引论:我们为您整理了13篇平行四边形的面积教案范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。
篇1
3、培养学生自主学习的能力。
4、使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。
二、教学重点:平行四边形面积的计算公式的推导及计算。
三、教学难点:平行四边形面积计算公式的推导过程。
四、教学用具:长方形、平行四边形硬纸片、剪刀、直尺
教学过程:
一、引出主题:
师:大家知不知道我们学校正在将操场隔壁的地方改造为校园一角,专门留出两个空地作为我们同学们的学农小基地(在黑板上贴出两个图案,一块是长方形——甲地,一块是平行四边形——乙地)。下面我们就看一下这两块空地是什么形状的?学校啊,又决定将甲地分给四年级,乙地分给五年级负责除草,那么大家知道哪一个年级负责地方要大一点呢?
师:现在我们先看一下甲地。我们要求这块长方形地的面积,只要量出什么啊?
生:长方形的长和宽(点出长、宽)。
师:现在老师已经量出来长15米、宽10米,那么它的面积是什么?
生:(计算)150平方米。(要求学生回忆起长方形的面积公式,并运用公式计算出这个长方形的面积。)(板书:长方形面积公式)
师:同学们现在都能很熟练地计算出长方形的面积啦!那么,这块平行四边形地的面积是多少啊?我们该怎样计算呢?这就是今天我们要一起探讨的问题啦!(板书:平行四边形的面积)
二、动手操作(得出公式):
师:以前我们是用面积器量数出长方形有多少个小格子或是得出长方形的长和宽来用面积公式来算出了长方形的面积。那我们可不可以运用以前的知识或是我们的经验,想出计算这个平行四边形的面积的方法呢?有哪位同学已经想到办法来?
生:用剪刀沿着平行四边形的高剪,再拼成长方形,再用尺子量出底(长)18厘米,高(宽)10厘米。面积是180平方厘米。(让学生把操作展示给全班同学看)
师:这位同学很聪明,他是沿着高来剪,再拼成一个长方形。那老师现在再问你一个问题,你为什么要剪拼成长方形?
生:因为长方形的长和宽与原来平行四边形的底和高相等,而长方形面积我们会求。
三、得出结论:
师:沿着这条垂线把平行四边形剪成了一个三角形和一个梯形,把三角形移到梯形的一边,就变成了长方形。拼成的长方形的长与平行四边形的底相等,宽与平行四边形的高相等。因为长方形面积=长×宽(板书),所以我们推导出平行四边形面积=底×高(板书)。我们称这种方法为“割补法”(板书)。如果我们用s来表示平行四边形的面积,a来表示平行四边形的底,h来表示平行四边形的高,你能自己写出平行四边形的字母公式吗?
生:s=a×h
师:我们还可以将这条公式缩写为:s=a·h或者是s=ah。
四、巩固提高:
练习:一块平行四边形钢板,底为4.8厘米,高为3.5厘米。
它的面积是多少?(结果保留整数。)
篇2
小学数学课堂上,这样的师生问答非常普遍。教师问得好,可以启发学生思维,使学生形成正确概念;问得不好,就可能禁锢学生的思维,甚至导致学生形成错误概念。
前面这一问一答,连起来说,就是:要想求出一个平行四边形的面积,就必须知道这个平行四边形的底和高。
这个结论或许会使学生形成这样一个思维定式:只要遇到求平行四边形面积的问题,就必须先求平行四边形的底和高。如果求不出底和高,自然就求不出平行四边形的面积。这样一来,学生如果遇到下面的问题,可能就无从下手了。
问题:在下图中,三角形ABE的面积为24平方厘米,求平行四边形ABCD的面积。
翻阅一些《小学数学教案选》发现,类似提问还比较普遍,比如:
要求出长方形的周长,就必须知道这个长方形的什么?(答:长和宽)
圆锥和圆柱的体积在什么条件下存在三分之一的倍数关系?(答:等底等高)
要求一个小数的倒数,就必须先把它化为分数。
为了说明这种语言的问题所在,下面我从逻辑和数学两个方面进行分析。
从逻辑的角度看,一个命题(在逻辑学中称为“判断”)与它的逆否命题是等价的,它的逆命题与它的否命题是等价的。但命题与它的逆命题和否命题并不等价。这就是说,一个真命题的逆命题和否命题未必是真的。根据平行四边形面积公式,可以知道命题——如果已知一个平行四边形的底和高,则可以求出这个平行四边形的面积——是真的。其逆命题和否命题分别是:如果可以求出一个平行四边形的面积,就一定知道这个平行四边形的底和高;如果不知道平行四边形的底和高,就无法求出这个平行四边形的面积。这样的结论与原来的命题并不等价。老师将求解面积的一条途径简单化为唯一途径,极容易给学生造成错误认识。事实上,能用公式求出面积的平面图形是很少的,更一般的方法是寻求图形面积之间的关系。比如在前图中,只要看出平行四边形ABCD的面积是三角形ABE面积的2倍,问题就可以迎刃而解了。
平行四边形面积公式“面积=底×高”,在数学中可以看作是一个函数关系。函数通常描述自变量和因变量之间的依赖与制约关系,体现的是当自变量确定的时候,因变量随之确定。反过来却不一定成立,就是说当因变量确定的时候,自变量未必随之确定。
在“面积=底×高”这一函数关系中,底和高是自变量,面积是因变量,当底和高确定的时候,则面积随之确定;反过来,当面积确定的情况下,底和高未必能够确定。
教师在课堂上提问,其根本目的在于促进学生思考。因此不妨把提问设计得宽泛一些,让学生有充分的思考空间。在教学平行四边形的面积公式之后,如果提出如下问题供学生思考,也许会得到更好的效果。
1.如果两个平行四边形等底等高,那么这两个平行四边形的面积具有什么样的关系?
2.如果两个平行四边形面积相等,那么这两个平行四边形的底和高具有什么样的关系?
篇3
心理学研究表明,学生的发展有两种水平:一种是学生的现有水平,指独立活动时所能达到的解决问题的水平;另一种是学生可能的发展水平,即学生在他人帮助下能够达到的发展水平,两者之间的差异就是最近发展区. 教学应着眼于学生的最近发展区,为学生提供带有恰当难度的内容,调动学生的积极性,发挥其潜能,促成学生达到下一个发展阶段的水平,然后在此基础上进行下一个发展区的发展. 教学要想对学生的发展发挥主导和促进作用,教学设计就必须置于学生的最近发展区中,为此,教师必须深入研究学生,洞悉学生的最近发展区,优化导学稿编制.
教师基于学生的最近发展区编制导学稿,借助导学稿开展教学,有利于引导学生通过课外自学、课堂上的互助合作学习达成教学目标,使学生们“跳一跳,摘到苹果”,激发学生的学习热情;反之,脱离学生的最近发展区,盲目编制出的导学稿,往往不能有效地引导学生自主学习,甚至有的内容,学生虽然尽心竭力,但是仍不能领会,会挫伤学生的学习积极性.
2012年5月,在一所普通初中,笔者采用学生小组互助合作式教学模式上了一节公开课,内容是浙教版初二数学下册“5.3.1平行四边形的性质”,深有感触. 开课前一天,本备课组编制了如下导学稿,供学生们课前自学.
课题:平行四边形性质(1)
No.050301?摇 姓名______?摇?摇 第___小组
【学习目标】
1. 掌握平行四边形对边相等的性质和推论.
2. 运用平行四边形对边相等的性质和推论,解决有关平行四边形简单的计算与证明问题.
【重点与难点】
重点:平行四边形的性质定理――“平行四边形的两组对边分别相等”.
难点:平行四边形性质定理和推论的应用.
【基础部分】
1. 到目前为止,你知道平行四边形有哪些性质?请结合图1写出来.
2. (1)任意画一个平行四边形ABCD,量一量它的对边,你发现了什么?
