大类是含生产性粉尘为主的工艺废气,这类废气温度一般不高,主要来源于坯料、釉料及色料制备中的破碎、筛分、造粒及喷雾干燥等;第二类为各种窑炉烧成设备在生产中产生的高温烟气,这些烟气中含有CO、SO2、NOX、氟化物和烟尘等。陶瓷企业的废气排放量大,排放点多,粉尘中的游离的SiO2含量高,废气中的粉尘分散度高。因此,如何解决陶瓷行业的废气问题,是我们陶瓷行业未来的发展趋势。
2.3.2陶瓷工业废气的处理方法
建筑陶瓷工业废气的治理技术主要有:坯料制备过程中废气除尘、成型工艺过程废气治理技术、窑炉废气的治理技术等等。而窑炉烧成设备在生产中产生的CO、SO2、NOX、氟化物和烟尘等废气是目前危害人类的罪魁祸首。
(1) 二氧化碳污染处理方法
陶瓷行业中二氧化碳排放量高,说明窑炉热利用率降低,窑炉保温效果较差。目前,我国陶瓷行业能源利用率仅美国的一半,即热利用率为28%~30%之间。因此,如何提高窑炉热利用率,降低能耗是减少二氧化碳排放的有效途径。对于陶瓷行业来说,我们可以从改善窑炉结构、调节窑炉正压操作、提高耐火材料的保温性能以减少窑炉的热损失。在没有采取措施之前,窑炉外表面的温度可达300~400 ℃,尾气温度达600~800 ℃,经过窑炉改造后,窑炉外表温度达100 ℃以下,尾气温度达200 ℃左右。因此,窑炉热效率得到了明显的提供。
(2) 二氧化硫污染处理方法
陶瓷工业废气中的二氧化硫主要来源于燃料及陶瓷原料中。目前,陶瓷企业除硫的方式主要有:第一采用选用优质的燃料,如:煤改气技术,使用煤改气技术后,废气物的含量明显下降;第二,采用脱硫技术,如:湿法抛弃法、湿法回收法、干法抛弃法、干法回收法。目前湿法脱硫技术优越与干法脱硫技术,其脱硫效率可达95%以上。
(3) 氮化物污染处理方法
陶瓷生产炉内温度分布不均,局部高温造成大量的氮化物产生。同时,窑炉内氧浓度增加,氮化物的生产量加剧,如果过剩空气系数达15%时,氮氧化的含量达到最大值。另外,气体在高温区停留时间越长,烟气中的氮氧化物浓度也越大。为了降低氮氧化的含量,一方面,可以从喷枪结构入手,如:控制喷枪的空燃比例,使得窑炉内的氧气得到充分的燃烧,并保证窑炉内温度均匀;一方面,通过将氨或者尿素直接喷入窑炉体内,也可以起到脱除氮氧化物的目的;另一方面,通过微波技术进行处理。即微波在加热作用下,氮氧化物被碳还原为氮气,其除去率可达98%。
(4) 颗粒物处理方法
目前,陶瓷企业烟尘排放采取的措施主要是安装除尘设备。常用的除尘器有:旋风除尘器(适用于粒径范围在5~30 mg/L颗粒物)、静电除尘器、湿式除尘器、袋式除尘器。尽管目前除尘手段很多,且除尘效率较高,但与国家标准颗粒物为50 mg/m3的要求相比还有很大的差距。因此,环保公司在这些方面还需加大研发力度,以解决陶瓷行业中的粉尘问题,使我们人类有一个健康的生存环境。
3 陶瓷行业在解决环保问题时所遇到的瓶颈
在环保压力不断加大的前提下,陶瓷企业为了生存,也积极展开了相应的应对措施。但在采取措施的过程中陶瓷企业还是提出了很多质疑的声音。如:废气治理成本较大、处理效果能否达到国家标准、“煤改气”燃料供应不足等方面,将是限制陶瓷企业解决环保问题的几大瓶颈。
3.1 天然气供应不足对陶瓷企业发展的影响
