在线客服

电容式传感器实用13篇

引论:我们为您整理了13篇电容式传感器范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

篇1

在高度发达的现代社会中,科学技术的突飞猛进和生产过程的高度自动化已成为社会发展的必然趋势,而它们的共同要求是必须建立在强大的信息工业基础上。人们只有从外界获取大量准确、可靠的信息,再经过一系列的科学分析、处理、加工,才能认识和掌握自然界中的各种现象及其相关发展变化规律,进而促成科学技术的发展。现代信息技术的三大基础是信息采集,信息传输和信息处理,而信息采集用到的便是传感器技术。传感器是信息采集系统的首要部件,是实现现代化测量和自动控制的主要环节。

传感器,Transducer or Sensor,是一种能感受被测量并按一定的规律转换成有用(与之有对应关系的且易于处理和控制)输出信号的器件或装置,它由三部分组成:敏感元件、转换元件和测量电路。传感器的分类方式有多种,其中按照工作原理分类,可分为:电阻式传感器、电容式传感器、电感式传感器、压电式传感器、霍尔式传感器、光电式传感器、热敏式传感器。而这里要论述的是电容式传感器。

电容式传感器是一种把非电物理量转换成与之有确定对应关系的电容量,再通过测量电路转换成电压(或电流)信号的一种装置。它在非电量检测中应用十分广泛。

电容式传感器具有温度稳定性好、结构简单、动态响应好、可实现非接触测量等优点;但电容式传感器的泄漏电阻和非线性等缺点也给它的应用带来了一定的局限性。随着材料、工艺、电子集成技术的发展,使电容式传感器的优点得到了发扬,而缺点也在不断的克服中,电容式传感器逐渐成为高灵敏度、高精度的传感器。

一、电容式传感器的工作原理

电容式传感器实质是一种有可变参数的平行板电容器。平行板电容器是由两块相距很近的平行金属板,中间夹上一层绝缘物质构成。其中这两块金属板称为电容器的极板,绝缘物质称为电介质。电容器的电容量与两极板间介质的介电常数、两极板的相对覆盖面积,两极板间距离有关。这三个参数的改变均使电容C发生变化。因此可以固定其中两个参数不变,而使另外一个参数改变。如果变化的参数与被测量之间存在一定的函数关系,那被测量的变化就可以直接由电容的变化反映出来。由此,可以把电容式传感器分为三种类型:

1.变面积式电容传感器――两极板的相对覆盖面积变化,介电常数、极板间距离不变。

2.变极距式电容传感器――极板间距离变化,介电常数、极板的相对覆盖面积不变。

3.变介电常数式电容传感器――介电常数变化,极板的相对覆盖面积、极板间距离不变。

二、电容式传感器的测量电路

电容式传感器的测量电路主要是把电容转换为电压(或电流)输出,常用的测量电路有:普通交流电桥、紧耦合电感臂电桥、变压器电桥、双T电桥电路、运算放大器测量电路、脉冲调制电路、调频电路。

三、电容式传感器在应用中应注意的问题

(一)温度的影响

物质有热胀冷缩的特性,电容器也不例外,当环境温度改变时,电容式传感器的各部件的几何尺寸和相对位置将发生变化,由于电容器因为极板间距很小而对结构尺寸的变化特别敏感。此外电介质的介电常数也会因为温度的变化而发生改变。而要减小温度对测量结果的影响,可采取以下方式:

(1)在设计电容式传感器时,选择合理的极板间距。

(2)在制造电容式传感器时,选用温度膨胀系数小,几何尺寸稳定的材料及电介质。

(3)测量电路采用差动对称结构。

(二)电容电场的边缘效应

所谓电容电场的边缘效应指的是在极板的边缘附近,电场分布是不均匀的,这就相当于传感器并联了一个附加电容,导致传感器的灵敏度下降和非线性增加。为了减小边缘效应对测量结果的影响,可采取以下措施:

(1)在制造电容器时,选择合理的初始电容量。

(2)加装等位环。具体做法为:在极板A的同一平面内,加一个同心环面G。A和G在电气上相互绝缘,二者之间的间隙越小越好。使用时必须保持A和G等电位,故而称G为等位环。这样可使极板边缘处的电场接近匀强电场了。

(三)寄生电容的影响

任何两个彼此绝缘的导体均可构成电容器。电容式传感器除了两个极板间的电容外,还可以与周围导体产生电容联系。这种电容称为寄生电容。有些电容式传感器本身电容很小,那么寄生电容就会使传感器电容量发生明显改变。而且寄生电容极不稳定,从而导致传感器特性的不稳定,对传感器产生严重干扰。

为了克服寄生电容的影响,必须对传感器进行静电屏蔽,即将电容器极板放置在金属壳内,并将壳体良好接地。同时,电极引出线也必须用屏蔽线,且屏蔽线外套也要良好接地。

四、电容式传感器应用举例

(一)电容式接近开关

测量头构成电容器的一个极板,另一个极板是物体本身,当物体移向接近开关时,物体和接近开关的介电常数发生变化,使得和测量头相连的电路状态也随之发生变化,由此便可控制开关的接通和关断,接近开关的检测物体,并不限于是金属导体,也可以是绝缘的液体或粉状物体。

(二)电容式键盘

常用的键盘有两种:机械按键和电容按键两种。电容式键盘是基于电容式开关的键盘,原理是通过按键改变电极间的距离产生电容量的改变,暂时形成震荡脉冲允许通过的条件。这种开关是无触点非接触式的,磨损率小。

(三)电容式指纹传感器

电容式指纹传感器有单触型和划擦型两种,是目前最新型的固态指纹传感器,它们都是通过在触摸过程中电容的变化来进行信息采集的。当指纹中的凸起部分置于传感器电容像素电极上时,电容会有所增加,通过检测增加的电容来进行数据采集。