(2)请证明你的发现.
已知:如图2所示,四边形ABCD是平行四边形,求证:AB=CD,AD=BC.
(3)归纳:平行四边形的两组对边______.
几何语言叙述:因为四边形ABCD是平行四边形,所以______.(?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇 )
3. (1)如图3所示,l1∥l2,AB,A1B1是夹在l1与l2之间的平行线段,AB与A1B1相等吗?请说明理由.
(2)若AB,A1B1是夹在l1与l2之间的垂线段(如图4所示),AB与A1B1还相等吗?请说明理由.
(3)归纳:①夹在两条平行线间的平行线段______.
②夹在两条平行线间的垂线段______.
几何语言可分别叙述为:
①(如图3所示)因为l1∥l2,AB∥A1B1,所以______. (?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇)
②(如图4所示)因为l1∥l2, ABl2,A1B1l2,所以______. (?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇)
4. 已知平行四边形相邻两边之比为3 ∶ 4,周长为28 cm,则这个平行四边形的四条边长分别为______.
5. 在?荀ABCD中,已知AC=3 cm,ABC的周长为9 cm,则平行四边形ABCD的周长为______.
6. 如图5所示,E是直线CD上的一点,已知?荀ABCD的面积为32 cm2.
(1)ABE的面积为______cm 2.
(2)若AB=4 cm,则AB和DE间的距离为_____cm.
【要点部分】
1. 如图6所示,E,F分别是?荀ABCD的边AD,BC上的点,且AF∥CE,求证:DE=BF.?摇
2. 如图7所示,在?荀ABCD中,∠B=30°,AD=3,CD=2.
(1)求AD与BC间的距离;
(2)求?荀ABCD的面积.
变式:(1)平行四边形的两邻边长分别为8和10,两条较长边之间的距离为4,求两条较短边之间的距离.
(2)如图8所示,在?荀ABCD中,AEBC于点E,AFCD于点F,若AE=4,AF=6,?荀ABCD的周长为30,求?荀ABCD的面积.
3. 已知点A(3,0),B(-1,0),C(0,2),以A,B,C为顶点在图9中画平行四边形,求第四个顶点D的坐标.
【拓展部分】
如图10所示,在?荀ABCD中,AB=6 cm,AD=4 cm,∠BAD的平分线交CD于点E,∠ABC的平分线交CD于点F,求线段EF的长.
【课堂小结】
本节课你学到了哪些知识?在探索知识过程中你用了哪些方法?请写下来.
【当堂检测】
1. 已知?荀ABCD的周长为16,若AB=5,则BC=________.
2. 如图11所示,?荀ABCD的周长为18 cm,AB=4 cm,AE平分∠BAD交BC边于点E,则EC等于(?摇 )
A. 1 cm?摇?摇?摇 B. 2 cm?摇?摇?摇?摇C. 3 cm?摇?摇?摇?摇D. 4 cm
3. 已知直线a∥b,夹在a,b之间的一条线段AB的长为6 cm,AB与直线a的夹角为150°,则夹在a,b之间的距离为______.
4. 在?荀ABCD中,AB=2,BC=3,∠B=60°,则?荀ABCD的面积为______.
5. 如图12所示,在?荀ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F,试判断AF与CE是否相等,并说明理由.
课前,笔者批阅了学生们交上来的导学稿,发觉学生们认真进行了课前自学,导学稿中的基础部分做得很认真.
上课伊始,笔者创设情境,调动起学生们的学习热情,明确本堂课的学习目标,开展学生小组展示活动.学生们兴趣盎然,认真参与小组对学、群学,学生们积极讨论遇到的疑难问题. 经过学生们的自主、合作探究,得出平行四边形的性质定理1及其两个推论,并运用已学的基础知识灵活解决了基础部分的问题4、问题5及问题6.
学生们从基础部分学习顺利地过渡到要点部分学习. 在大展示环节,在教师的引导下,“兵教兵”,学生们依旧非常投入. 讲解要点部分问题1时,学生们能运用新学的知识一题多解;讲解要点部分问题2时,学生们能灵活地运用所学知识解答,条理清晰;但当解答要点部分问题3时,学生遇到了很大的困难. 笔者看了各组学生的解答结果,发现学生们都没有完全做对,笔者就该题引导学生开展小组讨论、合作探究. 通过激烈的讨论与探究,学生们逐渐得出第四个顶点D的坐标有3种情况:(-4,2),(4,2),(2,-2).
大展示后,笔者引导学生进行了课堂小结和当堂检测,学生们表现积极,当堂检测结果良好,学生初步达成了本堂课的学习目标. 但是课后,学生们也提出了对要点部分问题3“第四个顶点D的坐标”的确定仍不甚理解,原因出在哪里呢?
课后,笔者与本备课组老师一起分析了这个问题,我们认为,引起这种情况的主要原因是:该题解答对学生的要求超越了学生当时的“最近发展区”. 课中,学生利用平行四边形的定义学习平行四边形的性质,而该题的解答涉及了平行四边形的判定,并要求学生分类讨论. 方法一,根据平行四边形的判定定理,当AB是平行四边形的一边时,分两种情况分别画出图形,得顶点D的坐标分别为(-4,2)和(4,2);当AB是平行四边形的一条对角线时,画出图形,得顶点D的坐标为(2,-2). 方法二,根据平行四边形的判定定理,分三种情况,画出图形,可知当AB,BC是平行四边形的一组邻边时,顶点D的坐标为(4,2);当AB,AC是平行四边形的一组邻边时,顶点D的坐标为(-4,2);当AC,BC是平行四边形的一组邻边时,顶点D的坐标为(2,-2). 由于学生还未学过平行四边形的判定定理,虽然导学稿上印有网格图,学生通过作图得出了顶点D的坐标,但是对于此时的学生来说,仍不甚理解,不能领会顶点D的坐标的求解过程. 教学实践表明,这个问题放在学生学习了平行四边形的判定定理之后解答,情形就完全不同了.
篇4
(1)使学生理解、掌握三角形面积的计算公式, 并能运用它正确计算三角形的面积;
(2)通过指导实际操作, 培养学生的抽象概括能力和思维的创造性;
(3)使学生明白事物之间是相互联系、可以转化和变换的。
完成这一教学目标,要根据学生的认识规律,在指导学生进行实践活动的过程中,把动手操作与动脑思考 、动口表述结合起来。也就是说,首先把学习知识应有的思维活动“外化”为动手操作,然后通过这个“外化 ”的活动再“内化”为思维活动。因此在教学过程中,把操作、思维、表述紧密结合起来,才能完成这一教学 目标。
本节课的教学重点是理解、掌握三角形面积的计算公式。
教学难点是理解面积公式的算理。
华罗庚说过,“难处不在于有了公式去证明,而在于没有公式之前,怎样去找出公式来。”要培养学生的 空间观念和创造能力,就必须重视推导公式的过程教学,从学生的认知特点出发组织学生去大胆地操作实践, 探求规律,推导出公式。
二
学生掌握新知识的过程是在老师的引导下,充分利用已有知识和学习经验,积极主动地参与探求的过程。 把教材的间接经验通过自身的活动去重新发现、完善和建立新的认知结构。
1.抓住新知识的基础,做好学习新知识的准备
学习新知识的基础是选取复习内容的依据,新旧知识的连接点是复习的重点。三角形面积这个新知识的基 础是长方形、正方形、平行四边形的面积公式及三角形底和高的认识。新旧知识的连接点是图形的转化和变换 。在教学新知识之前除了要复习好以上的内容外,还要指导学生回忆平行四边形面积公式的推导过程,唤起“ 转化图形、建立联系、推导公式”的学习方法的认识。为新知识的学习做好知识的、能力的以至情感方面的准 备。
2.新知识的教学可以分为4个层次进行
第一层,操作学具。启发学生用学具袋中的两个三角形拼成一个学过的图形。学生动手、动脑相互交流, 得出“两个完全一样的(全等)三角形,可以拼成一个长方形、正方形或平行四边形。
第二层,观察与思考。提出问题引导学生观察拼成的正方形、长方形或平行四边形与三角形的关系。三角 形的底和高与正方形的边长、长方形的长与宽,以及平行四边形底和高的关系?