煤改气这一举动,对陶瓷行业来说既有利也有蔽。有利的方面:煤改气后,气体燃料燃烧一般不会产生颗粒物。同时,气体中的硫化物、氮化物等有害气体明显降低,符合了政府提出的国家标准要求。但是,在污染物降低的同时又出现了新的问题,这是陶瓷企业必须面对的问题。如果陶瓷企业全面完成“煤改气”工作,必然会导致天然气供应不足。据了解,2013年中国天然气消费量达到1678亿m3,加上进口气量,全年供需缺口上升至220亿m3,2014年中国天然气表观消费量将达1860亿m3。如果全国各地改气行动继续推进,供需缺口将进一步拉大。如果天然气供应不足必将影响企业正常生产,那么陶瓷企业将会陷入了间歇性停窑的困境。
因此,我国天然气供应能力的有限,在煤改气方面需要陶瓷企业去认真思考,要量力而行。而不能不顾资源约束,一窝蜂大上“煤改气”项目。否则,天然气供应跟不上产生供应而导致停窑的问题,将会对陶瓷企业带来更大的损失,这是我们陶瓷企业值得深思的问题。
3.2 废气治理成本问题对陶瓷企业发展的影响
目前来说,企业在环保建设中的难点主要是废气治理面对的成本过高问题。例如:在煤改气,天然气的价格问题是陶瓷企业一直关注的问题。如果改成天然气,生产燃气成本大概会增加60%左右。相应的每个月大概要多投入500~700万左右的费用。除了其燃料成本要上升60%左右外,还有窑炉管道、喷枪等改造等方面的成本,例如,一条300 m的小窑进行天然气改造,需投入成本大概要100万左右。那些成本压力顶不住的陶企,基本都会被淘汰掉。再如,某企业老板算了一笔账,以脱硫塔为例,一个脱硫塔的成本费用在70~80万元,而且其使用寿命只有3~5年(脱硫塔以铁为主材料,与废气接触容易腐蚀,所以大大缩短了脱硫塔的使用寿命)。这个费用还仅仅是一次性投入的成本。如果脱硫塔开始运行,设备运行需要的药剂成本每天都达到2~3万元,一年下来成本惊人。另外,还有喷雾塔中的布袋除尘设备就有好几个,而每一个的投资费用大约在100万元。因此,昂贵的价格让很多陶瓷企业望而却步,这也是制约陶瓷行业向无污染方向发展的重要因素之一。
3.3 脱硝问题对陶瓷环保的影响
篇10
自21世纪开始,中国开始全面治理生态问题,不但修订了相关法律法规,针对资源利用、生态建设、生态保护等内容做出了明文规定,同时还要求未来的工业发展应当是可持续的发展,同生态协调的发展。这些法律法规的出台,明确了我国对于环境问题的态度,同时也坚定了社会各界治理日益突出的环境问题的决心。随着城市化进程的加快,各地加工产业以及石化产业的增加、汽车的增加等,使得排放到大气中的废气越来也越多,并且这些废气难以分解,会随着大气流动而扩散,污染范围大,对环境以及人们的身体健康造成了极大的威胁。因此应当以可持续发展作为指导理念,以工业、环境和谐发展作为基础目标,加强工业废气污染治理,保护自然环境,保护人们健康。
自人类发展进入工业化阶段以来,废气污染始终是困扰人们的一大难题。但自然环境是人类生存的基础,若无法生存,那么发展就无从谈起,只有将工业生产对环境的影响降至最低,才能真正的令工业持续发展。因此应当落实工业生产中的环保理念,提高工业废气污染防治技术,限制排放危害性大、量大的废气,令工业发展、经济进步同环境友好发展,实现良性的可持续发展。
2 工业废气概述
所谓工业废气是指工业生产中,所产生的有害气体。从形态上可以将工业废气分为颗粒性废气以及气态性废气,但是随着工业生产技术的发展,在工业废气中还发现了放射源性废气。这些工业废气若不经过处理大量排放到大气中将会严重威胁环境及人体健康。从来源方面进行分类可以将工业废气分为燃料燃烧废气以及燃料生产废气。而我国工业废气来源主要是燃料燃烧所产生的,例如木炭生产中,厂家需要对木材进行燃烧、熏蒸,因此会产生大量的气态性、颗粒性废气,这些废气会严重影响生产厂家周围的环境。而随着工业的发展,我国工业废气的排放量也随之增加,而环境对于废气的承载量有限。废气所带来的二次污染问题也成为了工业发展所要面临的又一严峻考验。