(四)电容式听诊器

医学上常用的电容式听诊器是一种单电容式压力传感器,一个极板在听诊器的内部,另一极板为听诊器的膜片。当绷紧的膜片受声压作用,极板间距发生变化,从而使电容器的电容发生变化,电容的变化与声压的大小在一定范围内呈线性关系。

篇2

电容传感器是将被测量的变化转换成电容量变化的传感器,具有结构简单,动态响应好,灵敏度高,能测量微小变化等优点。广泛应用于位移、速度、加速度等机械量精密测量。在实现运料车辆寻轨运行至指定位置,进行货料称重并完成卸载储存的智能化仓储管理系统中,利用电容式位移传感器实现位移检测,保障小车能够准确停靠,其调理电路的设计至关重要,本文对此进行了研究。

1智能仓储管理系统原理

智能化仓储管理系统采用单片机控制,结合应变片传感器、电容传感器、A/D转换模块、H桥PWM输出模块、放大电路等,构成运料小车,其原理框图如图1所示。图1中,应变片传感器完成称重功能,电容传感器检测位移,确定小车停靠位置。

2电容传感器信号调理电路设计

在本电容传感器信号调理电路设计中采用差动式电容传感器,调理电路设计中采用二极管不平衡环形电路,差动输出的电容量在调理电路中分别是Cx1和Cx2,其调理电路如图2所示。电容式传感器调理电路由与非门组成的多谐振荡器、LM324构成的放大电路以及二极管不平衡环形电路构成。图2中,U1A和U1B两个与非门之间经电容C1和C2耦合形成正反馈回路。合理选择反馈电阻R2和R3,可使U1A和U1B工作在电压传输特性的转折区,这时,两个反相器都工作在放大区。由于电路完全对称,电容器的充放电时间常数相同,可产生对称的方波。改变R和C的值,可以改变输出振荡频率。方波经过LM324运放放大后,送给二极管不平衡环形电路。二极管不平衡环形电路中的Cx1和Cx2为电容传感器的两个差动输出的电容量,位移变化时,电容量发生变化。电容量的变化使得输出端电压含有直流分量,直流分量经过低通滤波后在输出端得到不同极性的直流电压。在系统中该直流电压大小对应位移的变化,从而实现位移的检测。二极管不平衡环形电路的设计如图3所示。图3中,Cx1和Cx2为差动式电容传感器的两个电容量,D4~D7为特性相同的4个二极管。与非门组成的多谐振荡器输出的方波经过放大后再经C4,L1隔离直流和低频干扰信号,在MO端的电压uMO为正、负半周对称的方波。在uMO正半周时,一路经D4对Cx1充电,另一路经D5对Cx2充电。在uMO负半周时,一路经D6对Cx2充电,另一路经D7对Cx1充电。若初始状态下Cx1=Cx2时,C5两端的电压uC5是对称的方波,因此uNO(uNO=uMO-uC5)也是对称的矩形波,没有直流分量。当Cx1≠Cx2时,C5两端的uC5为正负半周不对称的波形,使得uNO存在直流分量,直流分量经过L2和C6低通滤波后,在输出端得到不同极性的直流电压Uo。

3电容式传感器测位移实验

搭建电容式位移传感器调理电路的测试平台,随着位移的变化电容传感器电容量发生变化,从而调理电路输出电压UO发生变化,经过多次实验得到位移—输出电压的几组数据,如表1所示;对得到的数据计算平均值,结果如表2所示。采用端点直线法,以传感器校准曲线两端点间的连线作为拟合直线,两端误差为零,中间大。取端点(x1,y1)=(0.2,65)和(x6,y6)=(1.2,613).

4结论

针对电容式位移传感器设计的调理电路进行试验平台搭建和数据分析,采用端点直线法进行拟合计算出非线性误差仅为±0.27%,非线性误差很小,设计的调理电路在实际应用中有很大的实用价值,能够准确的测量微小变化的位移。

参考文献:

[1]孙立宁,晏祖根.电容式微位移传感器设计及其应用研究[J].传感器技术,2005,24(10):13-15.

[2]海静,卢文科.基于最小二乘法的差动变面积式电容传感器非线性拟合[J].仪表技术,2014(2):11-13.

[3]李岩,刘迪,张树团.一种基于电容应变式传感器的信号调节电路.自动化与仪器仪表,2014(1):64-65.

[4]朱凌俊,王盛,任亚琳,等.基于电容传感器的孔径测量装置[J].机械,2015(10):34-39.

[5]宋美杰.基于电容传感器的薄膜厚度测量系统设计[J].教育教学论坛,2016(19):173-174

篇3

更大的湿度范围;

驾驶与乘客因长期接触转换器与按钮所造成的脏污。

图1:基本的电容式传感器

今日车用的按钮与转换器不仅比过去多了许多,还要能具备轻易建置的特性,以符合日趋人性化控制接口的需求,另外,还必须具备成本效益,避免采用密封封闭式的机械开关。因此,电容式触控接口(capacitive touch switches,或称为cap sense)是一个非常具有潜力的取代方案。电容式触控接口技术不仅无须采用机械式控制元器件,还具备整合人性化接口的功能,十分符合汽车工业对于可靠性与成本效应的需求。

如图1所示,电容式接口主要是由两片相邻电路极板(traces)所构成的电容器:而依据物理法,电容效应是存在于两片电邻线路极板之间的。如果有任何导电性的物体(例如:手指尖)靠近这两片极板时,平行式电容(parallel capacitance)就会与传感器产生耦合(couple)效应。因此,整体电容会随着手指尖触碰电容传感器而增加;当移开手指时,电容则会随之减少。所以只要利用一套电路系统来测量电容的变化,就可以判断手指尖是否有碰触到两片相邻的电路极板。