第三层,推导公式。利用图形之间各部分的对应关系,思考它们面积之间的关系,最终推导出:因为,平 行四边形面积=底×高(平行四边形的面积是两个与它等底等高的三角形面积的2倍),所以, 三角形的面积 =底×高÷2
第四层,深化认识。
为了使学生加深对三角形面积计算公式的理解,进一步启发学生,用一个三角形通过割补的办法推导出三 角形的面积计算公式。学生再次动手,动脑,相互交流,得出(如下图)如下计算公式:
(附图 {图})
三角形面积=底×(高÷2)
三角形面积=(底÷2)×高
经过学生两次动手、动脑、交流,运用转化和变换多向探索,把求三角形面积这一探索过程充分展示出来 。不仅深化了对公式的理解而且渗透了转化和变换的数学思想,培养了学生操作能力和分析概括的能力,发展 了学生的空间观念。
3.新知识教学后要及时组织练习。
练习可从4个方面进行。口答题(理解算理的练习),(1)已知图形的底和高,可以求出这个图形的面积 。那么,这个图形可能是什么形?这些图形之间有什么共同点?面积有什么关系?(2 )三角形面积等于平行 四边形面积的一半。对不对?为什么?看图口算(运用公式计算的练习)。下图中哪个三角形的面积可以用6× 5÷2求出, 为什么(选择条件的练习)?
(附图 {图})
已知三角形的面积是15平方厘米,高是5厘米。求它的底?如下图, 在一个正方形和一个长方形中,有一 个三角形(阴影部分),求三角形的面积(灵活运用知识的练习)。
(附图 {图})
新课后的练习一定要练在重点上和关键处,以加深学生对新知识的认识和提高运用知识的能力。
三
本节教学设计的基本思路是:
(1)发挥教师的主导作用,同时要为学生创造主动的发展空间,引导学生创造性地参与教学的全过程。通 过操作,观察, 推导和深化4个教学层次,使学生不仅在理解的基础上掌握新知识,而且进一步体会运用旧知 识去研究新问题的学习方法,从“学会”逐步到“会学”,寻找到解决问题的正确方法。
(2)在教学过程中,有目的的不失时机地培养学生操作能力, 观察能力,分析推理的能力。使课堂教学 的过程成为既传授知识又培养能力的过程。
附 三角形面积教案
一、教学内容:三角形的面积
二、教学目标:
1.使学生理解、掌握三角形面积计算公式,并能运用它正确计算三角形的面积;
2.通过指导实际操作,培养学生抽象、概括能力和思维的创造性,发展空间观念;
3.使学生明白事物之间是相互联系,可以转化和变换的。
三、教学过程:
(一)复习引入
1.出示平行四边形,复习它的计算公式。
2.投影锐角三角形,直角三角形,钝角三角形,看图辨识三角形各条边上的高?
师:我们已经掌握了长方形、正方形、平行四边形面积的计算方法,那么怎样计算三角形的面积呢?这节 课我们就来解决这个问题。
(二)新授
1.操作学具。
师:你能用学具袋中的两个三角形拼成一个熟知的平面图形吗?
学生拿出学具动手操作拼成一个学过的图形。
(附图 {图})
出示学生拼出的图形。
2.观察与思考。
师提出问题引导学生观察:①用两个什么样的三角形才能拼成一个学过的平面图形?②平行四边形、长方 形、正方形的面积与三角形的面积有什么关系?为什么?③三角形的底和高与平行四边形的底和高有什么关系 ?与长方形的长和宽有什么关系?与正方形的边长有什么关系?
学生观察、讨论、相互交流、弄清楚面积关系以及底、高之间的关系。
师小结板书:
平行四边形面积=底×高
长方形面积=长×宽
正方形面积=边长×边长
2个三角形面积=底×高
三角形面积=底×高÷2
3.推导公式。
(1)怎么求平行四边形的面积?长方形面积?正方形面积?
(2)平行四边形面积,长方形面积, 正方形面积都是由几个完全一样的三角形组成的?
(3)怎么求一个三角形的面积?
师随着完成上面的板书并引导学生小结:怎么求三角形面积?为什么?
4.深化认识。
师启发回忆
(附图 {图})
学习平行四边形面积时,我们运用割补的办法把平行四边形转化成了长方形,那么运用割补的办法能不能 把一个三角形转化成一个平行四边形或长方形呢?
学生动手操作、研究、讨论、相互交流,教师辅导提示,得出下图。
(附图 {图})
积=底×高的一半 三角形面积=底的一半×高
=底×高÷2 =底×高÷2
(1)说一说你是怎么割补的?
(2)议一议平行四边形的面积、 长方形面积与三角形面积的关系,平行四边形的底和高,长方形的长和 宽与三角形底和高的关系?得出什么结论?
(3)师整理公式(完成上面的板书)
(4)师总结:三角形面积等于底乘以高除以2。(板书字母公式:S=ah÷2),可以理解为底×高乘积的 一半,也可以理解为底×高的一半,还可以理解为底的一半×高。
四、巩固练习
(一)理解性练习(口答)
1.三角形的底乘以高得到的是什么图形的面积?再怎么求才能得到三角形面积?
2.三角形面积等于平行四边形面积的一半;对不对?为什么?
(二)运用公式的练习(口答列式)
(附图 {图})
(三)选择条件的练习
(附图 {图})
哪个三角形的面积等于6×5÷2?其它两个为什么不是?
(四)灵活运用知识的练习
篇5
二、内容枯燥向富有情趣转变
由于旧教材具体一定的封闭性,有的教师又不能创造性地使用教材,仍是以书教书,势必让学生感到数学内容枯燥无味,产生厌学心理. 因此,教师应努力创设良好的学习情境,变抽象为形象,变无趣为有趣,使课堂永远对学生都有一定的魅力. 一些教师教学观念陈旧,仍把教材当成学生学习的唯一对象,照本宣科满堂灌,学生听得很乏味,“闷课”仍是较为普遍的现象. 现在,课程设计将“给予知识”转向“引起活动”,学生不再是被动地接受现成的知识,而是通过活动获取知识,获得体验. 如“年月日”一课让学生先看日历表再填写表格,从中找到一年中有多少个大月或多少个小月. 然后提出问题:拿出自己的拳头怎样帮助记忆大月或小月?学生自己数一数,然后讨论结论,学习效果都出乎意料的好. 这完全得益于课堂教学内容有情趣化的设计,使学生在良好的教学氛围中愉快地学习.
三、操作工向探索者转变
《数学课程标准》就如何实现学生动手实践、自主探索、合作交流的学习方式指出:学生是数学学习的主人,教师只是学生数学学习的组织者、引导者和合作者. 例如:小学数学五年级上册“平行四边形面积的计算”,首先给出长方形和平行四边形的图形,提问:这两个图形的面积是否相等?在小组里说说你准备怎样比较这两个图形的面积. 并让学生数一数它们各占几个小格子,分组交流. 老师帮他们验证一下. 然后动手数,自己找出长方形和平行四边形面积的关系. 接着提问:你能想办法把图中的平行四边形转化成长方形吗?让学生演示剪和拼的过程. 继续请学生演示,启发学生沿平行四边形的高剪开. 平行四边形拼成长方形后,让学生找出平行四边形和长方形的关系,即:第一,它的面积大小有没有变化?第二,长方形的长和宽与平行四边形的底和高有什么关系?第三,根据长方形的面积公式,怎样求平行四边形的面积?再从教科书的第127页上选一个平行四边形剪下来,先把它转化成长方形,并求出面积,再填写表格. 最后,通过反馈,交流推导出其面积公式.