3 工业废气成分
石油化工行业是工业废气生产排放量最大的行业,也是废气污染治理最为困难的。由于石油化工生产中所排放的废气不但成分复杂、种类繁多且排放量大、污染性强,难以治理。从形态上分析,工业废气可以分为颗粒性废气和气态性废气。
3.1 颗粒性废气
此类污染物主要是生产过程中产生的污染性烟尘,其来源主要有水泥厂、重型工业材料生产厂、重金属制造厂以及化工厂等。在生产中,此类企业所需原料需要经过提纯,由于杂质较多,提纯后的可燃物不能完全燃烧、分解,因此以烟尘形态存在,形成废气,排放至大气中引发空气污染。
3.2 气态性废气
工业生产中,必然会产生废气,这些废气若不经过处理便排放到空气中势必会对环境造成影响。其中气态性废气是工业废气中种类最多也是危害性最大的。目前气体性废气主要有含氮有机废气、含硫废气以及碳氢有机废气。(1)含氮废气。此类废气会对空气组分造成破坏,改变气体构成比例。尤其是石油产品的燃烧,在工业生产中石油产品的燃烧量巨大,而石油产品中氮化物含量大,因此废气中会含有大量氮氧化物,若排放到空气中会增加空气氮氧化物含量,对大气循环造成影响。(2)含硫废气。含硫废气会对人们的生活环境造成直接危害,这是由于其同空气中的水结合能够形成酸性物质,引发酸雨。而酸雨会对植物、建筑以及人体健康造成损害,尤其会影响人的呼吸道。另外还会对土壤和水源造成影响,造成二次污染。(3)碳氢有机废气。该类废气统称烃类,是一种有机化合物,主要由碳原子和氢原子构成。此类废气扩散到大气中会对臭氧层造成破坏引发一系列问题,影响深远。例如臭氧层破坏会加重紫外线的照射,而紫外线会对人的皮肤造成伤害,引发各类健康问题。另外紫外线照射度的改变也会对生态系统以及气候造成影响。
4 防治对策
4.1 加大监管力度、落实监管制度
政府及相关监管部门针对工业废气污染问题应当严格监管,及时发现问题,并对需要整改的企业给予指导。(1)治理。首先应当令人们认识到工业废气污染对大气的危害以及这一问题的严重性、治理工业废气污染的必要性。加强监管力度,定期对企业进行检查、通报,谁污染谁治理。(2)发现问题。我国目前最严峻的环境污染问题便是大气污染,其是和人类生活联系最为密切的,因此在通报检查过程中一旦发现问题绝不姑息,必须严肃对待。(3)通过严格的监管提高企业对废气治理的重视。作为政府,要严格监督,对不合格的企业予以查封,停止作业。在我国,很多工厂为了盈利不惜以污染环境为代价,或者即便被强制性的安装了废气治理系统,但是在生产中为了降低生产成本,废气治理仅仅成为了摆设。因此,加强工厂管理者和工人的环保意识是非常有必要的。环保部门应该定期组织到工厂开展环保宣传,让工人和工厂管理人员意识到随意排放工业废气产生的后果。
4.2 加强工厂内部管理
工厂对工业废气未进行有效处理就随意排放,这在很大程度上是由于缺乏管理部门的有效监督,因此,环保部门应长期对工厂的废气排放情况进行监督和管理,如果存在违规现象,及时与工程人员沟通;如果问题得不到有效解决,则需对所在工厂进行停顿改造。此外,政府部门也应对随意排放废气的工厂进行严打,一旦发现随意排放废气的工厂应当从严处置。作为企业个体,要严格遵守环境保护的相关法规,响应政府的政策,自我监督,为实现人类的“碧海蓝天”贡献力量。
4.3 完善工业废气的治理技术和设备