电容式传感器是由两片电路极板与一个机板空间所构成。这些电路极板可为电路板的一部分,上面直接覆盖着一层绝缘层。电容式传感器也可以采用玻璃印刷电路技术植入车窗玻璃,并应用于后挡风玻璃的除雾器上。另外,电容式传感器不仅可以隐藏在曝晒印制图案的背面,还能够顺应各种曲面的弧度,广泛地应用于汽车的各种功能上。

图2:典型弛张振荡器拓扑

建构电容式界面的要素:

一组电容器;

电容量测电路系统;

从电容值转译成接口状态(switch state)的近端装置。

通常电容式传感器的电容值介于10pF~30pF之间。普遍来说,手指尖经由1mm绝缘层接触到接口所造成的耦合电容是介于1pF~2pF的范围。越厚的绝缘层所产生的耦合电容则愈低。若要感应手指的触碰,则必须建置能够侦测到1%以下电容变化的电容感测电路系统。

弛张振荡器(relaxation oscillator)是一种非常有效且易于使用的电容量测电路。一般常见拓扑如图2所示:

这个电路由以下四种元器件组成:

一组同步比较器(comparator)

一组电流源

一组放电开关(discharge switch)

一组电容式传感器。

最初,放电开关呈现开启的状态,此时全数的电流会流向传感器,造成传感器电压呈现直线上升的现象。此充电动作将持续至传感器电压达到比较器阀值为止。这时,比较器会从低电压转为高电压,进一步关闭放电开关。如此一来,电容式传感器便会快速经由低阻抗路径放电至地电位。当比较器输出电压从高转低时,整个电路周期则会重复进行。依据下列的方程式,输出频率(fout)与充电电流呈现正比的关系;与阀值电压和传感器电容则呈现反比的关系。因此借着量测输出频率,就可以得知传感器电容的大小:

假设充电电流为5μA,比较器阀值电压为1.3V,而传感器电容为30pF,则会产生128KHz的输出频率将。花在量测输出频率的时间越长,则可获得越高的频率分辨率。由于更高的频率分辨率会产生更佳的电容量测灵敏度,因此增加量测时间也会相对的提高电容量测分辨率。而设计业者可分别依据不同的应用层面、传感器尺寸与覆盖绝缘体厚度等因素,调整量测电容的时间。

由上列的方程式,可以近一步推衍出下列电容方程式:

因此,显然地我们还必须有输出频率周期的量测机制。图3分别显示周期量测方式的示意图与波形图。

图3:周期量测方式示意图

弛张振荡器的输出频率在此代表脉冲宽度调变器(pulse width modulator, PWM)的频率。PWM的输出波形由低频率与高频率两种脉波构成,频率的实际值端视不同应用而定。PWM输出信号则用来当成计数器(counter)闸门(gate)的信号。当此信号为高电位时,计数器会以fref的频率累积其数值,并于闸门信号下缘(falling edge)产生中断的情况,此时则可进行读取或是重设计数器数值的动作。之前曾假设充电电流为5μA,比较器阀值电压为1.3V,而传感器电容为30pF,则会产生128KHz的输出频率。假设计数器的参考频率为6MHz,则计数器在一个周期中所累积数值为46,两个周期为93,而十个周期的计数器数值则为468。由此可知,计数器累积数值越多,产生的分辨率或是灵敏度也就会越高。设计业者可运用下列方法获得更高的计数值:

提高计数器参考频率

降低振荡器频率

增加闸门信号的周期次数

电容式接口传感器采用可变更组态的混合信号数组(configurable mixed signal array),为设计业者提供一套具备成本优势的解决方案,请参考图4所示:

图4:Cypress 可变更组态混合信号数组CY8C21x34的示意图

Cypress 可变更组态混合信号数组CY8C21x34器件不仅内含建置弛张振荡器所需的可变更组态模拟区块,还具备作为建置周期量测装置用的数字区块。更重要的是,此器件还额外内建一组I/O模拟多任务器。多任务器的每一组针脚都具备一个开关器,可直接连结到模拟总线上。I/O模拟多任务器是一套大型的交叉式开关(cross-switch),能够让每一组针脚直接连结到控制系统上的模拟数组。此外,可编程电流源与放电开关也可直接与总线连结。这套内含多功能的可变更组态混合信号数组器件,可让28个I/O针脚中的任何一个都能被当成电容式传感器的输入端使用。图5显示完整的电容式感测系统。

图5:Cypress推出型号为CY8C21x34的可变更组态混合信号数组

当指尖同时放在两组并列的电容式传感器之间时,两组传感器很有可能皆会感测到指尖的碰触。因此,设计业者可利用这样的原理,近一步研发近似模拟的指尖位置感测装置。

滑杆(slider)是由多个邻近的传感器所组成,在这样的设计模式下,指尖接触的范围可以同时影响到多个传感器。因此,受影响传感器的电容值变化可用来计算质心(center of mass)与形心(centroid)。而计算出来的数值可精确的显示指尖所在位置。图6显示滑杆的构成。

图6:滑杆是由多个邻近的传感器所组成

如要达到多个传感器同时感测出指尖碰触的目的,设计人员在滑杆的设计上就必须考虑到传感器的形状。

恒速行驶操纵装置(cruise control)为滑杆的应用之一。举例来说,我们在里程计速度值上放置一排透明的电容式传感器,只要在55与60两个数值之间轻轻的点一下,即可将行车时速设定为57 mph。此外,内建电容式触控传感器的滑杆也可应用在车灯、音响音量控制等任何测量用的应用装置上。