可见,上述整个推导公式的过程全部由学生自主操作、观察、交流、总结. 学生积极主动地参与学习活动,真正成为了学习的主人――探究者,亲身经历探索知识的全过程,同时掌握了科学探究方法,既培养了科学探究方法的精神,又提高了自主获得知识解决问题的能力.
篇6
关于教学预设与生成关系的话题,今天再度提出来,旨在探讨在小学数学教学中教师如何科学地把握课堂的去向,如何更好地贴近教学预设,如何激发学生的潜能,调动学生学习的积极性,让学生在课堂上活力四射。
【案例一】师:这里有2个完全一样的三角形,你能把它们拼成什么图形?
生:平行四边形,长方形,大三角形。
师:对于拼成的长方形,你发现了什么?
生1:它是由2个直角三角形拼成的,一个直角三角形的面积是长方形面积的一半,能够得出三角形的面积=底×高÷2。
师:从拼成的平行四边形中能得到这个结论吗?
生2:可以的,平行四边形的面积=底×高,所以一个三角形的面积=底×高÷2。
师:大家都很聪明,现在会计算三角形的面积了吗?
【案例二】师:我们已经知道长方形、正方形、平行四边形等面积的计算方法,你还想计算谁的面积呢?
生:梯形,圆形,三角形……
师:很好!今天我们就先研究三角形的面积。你打算怎样研究呢?
生1:把长方形沿对角线剪开,得到2个完全一样的三角形,所以三角形的面积等于长方形的面积的一半,长方形的长是三角形的底,长方形的宽是三角形的高,得出一个三角形的面积=底×高÷2。
生2:我们是把2个完全一样的锐角三角形拼在一起,发现能拼成一个平行四边形。平行四边形的面积=底×高,那么一个三角形的面积=底×高÷2。
【思考】
1.预设应贴近学情
教学预设是什么?是剧本,是脚本,是师生教学活动的基本框架。从上述两个案例中不难发现,这两份“剧本”的定位是不一样的,因此在推进“剧情”发展的过程中呈现的态势也大相径庭。
案例一中,教师给定学具,让学生在既定的框架中操作,这样的实践只能算是经过,而不是经历,更谈不上学生感知的积累和视野的拓展,学生很难获得深刻的感悟。案例二则给予学生很多的机会,学生既可以在剪纸中,也可在折纸中、拼图中获得知识。不一样的实践,会有不一样的感受,在这种学习情境中,学生的感知必定丰富。
从学情入手,从引导学生反思处着力,教学A设就会为有效学习助力,成为快乐学习的基本保障。
2.预设应关注探究
精心设计是教好数学的基本保证,精简设计是教学智慧的体现。因此,教学预设要更多地关注学生的探究活动,让学生在解读一个个数学现象中发现知识的真谛。
在案例二中,教师的放手体现了教学的智慧,教学预设不再是教学的紧箍咒,它加速了学生智慧火花的碰撞,有利于学生探索热情的再现。这种灵活多变的、富有弹性的教学掌控,让数学教学流淌着智慧的灵光,更为学生的自主学习、创造性学习提供了坚实的平台。
案例一的教学,从表面上看,学生能够动手实践了,在活动中也有发现了,但教师提供的实践素材是固定的,是单一的,这样一来,学生的选择是有限的,思维的空间也是狭窄的,学生被动执行操作指令的痕迹是明显的。这样的学习不是真正的自主学习和合作学习。
3.生成应充满灵气
学生是人,有自己的情感、思考和待人接物的态度。因此,教学应在预设的架构上进行适度、适宜、灵活的删减,使之更加符合课堂教学,贴近教学走向,让课堂充满和谐与灵动。
如案例二的后续还出现了这样的对话“我有一个新发现,把三角形的顶角部分剪下来后可得到梯形,再沿梯形的中位线剪开,也能拼成平行四边形!”“不对!你剪下的那部分放哪了呢?”……学生有直觉思维,它是一种灵感,也是一种创新。因此,给学生充分交流的机会,让争辩使学生的感知越加清晰,让交流使学生的思维得以碰撞。
篇7
如,一位老师在教学“中位数”时,是这样创设教学情境的。
师:跳绳测试,在规定的时间内,小明跳了110下。已知小组跳绳成绩是平均每人跳了117下,小明跳绳成绩在小组中处于什么位置?
生:既然小明跳绳的成绩比平均数低,他在小组中一定处于“中下水平”。
师:高于平均数就属于中上水平,低于平均数就属于中下水平。真是这样吗?下面看一看这个小组跳绳的具体成绩。
师:从小组成员跳绳的成绩看,小明的成绩在小组中实际排列在第几?(生:第三。)为什么小明跳得比平均数少,成绩还是第三名?
(这一情境让学生产生了认知冲突。)
生:小军和小李跳得太好了,把平均数提得很高。这个平均数高于小组大多数同学的成绩,不能代表小组成绩的中等水平。(其他学生纷纷点头表示同意。)
师:正如同学们分析的那样,平均数也有“失灵”的时候。当一组数据中的数值比较集中,差异不大的时候,平均数能比较好地反映这组数据情况的中等水平,而当一组数据中出现极端数据时,平均数往往不能代表这组数据的“一般水平”,这时要用中位数表示更合适。下面我们就来学习这一新的数学概念“中位数”,以帮助我们解决这个问题。
中位数是表示一组数据一般水平的数据,它与平均数、众数一样,都是统计量。为了让学生深刻体会中位数的意义,教师没有直接呈现中位数的概念,而是创设情境,引起学生的认知冲突,引出“中位数”的概念,从而激起学生的学习欲望,促进学生对“中位数”的理解。
二、引导化难为易,回归知识起点
突显数学学习过程的思考性,让学生的思维在学习过程中,始终处于活跃状态,是一节成功的数学课的重要特征。我们只有层层分解,在矛盾中将复杂的问题简单化,才能体现浓浓的数学思考的趣味。
如,一位老师在教学从“平移和旋转”步入“正确数出平移格数”这个环节时,是这样设计的。
师:(出示图1,略。)黄小鱼想和红小鱼交朋友,黄小鱼怎样平移才能跟红小鱼重合呢?需要平移多少格呢?
生:向右平移1格。
生:向右平移4格。
师:到底谁的想法对呢?我们一起研究一下。
1?郾层层分解——由点到线。
师:(教师出示图2,略。)我们可以先从简单的一个点来研究。黑色小圆点平移到灰色小圆点那儿,需要怎样平移,平移了几格?
生:(齐声)向右平移了3格。
师:我觉得应该向右平移了4格。(教师故意将起点数成1。)
生:老师,起点不能数成1,因为还没有移动呢。
师:原来如此。我们一起来数数。(师生一起数,在数的过程中,课件同步出现数字:1、2、3。)
师:(教师出示图4,略。)我们再来看看线段的平移。黑色线段要平移到灰色线段那儿,该如何平移呢?
生:向左平移2格。
师:向左平移了2格,它上面的小圆点该如何平移呢?(教师课件演示小圆点移动的过程。)
生:我发现小圆点向左平移了2格。
生:线段平移的格数和线段上的点平移的格数是一样的。
师:我们在数线段平移的时候,只要数出线段上的一个点平移的距离就可以了。也就是说,线段上的点平移了几格,线段就平移了几格。
2?郾层层深入——由线到面。
师:我们解决了点和线段的平移,这种方法可不可以用到小鱼的平移上来?想一想,黄小鱼向右平移几格和红小鱼重合?(出示图1,略。)
生:向右平移了4格。我是看小鱼嘴角上的这个点到对应点向右平移了4格,所以,黄小鱼就向右平移了4格。
生:我也认为黄小鱼是向右平移了4格,我是数小鱼背上的一条线段的平移格数。
师:通过大家的研究,我们要知道一个物体平移了多少格,只要找到其中的一个点或一条线段,再看平移后对应点或对应线段的位置,数出中间的格子数就可以了。
3?郾步步为营——优化策略。
师:老师数出黄小鱼身上的这个点(不在格子图交点上的点),可以吗?