目前,用于处理工业废气的技术主要有活性炭吸附、深度催化、直接燃烧、冷凝回收、吸收和近些年新发现的生物学处理技术,这些技术都有其优缺点和提升空间。目前生物处理技术是一种较为完善的技术,它是利用微生物将工业废气转化为对人体无害或可利用的物质。在设备方面,目前有十几种工业废气处理设备,这些设备仍然存在着体积庞大、处理力度小等缺点,应用到生产中不但会增加生产成本还会对生产效率造成影响。对工业废气的防治技术和设备进行改进,将会提高工业废气的处理效率,并减少因其排放而带来的危害。所以,我们要不断的革新工业废气的治理技术,投入资金和人力,研究开发新的治理技术,增设更先进的设备,并结合当前的大气治理需求和环境特质选择合适的治理方法,促进良好环境的建设。
5 结束语
通过上述分析可以总结出,目前我国的工业废气污染问题仍旧十分严峻,影响着我国工业长远发展。因此必须加强污染防治以及管理力度,通过新设备、新技术的引进,有效降低废气的排放量以及危害性。另外还应当从社会大众观念的提升入手,通过环保理念的普及,提高大众对环保问题的重视,以此提高社会监督作用,多方面加强工业废气污染治理,实现可持续化的工业发展。
参考文献
篇11
一、生物法处理高浓度H2S废气概述
在自然界中,硫元素是重要元素之一,与生物体的构成有着密切联系,一般硫的转化主要是在微生物直接或间接作用下进行的。由于,能够氧化硫化物的微生物种类非常多,经过相关研究和分析发现,运用光合硫氧化菌和化能无机营养硫氧化菌,对H2S废气进行处理,具有较强净化作用,在实践过程中,得到广泛应用。现展中,生物法处理高浓度H2S废气的机理是由荷兰学者提出的,一般经过如下三个处理流程:一是,将H2S废气从气态转化为液态或者固液态;二是,运用浓度差液态或者固液态中的H2S废气扩散到生物膜内,让相应的微生物吸附和吸收;三是,在微生物的体内,H2S气体会被当做营养物质和能源进行分解、利用,最终以污染物的形式被排除。
随着高科技信息技术的不断推广和运用,生物法处理H2S废气的现场中,试研究所得出的结论,为工业放大装置的设计和运行提供了可靠依据,从而大大提高工业生产过程中H2S废气的处理工作效率,使生态环境得到一定保护。在实际应用中,采用规模为18m3/h的中试装置,对某制药厂污水站H2S浓度为239~892mg/m3的废气进行现场处理,并对生物滤床和生物滴滤床两种处理工艺的处理效果进行对比发现,当气体空床停留的时间为二十八秒时,两种方法可以几乎完全去除H2S气体,并且整个处理过程运行稳定。将其它时间段进行对比,两种处理工艺的效果会存在一定差异。根据最终结果发现,生物滤床和生物滴滤床两种处理工艺的微生物都以细菌为主,但后者微生物生长密度高于前者,在工业放大装置中采用生物滴滤床工艺进行H2S气体的净化,以确保去除性能和运行控制稳定,减少生态环境污染。
二、生物法处理高浓度H2S废气所需的仪器和设备
根据上述情况,生物滤床(BT)和生物滴滤床(BTF)两种处理工艺的设计参数如图1,反应材料全部是有机玻璃制成,主要实验装置包括预处理器、风机、水泵、催化吸附柱和循环水罐等,一般采用逆流操作的方式进行相关实验。
三、生物法处理高浓度H2S废气的具体处理工艺