随着车用自动控制仪表板的设计日趋复杂,要将所有的控制钮建置在其有限的空间中也变得更困难。由于许多车种的方向盘内都已装设安全气囊,当安全气囊迅速膨胀时,可没有人希望被一大堆机械器件砸在身上,因此,一般的汽车设计业者都会避免在方向盘的表面上装置控制钮。然而,电容式传感器只是被电镀在安全气囊盖后方的电路极板,并没有任何机械元器件。若是镀装有困难,也可以超薄电路板(flex circuit) 取代,并以镶嵌的方式装置在安全气囊盖后方。

车窗是另一项电容式触控技术尚未触及的领域。您是否想过直接把车窗除雾器的控制接口直接建置在车窗上?也许现在已经有设计业者将雨刷控制器直接安装在挡风玻璃上了。也许未来设计人员会在位于门把上方的玻璃上加装触控式数字控锁接口,车主只需要在车窗的传感器上输入正确的密码,便可控制汽车门锁。设计业者只要采用玻璃印刷电路技术或印制技术,就可将这类的电容式传感器建置在物体的表面。设计人员不仅可将这些传感器设计成常见的按键形式,也可自由发挥创意,将传感器以品牌或是车款名称,加装在车窗上(如图7所示)。

或许公司的营销人员会对图7这样的设计建议表示关切,因为消费者可能会质疑当他们摇下车窗时,是否仍能顺利的打开车门?

篇4

生物识别技术是一种通过人体特征来确认身份的认证技术,它能立刻强化安全,并且将用户从密码地狱中解放出来。生物识别可用在很多地方,比如:视网膜识别、面部识别、签名识别、声音识别技术、指纹识别技术等。在所有的生物识别技术中指纹识别技术是目前最为成熟,也被应用最广的生物识别技术。它是用人体的指纹特征对个体身份进行区分和鉴定,具有唯一性、稳定性、难于伪造的特点,而且识别的准确率较高。使它在身份识别和认证领域以及安全性能要求较高的行业中得到广泛应用。指纹识别技术即将迎来一个跳跃性发展的黄金时期,巨大市场前景,将对国际、国内安防产业产生巨大的影响。

二、FPC1011C传感器的总体特征

FPC1011C的工作原理和性能特点

FPC1011C电容式指纹传感器是瑞典FingerPrint Card公司推出的目前最先进的电容式指纹传感器,该电容式指纹传感器利用了该公司拥有专利的反射式探测技术(以往的电容式指纹传感器采用的一般是直接式探测技术),使指纹传感器的表面保护层厚度可以达到普通电容式指纹传感器的100倍左右,因此使指纹传感器具有更高的对干湿手指的适用性和更长的使用寿命。

主要特征和性能如下:

① 指纹图像大小:152*200

② 图像分辨率:363 DPI

③ 传感器图像面积:10.64*14.00mm

④ 采集原理:电容式,反射式探测法

⑤ 探测位置:真皮层

⑥ 高速的SPI接口

⑦ 3.3V或2.5V的工作电压

⑧ 抗静电达15kV以上

⑨ 使用寿命达100万次以上

⑩ 使用温度:-20℃~60℃

  2 模块的硬件设计

该系统是由DSP、FPC1011C指纹传感器、SDRAM和FLASH、RS232接口等硬件组成。

① 工作原理

用户通过PC端软件发命令给指纹识别模块,FPC1011C电容式指纹传感器采集用户的指纹,DSP通过SPI接口读取从传感器过来的指纹图像,将指纹图像存储到SDRAM中,DSP运用指纹识别核心算法对图像进行运算,将运算出来的特征点和存储在Flash的特征点进行比对,再通过指纹识别模块将比对结果输出给PC端显示比对结果。系统的原理框图如图1所示。

  图1 模块的硬件设计框图

 

② 指纹传感器部分的硬件设计

DSP通过SPI口读取FPC1011C的指纹图像,并通过PF口来控制片选控制信号,FPC1011C指纹图像传感器通过SPI(串行外设接口)口和外部进行通信,通信时,需要把传感器设置成从机模式,DSP设置成主机模式,同时要把从机CPOL和CPHA 设置为 0的数据传输模式,指纹图像的最大传输速度可达4M/s(=32MHz)。

传感器部分的硬件电路示意图如图2所示。

图2 传感器部分的硬件电路接口图

3 传感器的驱动软件设计

采用ADI公司的VisualDSP++ 4.5集成开发环境软件进行C语言编程。按时序把指纹图像放在SDRAM的固定地址中,通过仿真器进行调试,并读出所采集的指纹图像,观察指纹图像质量,进而调整指纹传感器的参数,使采集到的图像效果达到最佳。

FPC1011C的指令概要:

指令指令代码描述rd_sensor11 H开始采集指纹图像(数据采用FIFO方式)rd_spidata20 H采用FIFO方式读(仅在SPI接口时有效)rd_spistat21 H通过SPI接口读取内部状态寄存器(仅在SPI接口时有效)rd_regs50 H读取内部状态寄存器(所以寄存器在一次操作中读出,寄存器的内容通过FIFO方式存放)wr_drivc75 H写DRIVC寄存器,设置传感器的电压振幅wr_adcref76 H写ADCREF寄存器,设置ADC灵敏度wr_sensem77 H写SENSEMODE寄存器,设置自测试模式wr_fifo_th7C H写FIFO_TH寄存器,通过FIFO方式设置数据有效信号wr_xsense7F H移位数据到XSENSE寄存器wr_ysense81 H移位数据到YSENSE寄存器wr_xshift82 H写XSHIFT寄存器,设置X方向的移位数据wr_yshift83 H写YSHIFT寄存器,设置Y方向的移位数据wr_xreads84 H写XREADS寄存器,在移位YSENSE寄存器之前设置同一行的读取数目