生:我认为这样数是可以的。
师:你是怎么想的?
生:这个点的对应点在这儿,应该也是向右平移了4格。
生:我也觉得有道理,不过好像有点麻烦。(部分学生点头表示同意。)
师:是啊,我们可以数物体上的任意一个点或任意一条线段,不过,我建议大家选取关键的、容易找的点或线段,使我们容易看清移动情况。
当学生说出不同的思路时,教师引导学生通过“化难为易”来解决问题,促使学生寻找建构新知识的支点。顺利地把点、线段的平移方法迁移到小鱼的平移上来,将学生的思维引向深入。通过“数不在格子图交点上的点”,让学生真正明白,在移动时还要选择容易找到的关键的点或线段,自然而然地进行了思维的优化。
三、形象直观演示,解读教材难点
在很多情况下,教师虽然有“因学而教”的思想,但客观上都不愿意打破既定步骤。而教师设计的教案常是封闭的、线形的,课堂随机调整的空间不大,不能很好地进行生成性教学。因此,教师应该牢固树立“因学而教”的思想,根据学生的知识水平、思维特征,注意在每一个重要的教学环节,列出可能出现的问题,并将解决每一个问题的对应策略注明,以便随时调整教学进程,提高教学效率。
如,在教学“平行四边形的面积”时,有这样一个教学环节。
师:谁来说说平行四边形与长方形(由平行四边形割补转化而来)有哪些相同的地方和不同的地方?
生:平行四边形变成了长方形,说明它们的面积是相等的。
生:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等。
生:平行四边形的周长和长方形的周长相等。
师:平行四边形的周长与转化后的长方形的周长到底相不相等呢?让我们一起来观察。(教师出示课件,如图。)
师:看明白了吗?你知道了什么?
生:平行四边形上下两条边和长方形的两条长相等,但是平行四边形左右两条边和长方形的两条宽(即原平行四边形的高)不相等,因此它们的周长是不相等的。
由于课前预设时我估计到平行四边形转化成长方形周长是否相等是学生认知的难点,可能会出现各种错误认识。因此,设计课件直观形象的动态演示,使学生明白:长方形的宽就是原平行四边形的高,与平行四边形的两条斜边不相等,所以两个图形的周长不相等。这样的演示远远胜过空洞的讲解,使课堂教学更有效。
篇8
例1 (2013年山东菏泽中考题)我们规定:将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“面线”。“面线”被这个平面图形截得的线段叫做该图形的“面径”(例如圆的直径就是它的“面径”)。已知等边三角形的边长为2,则它的“面径”长可以是__________(写出1个即可)。
本题侧重于考查学生的阅读理解能力和对知识的迁移能力。通过对新概念的理解,知道问题的关键点是“等分面积”。从分析图形,我们会发现符合条件的“面径”不止一条。为了解题方便,联系等边三角形的性质,不难发现以下两种比较简单的解题思路:一是利用等边三角形的轴对称性将其面积二等分;二是利用平行线构造相似三角形,利用相似三角形面积之比等于相似比的平方,可以将面积问题转化为边长之间的关系。
二、重视图形变换操作,开拓学生的空间想象能力
教师教学时应精心设计教案,要从简单的操作情形出发,认真比较、发现规律。通过联想、类比进行的简单应用,这样有利于提高学生的辨证观点,彰显了在数学问题解决的教学过程中,既要注重发挥学生的主体作用,又要重视教师主导作用的发挥,二者相辅相成。
例2 (2013年青海西宁中考题)在折纸这种传统手工艺术中,蕴含着许多数学思想,我们可以通过折纸得到一些特殊图形。把一张正方形纸片按照图①~④的过程折叠后展开。(1)猜想四边形ABCD是什么四边形;(2)请证明你所得到的数学猜想。
本题是一道操作探究题,主要考查了轴对称、平行四边形、菱形的判定。教学时教师应引导学生观察图形,学生易猜想四边形ABCD是平行四边形或菱形,再启发先怎样去判断你们的猜想,学生会利用平行四边形的定义证出该四边形是平行四边形,然后根据一组邻边相等证出该平行四边形是菱形。解决与图形的折叠有关的问题时,一般需要关注折叠中的对应角或对应边之间的相等关系,并利用这种关系解决问题。
三、注重知识的生成过程,提高学生的辨证能力
教师应当改变那种害怕浪费课堂时间,片面追求提高学生方法运用能力的做法,应当结合教学内容,设计出有利于学生参与动态知识生成过程认知的教学环节,把知识的形成过程、方法的探索过程、结论的推导过程、公式定理的归纳过程等充分暴露在学生面前,让学生的动态知识生成过程成为自己探索和发现的过程,从而提高辨证唯物主义的观点。
篇9
2.教师与文本的对话
在对话教学中,教师与文本成为平等的主体,文本总带有编者的意图和思想,教师在认真钻研文本的同时,也带有自己的特殊体验和情感,使自己的教学源于文本,又高于文本。由于网络快餐文化的便捷,下载、模仿、拼凑教案等现象已成为很多教师正常化的工作。教学实践中,没有深入地解读教材,哪能有精彩的预设与生成,更谈不上有高效的课堂教学。因此,提高课堂的有效性应从深入解读教材、与教材深层的对话开始。讲授人教版五年级上册“平行四边形的面积计算”时,教材中呈现让学生通过数方格的方法求出平行四边形的面积,特别指出不满一格按半格算。如果教师以此照搬文本教学,势必影响学生探究效果,调查中发现,大多学生不明白为什么不满半格能按半格算。其实,编者的意图是让学生通过数方格,启发学生用转化的方法推导平行四边形的面积计算公式,但这样的文本,很难让学生联想到沿着平行四边形的高剪开拼成一个长方形。因此,教师与文本的对话就在于创造性地使用教材,让文本更好地为学习服务。教学中,教师让学生用数方格的方法求出平行四边形的面积,但不出现不满一格按半格算的提示语,而是改为问题:哪个同学能用好方法快速数出平行四边形的面积?这样的问题设计就逼着学生先数满格的,再数不满格的,而不满格的面积不一样,怎么办呢?学生细心观察后发现,原来图形中藏着秘密,最左上角的不满格移到最右上角的不满格的位置上,刚好拼成一个满格,这个发现就是移拼的转化方法。应用这个方法,学生观察整个左边的不满格都可以与右边的不满格拼成满格,但拼成的是一个不规则的图形,难于快速算出面积。再次观察后发现,如果沿平行四边形的高剪开,把左边的方块移到右边,就可以拼成一个长方形,再数方块就是最便捷的方法,学生对转化思想有了进一步的理解。最后,学生用所带的平行四边形图形进行剪拼实践,通过操作、观察、交流、推导,自主得出平行四边形面积=底×高的结论。这样的教学,教师并没有改变编者的意图,只是稍微改变文本的表述,却取得了显著的效果。因此,课堂教学中,教师不要把教材当权威,不要简单地认为学生都会想到把平行四边形沿着高剪开拼成长方形。可见,只有教师与文本的深入对话,根据学生的认识水平,合理并创造性地使用教材,才能使学生在最近发展区有效探索,提高学习质量。
4.学生与文本的对话