根据我国《空气和废气监测分析方法》的相关规定,运用碘量法和亚甲基蓝分光光度法进行每天一次的监测,并用玻璃电极进行pH测定、转子流量计进行气量的测定,从而确定H2S气体的含量和浓度。利用逆流方式,液体全部从水泵进入塔顶,通过喷淋和塔底回流,含有H2S气体的液体会循环到水罐,并在上升过程中附着在生物膜上,从而使H2S废气得到净化,最后从塔顶将净化后的废气排出。一般情况下,装置所处的室内温度为二十五摄氏度,用结晶紫单进行染色反应,以对微生物菌落进行分析,观察菌落的大小、形态和颜色等,最终通过平板进行微生物数量的计算,确定各菌落的比例。
以某药厂污水处理站中好氧生化池的活性污泥作为实验用的菌种,结合设计好的培菌机、实际需要处理的废气量,对菌种进行一定时期的培养,一般七天左右,含有H2S气体的混合液的pH值会从碱性降到酸性,而控制菌罐的pH值则会上升。在经过半个月左右的时间,则可得到降解废气的高浓度混合菌液。在进行H2S废气的处理实验前,先将该浓度的混合菌菌液淋洒在生物滤床(BT)和生物滴滤床(BTF)两种处理工艺的填料上,经过七天后BF可将H2S气体全部去除,八天后BTF可将全部H2S气体去除,从而完成培菌启动。
四、生物法处理高浓度H2S废气的结果探讨
在实际运用生物法进行高浓度H2S废气的处理过程中,与其它方法相比,BT和BTF可提前六天左右完成H2S气体的净化,使高浓度H2S废气的处理工作效率得到大大提高,从而降低H2S气体的净化成本,可在工业生产中不断推广和应用。一般情况下,整个实验要进行两个月左右,具有运行非常稳定的特点,使H2S气体的去除达到很好效果。根据试验相关数据和图表可知,废气中H2S的浓度为每立方米239~892毫克时,BF和BTF两种处理工艺的去除率在百分之九十以上,并且对H2S气体的浓度进行调整时,BT和BTF的去除率会发生很小变化,从而表明BT和BTF具有很强的耐冲击负荷能力,适应性和稳定性都非常好,给高浓度H2S废气的有效处理提供了可靠保障。
在实验过程中,分别对H2S废气的浓度给去除率带来的影响、H2S进口负荷对去除率的影响进行分析和研究发现,进气浓度的不同变化不会对去除率产生较大影响,BF方法下,H2S废气的去除率在一定时间内仍然可以达到95%以上;BTF方法下,H2S气体的净化效果一般都在95%左右,由此可见,BTF的去除效果比BT好,稳定性更强;进口负荷不断增加,BTF的去除率比BT好,具有更强的承受能力。因此,在实践应用中BTF的去除负荷效果更高,更符合各种生产要求。
另外,提取BF和BTF填料表面的微生物膜进行染色和培养,并观察菌落的形态、大小等,用平板进行计数。通过显微镜检测可知,BF和BTF两种处理工艺的生物膜上的菌落组成是差不多的,以细菌为主,以及少量的放线菌和真菌。根据相关图表显示和数据研究分析得出,微生物生长密度与BF和BTF的处理装置结构有着密切联系。BTF是通过循环水的连线淋洒,将老化的生物膜除去,从而提高单位面积内活性微生物的量,使BTF的去除率保持在较高水平,整体效果较好。
结束语:
综上所述,采用BF和BTF两种处理工艺进行H2S废气的处理,在同类型的处理装置中,可以大大节约处理时间,并且具有较高稳定性和适应性,从而取得很好的处理效果。与此同时,H2S废气的处理过程中,BTF的微生物生长密度较高,处理效果比BT更好,因此,在工业放大装置中可以广泛使用,以提高H2S废气的处理工作效率,节约企业的成本。
参考文献:
[1]刘芳.H2S废气处理研究进展[J].环境科技,2009,01:71-74.
[2]王旭英,宫磊,杜宗喜.生物催化氧化法处理H2S废气的试验研究[J].济宁学院学报,2009,03:24-26.
[3]钱东升.生物滴滤工艺净化H2S废气的性能及微生物种群结构研究[D].浙江工业大学,2011.