① 传感器初始化程序设计

/****************************************************/

/*init SPI          */

/*CPOL and CPHA must be set 0      */

/****************************************************/

void segment (""L1_code"") Init_SPI(void)

{

  *pSPI_CTL &= (~SPE); //disable SPI

  *pSPI_BAUD = 0x23;  //SPI Master Baud Rate = SCLK / (2 × SPI_BAUD)

  *pSPI_STAT = TXCOL RBSY MODF TXE; //Master Mode;Active high SCK;8 bit;

*pSPI_CTL = MSTR TIMOD_RAW_TX GM  WOM SZ;

}

/*******************************************************

/The default parameter setting for FPC1011C(3A or 3B)

/DrivC  = 0x7F

/ADCRef = 0x02

/ Adaptive Gain Control FPC1011C;

*******************************************************/

void  segment (""L1_code"") Init_FPC1011C(void)

{

  // default setting DriveC=127, ADCRef=2

  SPI_SendByte(WRITE_DRIVC);

  SPI_SendByte(DriveC);

  SPI_SendByte(WRITE_ADC_REF);

  SPI_SendByte(ADCRef);

}

② 采集指纹图像程序设计

/*******************************************************

/Read Image

*******************************************************/

void  segment (""L1_code"") Read_FPC1011C_Img(void)

{

unsigned char val,i1,j1;

unsigned short j;

unsigned short cnt=0;

Start_SPI();

Init_FPC1011C();

SPI_SendByte(READ_SENSOR);

SPI_SendByte(0x00);

for(j=0;j

{

    SPI_SendByte(READ_SPI_STATUS);

    SPI_SendByte(0x00);

    val = SPI_RecByte();

}

SPI_SendByte(READ_SPI_DATA);

SPI_SendByte(0x00);

for(i1=0;i1

{

篇5

文献标识码:A

文章编号:1004-373X(2011)09-0190-03

Vehicle Load Detection System Based on Differential Capacitance Sensor

CHEN Mei

(Department of Physics and Information Engineering,Shangqiu Normal University,Shangqiu 476000,China)

Abstract: Aiming at the shortage of present vehicle load detection system,a capacitive vehicle load detection system is introduced. In the system,the load detection sensor used differential structure,which greatly improved the measurement sensitivity and non-linear,the capacitance measurement circuit used differential pulse width modulation integrated circuit,data acquisition and processing used STC89LE516AD single chip which has its own A / D converter,data communication used wireless communication mode. This load detection system has simple structure,low cost,easy installation,reliable performance,simple measurement circuit and good anti-jamming. The system can be used for traffic data collection and portable measurement,and has good application prospects.

Keywords: vehicle load detection; differential capacitance sensor; STC89LE516AD chip; wireless communication

0 引 言

随着公路运输业和商业贸易的不断发展,车辆载荷检测技术已成为测量领域研究的重点。目前比较常用的车辆动态载荷检测传感器主要有弯板、压电轴、单传感器、车载电容传感器及光纤传感器[1-4]。这些载荷检测传感器多适用于固定式安装,对路面情况要求较高,即使一些便携式车辆载荷检测传感器也因为重量过重、体积过大的缺点无法真正实现便携测量。同时,一些传感器测量技术过于复杂,传感器价格过于昂贵。因此,为了减小安装和维护成本,提高车辆动态载荷检测系统的便携性,本文提出了一种电容式车辆载荷检测系统,该系统中载荷检测传感器采用差动式结构,大大提高了测量的灵敏度和非线性,电容测量线路采用差动脉冲宽度调制集成测量电路,数据的采集和处理采用自带A/D转换器的STC89LE516AD单片机芯片,数据通信采用无线通信模式。这种载荷检测系统结构简单,成本低廉,安装方便,差动式电容载荷传感器抗干扰能力强、动态响应好、测量范围宽、灵敏度高、稳定性能好。

1 差动式电容车辆载荷检测系统

差动式电容车辆载荷检测系统如图1所示。

图1 差动式电容车辆载荷检测系统组成框图

车辆载荷检测装置为便携式,使用时铺设在路面上。手持装置为测量系统控制单元,通过无线通信方式对检测装置发出指令和接收数据。载荷检测传感器采用差动式电容载荷传感器[5],传感器将载荷的变化转变为电容值的变化。电容测量电路采用独特的差动脉冲宽度调制集成电路,将来自于差动式电容载荷传感器的极其微弱的电容信号采集出来,并转化成易于检测的电压信号。数据处理模块采用内部自带8路8位A/D转换器的电压输入型STC89LE516AD单片机芯片。数据处理模块对信号进行A/D转换、数据采集、数据处理,之后,将处理后的载荷结果输出。为了减少线路铺设的麻烦,增加工作人员的安全性,检测系统的数据通信采用无线通信装置。

2 差动式电容载荷传感器结构及工作原理

差动式电容载荷传感器结构示意图如图2所示。它主要由测量头、外壳、敏感元件(弹性体)、定极柱、动极柱、电极、等位环、引出线等构成。其特点为:测量范围宽;灵敏度高,便于拾取信号;极板间不接触、不变形、不磨损,机械损失小、寿命长;电容传感器受温度影响小;动态性能好;结构简单、适应各种恶劣环境和场合。

图2 差动式电容载荷传感器结构示意图

传感器的测量头和壳体为间隙配合,两者之间可相对滑动,并有定位螺钉定位测量头的初始位置,定位螺钉同时也起到测量头滑动时的定向作用,还可使施力物体保持相对稳定。测量头由敏感元件(弹性体)支撑,它受外力作用后把该力传给敏感元件。敏感元件(弹性体)位于测量头和壳体之间,起感受外力并按一定关系转化为机械位移量的作用。动、定极柱为中空圆柱型,其表面镀有电极。动极柱与测量头粘接为一体,随测量头一起滑动。定极柱与壳体粘接为一体,相对固定不动。在动、定极柱电极的两端均设有等位环,以减小电容边缘效应,提高测量精度。