文本自己是不会说话的,但文本是有思想的,它是经过精挑细选的人类知识的精华,对学生传授知识、发展思维、培养能力具有重大的意义,而这种意义只有学生对文本的深入解读、丰富体验、深刻领悟,才能真正为学生所接受,文本也才能真正体现其内在价值。小学数学教材中的“你知道吗?”是实验教科书新增设的栏目,它是教学内容的延伸,是传承数学文化的有效载体。人教版六年级上册“比的应用”教学中安排了“你知道吗?”的内容,介绍了“黄金比”:你听说过“黄金比”吗?当一个物体的两个部分之间的比大致符合“黄金比”——0.618:1时,会给人以一种优美的视觉感受。如果学生只知道黄金比这个词,那就误读了教材的知识功能,更谈不上数学美的价值所在。学生在文本的启发下,通过网络查询、咨询家长,发现“黄金比”在日常生活中随处可见,不仅欣赏到蒙娜丽莎画像、古希腊女神维纳斯塑像的黄金比例的艺术品,还发现巴特农神庙、古埃及胡夫金字塔等建筑作品都隐含着神奇的黄金比,这就是与文本对话的价值。但是,生活中一般人很难达到维纳斯女神“黄金比”这样优美的身材,一般人的躯干与身高比都低于0.618这个数值,大约只有0.58——0.60左右,智慧的人们发明了让女人穿高跟鞋来改变比值,使得躯干与身高的比值更接近黄金分割的标准0.618,产生美的效果,从而人为地创造美。学生通过对文本的深入对话,不仅对比的知识有了深刻的理解,更是对数学美的充分挖掘。
二、对话教学中应注意的问题
1.对话不是简单的问答
作为课堂教学中的师生对话,不能简单地理解为师生问答,课堂中很多的师生问答并非真正的教学对话。真正的师生对话,是蕴含师生间的倾听和表达,是师生间敞开心扉的精神世界,从而获得心灵的交流和思想的分享。对话中不仅表现在提问和回答,更表现在倾听与独白、交流与辩论、欣赏与评价等方面。这是对话教学在“质”方面的要求。
2.对话并非越多越好
教学中的对话无论是作为一种理念,还是作为一种方法,必须为学习服务。组织对话教学应考虑教学内容而合理使用,对简单明了的知识、书上能直接找到答案的知识不宜运用对话教学,避免对话的滥用而导致形式主义。这是对话教学在“量”方面的要求。
篇10
曾经看到这样一个案例:在教学“可能性”一课时,先让学生观看一段动画:在风和日丽的春天,鸟儿在飞来飞去。突然天阴了下来,鸟儿也飞走了。这一变化使学生产生强烈的好奇心,这时老师立刻抛出问题:“天阴了,接下来可能会发生什么事情呢?”学生就会很自觉地联系他们已有的经验回答这个问题。学生认为,“可能会下雨”;“可能会打雷、打闪”;“可能会刮风”;“可能会一直阴着天,不再发生变化”;“可能一会儿天又晴了”;“还可能会下雪”……老师接着边说边演示:“同学们刚才所说的事情都有可能发生,其中有些现象发生的可能性很大,如下雨。有些事情发生的可能性很小,如下雪。在我们身边还有哪些事情可能会发生?哪些事情根本不可能发生?哪些事情发生的可能性很大呢?”运用这一情境导入,结合学生的生活经验,使学生对“可能性”的含义有了初步的认识。因为学习“可能性”,关键是要了解事物发生是不确定的,事物发生的可能性有大有小,而让学生联系自然界中的天气变化现象则为“可能性”的概念教学奠定基础。
二、关注活动经验
陈省身教授曾为青少年提过这样一句话“数学好玩”,为什么说数学是好玩的,数学好玩背后又隐藏着什么样的数学道理呢?我想,陈教授这句话是提醒我们作为数学老师、数学教育工作者,我们要在数学教学过程中,关注学生的活动,让学生在活动中获取知识,在活动中积累经验,在活动中提高应用数学的能力。
例如在“一一列举”学习过程中,老师提供了结构性材料,让学生通过周长相同的小棒摆不同的长方形,学生在从无序摆放到有序排列的过程中列出5个不同大小的长方形。在操作过程中,学生就已经对周长相等面积不等有初步感知,如何将这一活动过程转化为学生的经验呢?教师这时让学生算一算不同长方形的面积,并说一说有什么发现?让学生在算的活动过程中找到规律,发现长和宽不一样,所以面积就不一样。长和宽相差越大,它们的面积就越小,长和宽相差越小,它们的面积就越大。学生的这一数学活动为积累数学经验做好了铺垫。
三、关注知识经验
学生的不断学习的过程其实就是不断提高知识水平,提升获取知识的能力的过程,数学知识的获得离不开经验的支撑。随着时间的推移,学生经验将逐步转化为新的知识,有时学生也会利用已有的知识经验解决新的问题。
教学圆柱体积计算时,学生会想到的计算方法可能有:学生会利用生活经验,将圆柱体转化成规则形状的物体计算,如将圆柱浸入装有水的长方体或正方体容器中,求出变化部分水的体积。但学生的数学学习经验告诉他们,计算形体图形肯定有一定的公式,学生会经验已有的学习圆面积公式的知识经验将圆柱转化成一个长方体来计算体积。又如教学比的基本性质时,学生结合比与分数、除法的关系很快就会调用已有的知识经验储备,结合除法与分数的性质寻找到比类似的性质。
四、关注生成经验
数学学习是一个不断产生意外,不断在意外中找到灵感、解决问题、积累经验的过程,我们要关注学生的“生成性资源”,不要只停留在表面,对于学生瞬间出现的火花,我们要及时地进行引导、利用。钟启泉教授早就指出,教材和教案只是剧本,教学如同实际的演出,若要把戏演得精彩,则需要导演对剧本独具匠心的诠释和演员对所演角色的创造。
在教学完《三角形的内角和》一课后,有一位老师出示一个平行四边形让学生猜一猜多少度,并说一说你有什么发现?
生成资源:
1.想法多样性
学生通过度量,算一算得出这个平行四边形四个角的度数和是360°。一般情况下得到结论我们就到此打住了。但这时有一个学生还举着手,我就问:“你有不同意见吗?请讲一讲”他站起来说:“在平行四边形里面画一条线,把它分成两个三角形,每个三角形的内角和是180度,两个三角形的和就是360度,所以平行四边形的内角和就是360度。”生二:“我发现平行四边形相对的角是相等的,所以量出挨着的两个的角的度数就可以得到平行四边形四个角的和。”生三:只要把平行四边形那个尖尖的角剪下来,再补到下面那个钝角的边上,拼一拼好是不是180度,两个这样的180度就是360度。还有一个学生说:“老师,我能问一个问题吗?是不是所有的四边形的四个角的和都是360度呢?”我说:“这个问题猜测得好,到底这个结论正确吗?我们要通过验证证明一下。”
篇11
生1:我发现圆有无数条半径。
师:你是怎么发现的呢?
生1:我用直尺画了几条半径后,我发现不可能画完所有的半径。
师:很好。在有关圆的半径方面,还有谁有新的发现?
生2:我是把圆对折的,也折出了许多条半径,发现折不完圆的所有半径,所以圆有无数条半径。
师:很好。在有关圆的半径方面,还有谁有新的发现?
生3:老师,我把圆对折两次后,我猜测这两条折痕的交点肯定是这个圆的圆心。
师:你们没有听清我的问题,我是问在半径方面,还有谁有探究的发现?
……
正当我们听课教师都在为学生的发现叫好时,该教师的处理方法顿时让我们有些目瞪口呆了。课后该教师与我交流时说,他可能受时间的影响,想有条理地把圆的半径与直径的关系也在此时能教学出来。一节课的教学目标我们能充分地做好预设,可实现目标的教学流程未必就完全按教师的预设来呈现了。
二、关注课堂动态生成,调控教学环节
教学流程由许多环节组成,教师备课预设时,要有一定的先后次序。若教师在课堂教学组织时按部就班,一味地按预设环节进行,不及时地根据课堂的动态生成合理地调控,就难求教学高效。究其原因,其实是教师根本没有把学生当成课堂学习的主人。例如,一位教师教学“平行四边形的面积”时,这样预设教学:先复习长方形面积计算,然后出示一幅平行四边形的图形。教师提问:“你们知道平行四边形的面积怎么计算吗?下面我们来动手探究一下。”教师的话刚说完,一生没举手就站起来说:“我知道,平行四边形的面积是底乘高。”
师:你是怎么知道的?