篇12
随着人类工业化程度的不断提高,人类向自己赖以生成的环境中排放的有害物质在不断地增多,“保卫地球、保护我们生成的环境”不再仅仅是一句危言耸听的口号,而是关系到我们子孙后代能否生存的刻不容缓的大事。人类需要发展但更需要保护环境,如何保护好我们的环境是我们广大科技工作者共同关心的问题。目前,工业生产给环境带来的主要污染物为工业废气、工业废水、废渣(即工业“三废”),其中工厂每天向大气中排放大量的各种各样的工业废气对人类的健康威胁极大,尽可能将污染物排放量降低到最低限度是非常必要的。
对生态环境影响较大和人类健康威胁较大且绝对排放量较大的废气主要包括:
(1)含NOx、SO2、P、As、PH3、CO、HF、C2HCl3、C2H3Cl3等污染物的有毒气体;
(2)其它气体,开展关于减少这类有害废气的研究是非常有必要的,本文结合著者在这一领域已经开展的研究,讨论了用现代吸附分离技术净化这类气体的意义及工业开发的可行性。
2 吸附分离技术治理废气技术基础及过程
(1)气体吸附分离技术基础
气体吸附分离技术是近年发展较快的一项新技术, 按照再生方式的差异常分为变压吸附法和变温吸附法两类:(1)变压吸附(英文名称Pressure Swing Adsorption,简称为PSA)法提纯或分离单元是根据恒定温度下混合气体中不同组份在吸附剂上吸附容量或吸附速率的差异以及不同压力下组分在吸附剂上的吸附容量的差异而实现的,由于采用了压力涨落的循环操作,强吸附组份在低分压下脱附,吸附剂得以再生;吸附剂的使用寿命一般为十年以上,所以PSA过程基本是无原料消耗过程;(2)变温吸附法(英文名称 Temperature Swing Adsorption,简称为TSA)或变温变压吸附法(简称为PTSA)是根据待分离组份在不同温度下的吸附容量差异实现分离,由于采用温度涨落的循环操作,低温下的被吸附的强吸附组份在高温下得以脱附,吸附剂得以再生,冷却后可再次于低温下吸附强吸附组份。确定是否采用吸附法分离的主要依据为待分离组分之间的吸附等温线,图1为待分离组分A(污染物)、B(非污染物)的在温度为t1或t2的吸附等温线所示:
对于污染排放物A如果与非污染组份B吸附容量差别较大,则可考虑PSA技术(当然,有时动态吸附容量也是确定分离的一个依据,但在污染治理中很少涉及);对于常温(t1)下强吸附组份A不能良好解吸的分离,可考虑采用TSA或PTSA技术。
吸附分离技术采用的吸附剂通常为活性炭、硅胶、氧化铝等常规吸附剂或在吸附剂上附载不同贵金属的专用吸附剂,或者是开发不同孔径、不同微孔容积的专用吸附剂。
(2)吸附工艺过程循环的实现
PSA、TSA或PTSA 过程的连续运行通常是通过多个吸附器依靠阀门切换实现的,当某些塔在吸附时,其它的吸附器则处于再生等步骤;吸附饱和后的吸附剂需要再生时,其它已再生好的吸附器开始进入吸附步骤,如此实现循环操作。下图为西南化工研究院实验开发成功的TSA净化并回收硝酸尾气中NOx的流程示意图。
3 工业废气来源及治理研究
随着工业化程度的不断提高,人为产生的空气污染物所占空气总污染物的比例在不断增加、对人类自身健康的危害在不断增大。目前,排放空气污染物最多的工业部门有:石油与化学工业、冶金工业、电力工业、建筑材料工业等等,下面就工业排放的主要有害气体污染物NOx、SO2、P、CO、卤代烃、挥发性有机物(简称为VOC)等的吸附分离治理前景和可行性简要分析如下:
(1)硝酸生产尾气、烟道气、石灰窑气等各种工业废气中的NOx
硝酸生产过程中要排放大量的硝酸尾气,其中含有NOx。NOx不仅对人类、生物有剧毒,而且导致光化学烟雾的生成,其危害极大。我国现有硝酸生产工厂50多家,硝酸尾气中NOx的浓度一般为500~5000 ppm,每年排入大气的NOx(以NO2计)约为6万吨。如果能回收这些NOx,不仅控制了对环境的污染,同时可以增产硝酸,降低生产成本。
目前西南化工研究院已开展了硝酸尾气的吸附法回收治理工业性试验研究工作,实验证明了这种方法有相当的优越性。研究表明,净化气中NOx浓度可控制在低于0.02%,对应尾气中NOx浓度从0.04%到0.8%,回收气中NOx浓度变化范围可从0.8%至5%,可以返回系统生产硝酸。