当差动式电容载荷传感器受外力F作用时,测量头把该力传给敏感元件,敏感元件是弹性系数为k的弹性体,在该力作用下发生弹性变形,其变形量d与作用的外力成正比。敏感元件的变形使得测量头以及动极柱上的电极移动同样的距离d。此时,差动电容载荷传感器的电容值将产生相应的变化,其变化量为Δc,测量头移动的距离d与传感器输出电容的变化量Δc成正比。由此可知,被测物体所受外力F与差动式电容载荷传感器的输出电容变化量Δc成正比,即:F=kL2c0Δc(式中,k为敏感元件的弹性系数;L为动极柱与定极柱初始覆盖部分长度;c0为单个电容电极间的初始电容)。只要由测量电路检测出电容的变化量Δc,就可知物体所受的外力F。

3 电容测量电路

差动式电容载荷传感器是将被测载荷的变化转换为电容量的变化输出,而电容传感器所产生的电容量很微小,电容极板引线与地之间产生的杂散电容往往大于被测电容。因此小电容转换测量技术一直被人们所重视。然而,一般的检测电路结构比较复杂,精确度较低,不能满足测量要求。为了提高测量的灵敏度,针对差动式电容载荷传感器,在基于四相检测技术的电荷转移式电容检测电路[6]的基础上,设计采用了差动脉冲宽度调制集成测量电路[7],该电路具有集成度高、实现了电容传感器头有源化、输出脉冲方波、省去高频激励信号源、功耗低、抗干扰能力强、分辨率高等特点,尤其适合差动式电容传感器的测量。其内部结构框图如图3所示,图中的虚线框内为差动式电容传感器的两个可变电容C1和C2。

图3 差动脉冲宽度调制集成电路内部结构框图

工作原理如下:设直流电源接通时,Q端为高电平,Q端为低电平,则信号控制单元使充放电网络1向电容C1充电,C1上电压渐升,一旦达到电路控制电平值,信号处理单元使Q端立即变为低电平,而Q端为高电平;此时,电容C1上的电压经充放电网络1迅速放电至零,同时信号控制单元使充放电网络2向电容C2充电,C2上电压渐升,一旦达到电路控制电平值,信号处理单元再次使Q端为高电平,Q端为低电平;于是又开始下一周期的C1充电C2放电,……,如此周而复始,在差动脉冲宽度调制集成电路的输出端各产生一串其宽度受C1和C2电容变化量控制的矩形方波。当C1=C2时,Q和Q端电压波形反相对称,从Q端与Q端取出的两个平均值电压之差将等于零。当被检测的载荷使电容C1>C2时,两输出端的电压平均值之差为:V0=ΔddV1 (其中V1为充电网络输入的电压值),可获得较好的线性度。

4 数据采集与处理

数据的采集与处理单元采用自带A/D转换器的STC89LE516AD单片机芯片,完成数据采集、模数转换、数据处理以及驱动显示单元。当时钟在40 MHz以下时,每17个机器周期可完成一次A/D转换。STC89LE516AD单片机与差动脉冲宽度调制集成电路结合起来,完成电容传感器的检测。其主程序和A/D转换程序流程图如图4,图5所示。

图4 STC89LE516AD芯片主程序

图5 A/D转换子程序

5 数据通信

数据的传输采用无线通信模块。利用nRF401无线收发芯片和控制单片机89C52实现差动式电容车辆载荷检测系统中的无线通信,具有硬件电路简单、成本低廉、编程简便、通信可靠性高等优点[8]。无线通信技术在车辆载荷检测系统中的应用,使执法人员可以方便地通过手持仪器对公路车辆进行不停车载荷检测,大大提高了工作效率。

无线通信装置包括载荷检测装置和手持装置两部分。载荷检测装置接收手持装置的指令,向手持装置输送载荷结果,必要时向手持装置输送车辆类型、车牌号数据,进行误差校正;手持装置中超声波信号发射和数据接收装置向载荷检测装置发出指令,接收来自载荷检测装置的数据;单片机系统接收数据后送给显示装置,并可以与PC机建立数据联系;PC机形成局域网后,可以完成信息收集、显示、查询、检索以及数据分析统计、处理、存储等多项工作。

从图1中可以看出,载荷检测装置对车辆的载荷进行检测和处理,从单片机按照控制命令接收车辆的载荷检测装置的数据,与主机进行数据通信。图6为从单片机构成的显示及收发控制系统的硬件组成框图,主要包括采集与数据处理模块、看门狗、复位电路、电源监控电路、实时时钟电路、无线收发模块、控制单片机、信息输出单元等部分。控制单片机选用Atmel公司的89C52。

图6 从机显示及收发控制系统硬件结构框图

图1中的手持仪器为主机,主机的硬件结构框图如图7所示,由控制单片机、显示电路、看门狗、复位电路、电源监控电路、实时时钟电路、按键、无线收发模块,以及串行通信电路组成。

图7 主机硬件结构框图

当道路管理人员按动手持仪器的控制按键,要求读取数据,主机接到命令后,向从机发送命令,通过无线收发模块接收从机载荷数据,然后在手持仪器的显示屏幕上显示载荷信息和车辆有关信息,并且可以根据需要通过串口通信上传至道路管理部门的计算机。与从机相比,主机多了一个用来与计算机通信的串行口。此串口采用RS 232标准,可用MAX232芯片实现。

6 结 论

基于差动式电容传感器的车辆载荷检测系统,具有机械结构简单、性能可靠、测量电路简单、抗干扰性好、体积小、性价比高等特点。实际的试验测试结果表明,该车辆载荷检测系统对车辆进行动态载荷检测,车辆总载荷的测量误差在10%以内,其精度优于ASTM E131-02给出的Ⅰ类WIM(Weigh-in-Motion)系统精度 (置信95%时总重误差±10% ) ,可用于交通数据采集,尤其适合公路稽查人员进行便携式测量,具有良好的使用前景。

参考文献

[1]CEBON D,COORD NATOR B J. Weigh-in-motion of axles and vehicles for Europe (WAVE) [R]. [S.l.]: European Commission DG Ⅶ-Transport,2001.