生1:我看书知道的。
师:你知道平行四边形的面积计算方法是怎么得出来的吗?
生1:把平行四边形沿高剪开,就可以拼成一个长方形了。
师:这个拼成的长方形与原来的平行四边形有什么关系?我们不沿平行四边形的高剪开,能否拼成长方形呢?
生1:这个就不知道了。
师:好吧,下面我们就动手来剪拼尝试一下。
……
教师本来是想组织学生去探究计算平行四边形面积的结论的,结果马上因为部分学生的预习,因势利导变成了让学生直接去验证结论,及时调控了教学环节,这才是提高课堂有效性的重要环节。
三、因时因势,调控课堂练习
篇12
教学改革是教育改革的核心,三位一体的教学目标是新课程的灵魂基于对新课改和对当前课堂教学现状的认识与思考,笔者认为:用三维教学目标引领数学课堂教学不失为一个有效的切入口。
一、静下来倾听,正确认识三维目标的正确含义
许多数学教师对新教材的使用有不同程度的误解与排斥,很大的原因在于他们还用原有的纯知识本位的标准去衡量新教材与课堂教学,以致产生了诸如“量太大,知识不够扎实”“太灵活,学生反应不过来”“知识呈螺旋式上升,每次教学新知的度很难把握”等困惑,而不明白三维目标的真正含义是既要重视知识、能力,又要重视过程、方法,同时要关注学生情感、态度、价值观的培养,要关注每一名学生综合素质的发展,而许多数学教师淡化甚至没有这一目标意识,从新课程理念的考察中,就会发现存在着不少问题:
其一,草率盲目,兴之所至,不假思索,或照教参一抄了之,或仅凭感觉随意而定,缺乏合理性、系统性与渐进性。
其二,大而空,笼统模糊,对学生学习缺乏明确的指导,许多教学目标里充满了“学习”“认识”“理解”“体会”“培养”等要求,这些要求到底在多大程度上能够达到或不能达到,其中每一个要求要经过哪几个阶段或层次,都很难操作、观察和测定。
其三,停留在认知层面,不能将学生智慧、情感、意志上的发展和成长放在重要地位,传统教学目标大都是一个个肤浅的、答案明显的、没有思考价值的知识性问题,这是造成封闭、机械、僵化的教学的主要原因。
鉴于此,笔者曾收集了一些身边的案例和问题就三维教学目标的认识与制定组织数学教师进行学习与讨论,之后,一位数学教师深有感触地写下了自己的感受:
当了这么多年的数学教师,还真没想到教学目标还有这么大的文章可做,以前我走进课堂从来没有想过教学目标有没有问题而且在教学过程中只是想着自己要教什么内容或按怎样的步骤去教,根本没考虑到我要达到什么教学目标,怪不得有时候我的课堂那么散乱,原来我连自己要干什么或学生要发展什么都不知道,看来我得先要有目标意识。而不仅仅是环节意识,此外,三维目标是根据学生作为人的发展需要而制定的,所以我首先要真正把学生当人看……
身边的案例、身边的事实让老师们理解了三维目标以及认识到三维目标的重要性,也让老师们深刻地知道三维目标就在自己的课堂,就在自己的身边。
二、动起来实践,在课堂中体验三维目标带来的惊喜
新课程是一种理念,更是一种行动我们的老师经过新课程的各种培训,已经基本解决了关于新课程认识层面的问题,但把认识转化为行动还需要解决实践层面的问题,尤其是课堂教学,许多教师虽然面对新课程能说出很多观点,但是在实施新课程的时候仍感到困惑或不知所措,突出表现在课堂教学目标意识的缺失或淡薄,笔者曾组织数学老师就教学目标的制定与落实进行“滚雪球”式的校本研修活动,发现以教学目标为切人口引领课堂教学实践是课改的关键。
1.带着目标走进课堂
以一位教师上五(上)《平行四边形的面积》一课为例,
第一次设计的教学目标:
(1)知识与技能目标:使学生理解平行四边形的面积计算公式,会计算平行四边形的面积。
(2)过程与方法目标:培养学生的操作能力和解题方法的多样性。
(3)情感态度与价值观目标:培养学生与人合作的能力,体验数学学习的乐趣。
不难看出,这位老师已经认识到新课程倡导的目标具有三维性,能按照三维来设计,但对照课堂教学,第一次教学时出现了以下几个问题:
(1)按部就班地教学设计,没能适时把握生成的课堂资源,没有明显的增量。
(2)没有遵循学生动手操作的特点进行教学,准备的材料过于单一,限制了学生的思维。
(3)机械化地追寻转化方法多样化,缺少学生生活积累和情感体验的参与,也浪费了时间。
(4)缺少评价意识,没能真正关注学生的情感体验与学习现状。
显然,出现以上问题的关键在于这位老师只有环节意识而没有目标意识,一切的教学都是在走教案,都在“意料之中”,而且从制定的形式上可以反映出她将目标的三维性机械地割裂开来,情感目标的失落直接导致了其他目标的落空,经过大家的讨论与教后反思,这位老师重新调整并进一步明确了教学目标:
(1)使学生通过操作,理解平行四边形的面积计算公式,会正确计算平行四边形的面积,
(2)通过操作、观察、比较,渗透转化的数学思想,发展学生的空间观念。
(3)通过操作,培养学生与人合作的能力,体验成功的乐趣,感受数学学习的快乐
带着修改过的教学目标进行第二次教学后,很好地解决了第一次出现的问题,正如这位老师在第一次教后反思中所描述的:“……教学的盲目性与随意性最关键的问题在于我没有树立真正的目标意识,教学目标——教学的出发点和归宿!……”
第二次的反思后,这位老师再一次调整教学目标:
(1)使学生通过操作,理解平行四边形的面积计算的推导过程,掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积。
(2)通过操作、观察、比较,渗透转化的数学思想,发展学生的空间观念。
(3)通过操作,培养学生与人合作的能力,体验数学知识在生活中的作用,感受数学学习的快乐
第三次走进课堂,这一次她已经轻车熟路了:
(1)猜一猜,如何计算平行四边形的面积?