对石灰窑气等废气中氮氧化物的脱除技术,西南化工研究设计院已开发成功,并申报国家专利。对烟道气中氮氧化物的脱除,根据烟道气组成采用TSA法与其他化学技术处理法可有效控制氮氧化物的排放量。
(2)黄磷尾气净化和从黄磷尾气中提纯一氧化碳
我国每年生产黄磷40万吨,生产过程中每生产一吨黄磷会产生2500Nm3尾气,每年产生的尾气量达10亿Nm3,其主要成份为一氧化碳(约85%~90%),CO是一种易燃易爆有毒的气体,尾气中含有的P、S、As、F等及其化合物的有毒组分未经处理排放到大气中也将严重污染环境;同时CO又是一种重要的碳一化工原料,尾气中含有的P、S、As等易使催化剂中毒,所以有效处理黄磷尾气具有非常重要的意义。近年来,国内外在净化黄磷尾气和开发黄磷尾气领域已开展了较多工作,其中西南化工研究院开展了尾气处理的动态吸附研究实验,取得了可循环操作的TSA净化流程,并结合自己的CO提纯专有技术,已转让一套采用吸附法从黄磷尾气净化并提纯CO的工业装置。
(3)二氧化硫的控制
硫氧化物主要是二氧化硫,它是大气中数量最大、分布最广、影响最严重的环境污染物之一,目前控制的主要方法有:高烟囱稀释法、采用低硫燃料、排放废气脱硫等,近年在采用干法(吸附剂吸附法)、湿法脱硫技术领域开展了较多研究,工业化应用已很成熟。 吸附法脱除废气中的SO2又分为物理吸附法和化学吸附法,物理吸附时被选择性吸收的SO2可通过升温或降压解吸出来,化学吸附时吸附剂同时起催化作用,被吸附的SO2被废气中的氧氧化成SO3,后者在与水生成硫酸。目前,国内关于采用吸附法净化SO2的报道多为实验研究报告。
(4)含三氯乙烯、三氯乙烷等卤代烃的排放废气净化
含卤代烃的废气净化目前较为成熟的技术是溶剂吸收或吸附法处理,如:(1)彩色显象管生产线清洗阴罩时挥发的三氯乙烷气体刺激人体粘膜,长期接触能使运动神经系统受损,无论从环境保护还是降低生产成本来看都必须回收利用。航天总公司四院四十二所成功开发了应用活性炭纤维回收三氯乙烷,避免了环境污染,使用效果良好。(2)在工业上应用很广的三氯乙烯,是对人体和环境都有较大危害的有毒污染物,含三氯乙烯工业废气排放前必须脱除其中超标含量的TCE,应用吸附法可有效控制排放尾气中三氯乙烯含量并回收其中的三氯乙烯,西南化工研究院在这方面开展了较多实验研究,并取得了良好的实验效果。
(5)含高沸点有机物的尾气净化
目前,采用吸附法净化、回收排放尾气中的有机组份的工业应用是比较成功的,采用的通常流程为TSA或PTSA流程,既可有效脱除有机污染物又可回收有用组份。根据大量实验研究,西南化工研究院在已开发的多套PSA装置的预处理装置中,成功地采用TSA、PTSA技术很好地解决含高沸点有机物的尾气净化,如苯、萘等的脱除。
(6)排放气中一氧化碳的脱除
CO是一种易燃易爆有毒的气体,未经处理排放到大气中将严重污染环境,所以严格控制排放气中CO含量是非常有意义。目前,国内北京大学开发的13X分子筛载体的Cu(I)吸附剂、南京化工大学开发的稀土复合铜(I)吸附剂都是很好的CO吸附剂。实验表明,采用PSA或TSA技术脱除CO是一种有效的手段, 排放气中的CO可控制在1ppm以内。
(7)含氟排放废气的净化
含氟(主要为HF和SiF4)废气数量虽然不如硫氧化物和氮氧化物大,但其毒性较大,对人体的危害比SO2大20倍,因此工业生产排放气必须控制含氟化合物的排放量。目前,HF回收通常生产冰晶石,尽管从理论上可采用吸附法结合其他化学法处理含氟废气,但目前国内应用PTSA回收含氟排放废气的工业装置尚未见报道。
(8)从富含甲烷气源中浓缩、回收甲烷
矿井瓦斯是在采煤过程中产生的,瓦斯气中含有25~45%的甲烷及其它一些组份,其热值仅2500kcal/m3左右,难以利用,通常排入大气,以致污染环境。我国每年约有30亿m3瓦斯放空。因此有效利用矿井瓦斯已成为一个热门课题。西南化工研究设计院开始采用PSA技术从矿井瓦斯中浓缩甲烷的实验研究,可以把甲烷浓度从20%提高到50~95%,浓缩后的富甲烷气热值明显提高,可以作为优质燃料和化工原料。