[2]MCCALL B,VODRAZKA W C. State′s successful practices weigh-in-motion handbook [M]. Millersville: Elite Federal Forms Inc.,1997.

[3]TERAL S R. Fiber optic weigh-in-motion: looking back and ahead [J]. Industrial and Commercial Applications of Smart Structures Technologies,1998(3326): 129-137.

[4]徐树山.车辆电容称重装置研制[J].仪器仪表学报,2008,29(5):973-977.

[5]于晓光,卢满怀,杨三序.一种差动式电容载荷传感器[J].电测与仪表,2009(11):56-58.

[6]杨三序.基于四相检测技术的微电容传感器[J].传感器技术,2003,22(10):13-15.

篇6

2稳定性分析方法

本文利用误差年漂移量定量表征湿敏电容传感器的稳定性。文中定义误差的年漂移量为使用后各湿度测试点误差与使用前各湿度测试点误差的差值,其中湿度测试点误差为该测试点4次单次测量误差的平均值。为研究误差年漂移量的变化规律,文中分析了不同温度条件下,误差年漂移量的分布情况。讨论了室温(20℃)条件下误差年漂移量随湿度变化的规律以及同型号的两被试件之间的一致性。为确定各种因素对误差年漂移量的影响,文中采用方差分析法,分析了温度、湿度以及观测设备型号对误差年漂移量的影响,并给出了显著度。为检验现行湿敏电容传感器的检定周期是否合理,文中以中国气象局对湿敏电容传感器的要求为标准,对使用后静态测试中14支湿敏电容传感器的合格率进行了统计。

3稳定性分析结果

3.1误差年漂移量随温度变化情况测试时选取了-30℃,-10℃和20℃3个温度点,图1为各被试件在不同温度点误差年漂移量的箱形图,每个箱形的数据为7个湿度测试点的误差年漂移量。箱形图中,线段的最高点为最大值,最低点为最小值,箱形的上框线为上4分位值,下框线为下4分位值,箱内线为中位线,箱外“+”点为异常值。从图中可以看出,对大多数被试件来说,低温时中位线低,并且随着温度的降低,箱形和线段的长度增加,由此可知误差年漂移量在低温时较低,并且其分布随温度降低而变得分散。为定量表征误差年漂移量随温度的变化规律,文中计算了误差年漂移量的平均值和标准偏差。根据JJF1001-2011《通用计量术语及定义技术规范》的规定,当测量次数小于9次时,采用极差法计算标准偏差,如式(1):表2给出了各被试件在不同温度点时误差年漂移量的平均值和标准偏差。总体来看,各被试件在-30℃时误差年漂移量的区间为[-5.62,0.82],-10℃时为[-3.73,0.95],20℃时为[-1.85,1.07],其中置信因子k=1。

3.220℃时误差年漂移量的变化规律南京市年平均气温为15.4℃,因此分析20℃时误差的漂移情况具有更重要的意义。为了便于分析不同型号的被试件的误差漂移情况,按照观测设备型号将14套被试件分为8组,图2给出了20℃时8种型号的观测设备湿度测量误差的年漂移量。从误差年漂移量曲线的变化趋势来看,在全量程不同测量段,误差年漂移量有很大的差异。除I、IV型观测设备图2中(a)和(d)外,其余被试件误差的年漂移量随湿度的升高向y轴负向移动。在低湿点(≤40%RH),各被试件误差年漂移量的平均值为-0.04%RH,在高湿点(>80%RH),误差年漂移量的平均值为-1.04%RH。从图2(a)~(f)中两条曲线的关系来看,II、III、V、VI型观测设备(图2中(b)、(c)、(e)、(f))的两套被试件之间的误差年漂移量具有较好的一致性,两被试件间误差年漂移量的差值平均为0.5%RH。IV型观测设备的两套被试件除50%RH测试点存在1.81%RH的差异外,其余测试点误差年漂移量具有较好的一致性。I型观测设备的两套被试件一致性较差,两被试件间误差年漂移量曲线近似平行,其差值平均为3.2%RH。

3.3误差年漂移量影响因素的方差分析事件的发生往往与多个因素有关,但各个因素对事件发生的影响可能是不同的。所谓方差分析就是利用试验观测值总偏差的可分解性,将不同因素所引起的偏差与试验误差分解开,以确定不同因素的影响程度[6]。文中对测试点温度、测试点湿度、观测设备型号进行3因素方差检验,得出3个因素及其交互作用对误差年漂移量的影响。为确定结果是否是“统计上显著的”,需要确定α值[7],文中规定当α值小于0.01时,结果是显著的。表3为多因子方差分析表,可以看出,温度、观测设备型号以及温度和湿度交互作用的α值均小于0.01,表明温度、温度和湿度的交互作用以及厂家的设计制造水平对误差年漂移量有显著影响。

3.4湿敏电容传感器检定周期合理性分析为保证气象资料的准确性和连续性,要求气象仪器具有较好的稳定性。因此气象仪器必须进行周期检定以保障其准确性和气象资料的可靠性,其中被试仪器的检定周期则取决于它的稳定性。中国气象局对湿度测量最大允许误差为±4%RH(≤80%RH),±8%RH(>80%RH)。参加试验的14套被试件经过一年的动态比对试验,使用后的静态测试中有3套被试件仍符合技术指标要求,11套被试件不符合要求,不合格率为78.6%。仪器特性漂移产生的误差可以通过检定给出修正值予以解决,试行的GJB1758.26A《军用气象仪器检定规程第26部分:地面气象自动观测仪》中规定湿敏电容传感器的检定周期为1年。根据本文研究结果可以看出,经过一年的使用,超过3/4的传感器不能满足技术要求。为保证湿敏电容传感器的测量准确度,德国科学工作者建议几周校准一次[8],我国也建议应每半年采用两种饱和盐溶液对湿敏电容传感器进行两点调校。

篇7

解析:导体芯A、导体芯外面的绝缘物质B与导电液体C组成一个电容,液体深度h的变化跟极板正对面积变化相对应,组成测定液面高度的电容式传感器.