(2)剪一剪,拼一拼,让学生通过剪、移、拼等操作活动,将平行四边形转化为长方形,同时明确“沿高剪”的必要性、重要性。
(3)分析比较,推导公式,比较、分析剪拼前后“底”“高…‘面积”的变化,让学生感悟平移和转化的数学思想方法,推导出平行四边形面积的计算公式。
(4)巩同应用,发展能力,设计形式多样的练习,让学生自主解决问题,感受、体验学习成功的愉悦。
这一教学过程诠释了《数学课程标准(实验稿)》提出的“数学思考、解决问题、情感态度的发展离不开知识与技能的学习,同时,知识与技能的学习必须以有利于其他目标的实现为前提”这一和谐统一的整体目标理念,这样的课堂教学不仅有效,而且达到了高效。
2.带着目标观察课堂
假如说,目标意识让教学实施者有了一步步感受“三维”的生命力,那么目标意识也让听课者走近“三维目标”这个课改的灵魂。
笔者第一次组织学校的数学老师来听试教课就是有意识地引导他们对照教学目标观察课堂,有的关注知识教学的落实,有的专看学生的操作和合作能力,也有的专门留意学生的学习兴趣,当大家坐下来讨论问题并寻找解决办法时,不再像以前那样不知从何说起或无话可说了,而是针对各自关注的方面阐述观点提出建议,下面是一位数学老师三听《平行四边形的面积计算》针对情感目标落实的三次思考:
第一次:……我觉得学生合作的不够,同时练习的时候与生活的联系没有体现,所以要提倡多合作,以加深学生对公式推导的理解……
许多数学老师有同感,也都提议说要合作,但从其观点中可看出,老师们只凭感觉,只知其然而不知其所以然,只停留在对教学方法的机械运用,还是属于经验层面。
第二次:能够引导学生通过操作,将平行四边形转化成长方形,体会转化后的长方形与平行四边形的关系,推导出面积计算公式,并在情感体验的基础上进行了公式的应用,较好地达成了情感目标。
显然,经过第一次试教后的讨论与交流,这位老师能够有意识地运用教学理念评价课堂,而且意识到了教学目标具有三维性的特点,经验层面的观点开始向理论层而的理念提升。
第三次:能够体现数学的思维能力,在猜想中激活了学生的生活经验和情感体验,在验证中,让学生通过动手操作、再比较,引导学生理解平行四边形的面积计算公式,根据学生的特点,在操作中培养他们合作的精神,同时体验到成功的喜悦,如果在运用公式解决问题时,能有解决生活中的问题的练习,会更好地体现情感目标。
这次的思考比起上两次的观点有了一个质的飞跃,可想而知,这位老师的思考和执教老师的反思是同步的,她已经有意识地转向思考型的专业学习了,这个评价的背后有她对课标的理解,对三维教学目标的解读,对课堂学生生命发展的关注。
3.带着目标自主实践
有了倾听、观察、思考、交流带来感悟的喜悦后,许多数学老师开始关注自己的课堂,他们跃跃欲试,于是,在自己的课堂里,老师们感受到了实践与尝试带给他们的惊喜:
“我们班的学生知道如何和别人合作了!”“我觉得数学与生活是密不可分的……”“我发现评价语的作用很大,能够让孩子知道我们在关注他,欣赏他,帮助他………‘这堂课我的心情很好,孩子们怎么那么可爱呀!”……
三维目标的灵魂在于它对生命发展的关注,老师们开始关注到生命发展了。
三、沉下来思考,走“三维目标教学案例研究”式发展之路
“一个精彩的案例不亚于一项教学理论的研究,而且只有教师自己才最适合于这项研究……”教师关注自己的教学理念与教学行为最终要通过一次次的反思和教学实践来落实,于是,基于落实三维目标的案例研究便应运而生。
1.对照三维目标精读经典案例,寻找教学研究的切入口与方式
许多教师仍错误地认为案例只有那些具有高深理论知识的学者才做,因此,引导教师精读那些来自名师课堂的典型的又能引起老师共鸣的经典数学案例,能够有效地帮助教师找到数学教学研究的切入口和研究方式。
篇13
一、在步步延伸中对知识深化的理解
题目的训练能起到消化概念,理解法则的作用,但孤立的单个题目,只能展示知识点某一个面,而不是全部,要使学生全面地掌握,必须出一系列有密切联系的题目组合.
如,教学直角三角形勾股数据时可这样引导与深化.
例1.如果一个三角形的两边长分别是3米和4米,则另一边的长是多少?学生回答是5米.教师接着问:这个三角形的面积是多少平方米?学生首先知道是直角三角形,两条直角边分别是3米和4米,故面积为6平方米.
变式1:下列三组数据是三角形的三条边,问哪一组数据能直接计算出三角形的面积?
(A)9、12、15 (B)4、6、7 (C)5、12、13
本题实际上是检验哪组数据符合勾股定理.
变式2:如果直角三角形的三边长分别是3、4、5,那么三边长分别为0.3、0.4、0.5和30、40、50的三角形是什么形状的三角形?通过归纳你领会到了什么?
变式3:如图1,当AB=13米,BC=12米,AD=4米,DC=3米时,求下列四边形面积.
简要分析:由三角形ADC是直角三角形求出AC的长,再根据三角形ABC三边的边长关系,得出该三角形是直角三角形,即可求出四边形的面积.
变式4:如图2,当AB=13米,BC=12米,AD=4米,DC=3米时,求下列四边形面积?
简要分析:连接AC,得出直角三角形ADC,求出AC的长.再根据三角形ABC的三边长度,不难看出其符合勾股定理这一规则,从而求出三角形ABC的面积,进而求出此四边形的面积.
图1图2
当然,还可以根据学情继续变化,使学生逐步掌握直角三角形的知识点,同时在不断变化的过程中,使学生深化对知识的理解,从而牢固地掌握、灵活地运用知识.
二、在同类比较中对知识深化的理解
数学教学中有好多科学性、规律性的结论是需要启发学生思维,使学生通过比较得出正确结论的,当然在比较过程中也有归纳和总结.在初中阶段,比较的形式出现得较多的是同类比较,为了使学生在学习中生成智慧,新教材将旧教材中一些定理和公式有意识隐去,让学生通过知识的深化去理解和总结.教师要理解新教材的先进理念,以及新教材的编写意图.
例2.方程x-2x+1=0的根为x=1,x=1,则x+x=2,x•x=1.
方程x+3x-4=0的根为x=-4,x=1,则x+x=-3,x•x=-4.
方程x-x-1=0的根为x=,x=,则x+x=1,x•x=-1.
(1)由此可得到什么猜想?你能证明你猜想的结论吗?
(2)利用(1)的结论解决下列问题:已知α、β是方程x+(m-2)x+502=0的两根,求代数式(502+mα+α)(502+mβ+β)的值.
分析:(1)观察方程的两根的和与积与方程的系数之间的关系,利用系数表示出两个根的和与积得到结论,然后利用求根公式进行证明;(2)先根据方程根的定义得出α+(m-2)α+502=0,β+(m-2)β+502=0,变形之后,再利用(1)的结论求出即可.
解:(1)猜想:若方程x+px+q=0(p、q是常数,x是未知数)有两个根x、x,则x+x=-p,x•x=q.理由如下:
方程x+px+q=0的两实根是x=,x=,
x+x=+==-p,
x•x=•==q.
(2)α、β是方程x+(m-2)x+502=0的两根,
α+(m-2)α+502=0,β+(m-2)β+502=0,
α+mα=2α-502,β+mβ=2β-502,
又由(1)知,α+β=2-m,α•β=502,
(502+mα+α)(502+mβ+β)=(502+2α-502)(502+2β-502)=4αβ=2008.
本题训练目的是通过比较对知识进行深化理解,探索一元二次方程根与系数的关系,研究总结出规律,方便于今后类似题目的解答,学生总结的是旧教材中的韦达定理.这又可以比较出教育新旧理念的根本区别在于:是教给学生知识,还是教给学生智慧.
三、在添加条件中对知识深化的理解
知识之间是互相联系的,要将知识联系得恰到好处不是一件简单的事情.数学中往往在一道简单的题目上添加一个条件就能使题目变得有价值,就能使学生有探索和研究的空间,能动地掌握所学知识.
例3.如图3所示,在梯形ABCD中,AB∥CD,点E是BC的中点,AE、DC的延长线相交于点F,连接AC、BF,(1)求证:四边形ABFC是平行四边形;(2)添加一个条件,使四边形ABFC是菱形,并进行说明.
分析:(1)根据点E是BC的中点即可求出BE=CE,又知AB∥CD,故可得∠1=∠2,∠3=∠4,于是证得ABE≌FCE,进一步得到AB=CF,结合梯形的知识即可证得四边形ABFC是平行四边形;(2)该问答案不唯一,添加条件可为:AC=CF或AF平分∠BAC或AEBC,根据菱形的判定定理即可证得四边形ABFC是菱形.
证明:(1)点E是BC的中点,BE=CE,又AB∥CD,
∠1=∠2,∠3=∠4,ABE≌FCE,AB=CF.
又梯形ABCD中AB∥CD,四边形ABFC是平行四边形.
(2)添加条件(不唯一)可为:AC=CF.
由(1)可知:四边形ABFC是平行四边形,