(9)工业二氧化碳排放的控制
近年来,由于CO2排放量增加(每年以二氧化碳形式放入大气中的碳约为50亿吨),大气中二氧化碳已从工业污染时代的270ppm上升到近500ppm,大量二氧化碳在大气中的积聚引发全球的温室效应已经引起了人类的重视。从含CO2浓度较高的排放废气中回收CO2既解决了环境问题,又回收了有用组份,减少了资源浪费。从富含二氧化碳的工业废气中回收二氧化碳这些工业废气主要有:石灰窑气(含二氧化碳28%~38%)、制氨和制氢装置副产气(含二氧化碳28%~99%)、烟道废气(含二氧化碳10%~18%)及脱碳再生气等。通过提纯,产品二氧化碳的纯度可达99.5~99.99%,指标均可达到或超过二氧化碳食品添加剂国家标准(GB1917-80)。
(10)PSA富氧处理城市垃圾废气
随着城市化建设规模的不断扩大,城市每天产生的垃圾量激剧增加,目前主要采用空气燃烧的方式人类的生活垃圾,每天通过燃烧垃圾产生的大量含VOC有毒废气给环境造成极大的污染;如采用PSA技术从空气富集氧气(氧纯度可达到93%)替代空气处理城市垃圾,则大大降低了有毒废气的排放量。
结束语
随着对吸附分离研究机理的不断深入,结合其他化工处理技术,吸附分离技术必将在环境保护领域发挥越来越重要作用。
参考文献
(1)童志权,陈焕钦编著 工业废气污染控制与利用. 北京:化学工业出版社,1989.612-614
(2)陈健,魏玺群. 废气中三氯乙烯的脱除及回收新工艺. 天然气化工 1999,Vol.24(4),25-28
(3)刘锦,王正方. 1,1,1-三氯乙烷回收装置 化工环保 P22-24 2000,Vol 20(1)
(4)覃世金 "黄磷生产中‘三废’综合利用的思路" 湖北化工 1997(2)51-53
(5)周波 "黄磷电炉尾气的应用实践" 云南化工 1996(4)44-45
(6)何寿林,汪鸿. "回收利用黄磷尾气的建议" 化工矿山技术 1997, vol.26(2) 53
(7)藏云鹏 "氟化氢废气的处理" 玻璃与搪瓷 Vol.17(5)
(8)吴克义 "氧化铝吸附氟化氢的特性" 环境污染与防治 1996 Vol.12(1),34-36
(9)Shakirov, B.S. Kompleksn. Ispol'z. Miner. Syr'ya,(10),85-8(Russian) 1992
(10)hakirov, B.S..Khim. Prom-st. (Moscow),(3-4),148-9(Russian) 1993.
(11)Kataoka,Masaki;Hara,Kozo. JP 10279301 A2 1998
(12)居沈贵,刘晓勤,等 天然气化工1998,Vol 23(1),29-32
篇13
针对颗粒污染物粒径大小,工业废气治理办法主要有干法、湿法、过滤和静电4类,最常用的就是袋式除尘器(过滤)、旋风式除尘器 (干法)、泡沫除尘器(湿法)等。随着对除尘效率要求的提高,静电除尘也逐步开始使用起来。
静电除尘器由两个电极组成。电极间加上电流电压后,在电极之间产生电场。颗粒污染物随废气经过电场,粒子被离子碰撞并使其带有电荷。带电的粉尘就向集尘极移动,达到极板。这样,空气中污染物就被吸附在极板上,使空气得到净化,尘粒也由于本身的重力落入灰斗。
静电除尘器可以捕集一切细微粉粒或液滴,而且处理废气量大,运用温度范围广,因此被工业企业广为看好。但由于占地面积大,投资大,使一些中小型企业不能选择。
氮、硫氧化物治理技术
大气中由于有了大量的氮氧化物、硫氧化物,才发生大气污染,由于产生了一件又一件的污染事件。科学家针对这类氧化物的性质,提出了解决污染的技术有吸收法、吸附法、冷凝法、催化转化法、燃烧法、生物净化法、膜分离法和稀释法。现在最常用的是吸收法,废气经过吸收塔,与塔顶上流下的吸收液发生交流,使吸收液中的成分与废气中的有害成分发生化学反应,减少了废气中的有害成分。最后,当废气从塔顶出来时,已成为洁净的气体了。这种治污方法简单,投资少,操作也方便。