电流计指针向左偏转,说明流过电流计G的电流由左右,则导体芯A所带电量Q在减小.电容器的两极板与电池的两极相连,即两极板间的电压U不变,由Q=CU可知,芯A与液体形成的电容器的电容减小,则液体的深度h在减小(极板正对面积减小).

答案:减小;减小

点评:电容大小跟相对介电常数、正对面积和极板间距有关,电容式传感器利用液面高度、扭转角度、压力等改变电容大小,进而改变电容上的电压(或带电量)进行测量,求解这类问题时,应弄清液面高度、扭转角度、压力、转速等与电容大小的联系,运用公式

C=

εS4πkd和C=QU

,找出相关物理量的关系.

二、测量角度的电容式传感器

考查目的:电容大小的相关因素,动态情况下分析电容与偏转角度的关系.

例2 传感器可以将一些非电学量转化为电学物理量,便于快速测量,在机械加工时,有时需要测量角度,利用电容式传感器可以快速测量.如图2所示为利用电容C测量角度θ的电容式传感器的示意图,当动片和定片之间的角度θ发生变化时,电容C便发生变化,于是知道了电容C的变化情况,就可以知道偏转角度θ的变化情况,下图3中最能正确反应C和θ间函数关系的是( )解析:平行板电容器的电容大小跟相对介电常数成正比,跟正对面积成正比,跟极板间距离成反比,用公式表示C=εrS4πkd,正对面积

S=r22(π-θ),所以C=k(π-θ),C和θ间函数关系如图(B)所示.

保持电容器的两极板与电池的两极相连,即两极板间的电压不变,电容器的带电量

Q=CU∝(π-θ),角度θ增大,则电容器所带电荷量Q减小,进而测量角度.

点评:电容传感器的种类很多:压力传感器、温度传感器、称重传感器、流量传感器、位移传感器、转速传感器,电容传感器应用非常广泛,电容知识与生活、生产等相综合构成丰富多彩的STSE问题,应注意电容知识的运用.

三、电容式话筒

考查目的:分析电容器的电容、带电量与电势差的关系.

例3 电容式话筒已广泛运用于会议、误乐场所,某电容式话筒的原理示意图如图4所示,E为电源,R为电阻,薄片P和Q为两金属极板,对着话筒说话时,P振动而Q可视为不动,

在P、Q间距离增大过程中( )

(A) PQ构成的电容器的电容增大

(B) P上电荷量保持不变

(C) M点的电势比N点的低

(D) M点的电势比N点的高

解析:在PQ间距增大过程中,根据电容决

定式

篇8

2 声学传感器

声学传感器是一个可以接收声波并且能够把声信号转换成电测仪器能够识别的电信号的装置,从而使得不易被测量的声学量能够很容易被测出,也使得声波被人们更为广泛的研究和利用。

声学传感器的原理就是声电转换,即把不易测量的声音信号转换成为容易被电测仪器测出的电信号。目前应用最多的声学传感器主要有动圈式、压电陶瓷式和电容式三大类,其他类型的,如果细分的话,也都属于这三大类之中。下面一节中,会具体介绍这三种声学传感器的原理,在此不再赘述。

3 声学传感器的前置放大电路

声学传感器的前置放大电路,是一种专门为声学传感器的输出信号而设计的放大设备。通常,人们习惯将声学传感器的前置放大电路直接简称为“前置放大器”,专门用来处理电平较低、音质比较脆弱的声学传感器的输出信号。

由于声学传感器可以分为动圈式、压电陶瓷式、电容式等多种不同类型,且其输出的信号在电平和阻抗水平上也有很大的差别,因此,前置放大器在设计上也有很多种不同的造型和尺寸。我们在选择前置放大器时,除了要鉴别音质水平之外,还应该特别注意其在多种不同的应用条件下对信号一致性的保持能力。

市场上可以见到的前置放大器有很多,它们大致可以分为两类,一类是电子管前置放大器,另一类是晶体管前置放大器。由于数字音频信号是离散的信号,与连续的模拟音频信号相比,声音听起来有一些硬,电子管的特性就是可以呈现出温暖的音色,所以近年来选用电子管前置放大器的用户逐渐多起来,电子管前置放大器会使原来听起来比较生硬的数字声音变得温暖许多。当然,电子管前置放大器呈现的温暖音色特性不一定适合对所有声音的加工,要根据声音特点的不同或者个人的喜好来选择是否用电子管前置放大器。

4 三种声学传感器的原理

4.1 动圈式声学传感器的原理

电磁感应现象:闭合电路中的一部分导体在磁场中做切割磁感线运动,在电路中产生感应电流,我们把这种现象称为电磁感应现象,产生的电流就叫做感应电流。

动圈式声学传感器就是利用电磁感应现象制成的。如图1所示,当声波使最右边的膜片振动时,连接在膜片上面的线圈会随着膜片一起振动,而音圈的振动又是发生在永久磁铁的磁场里,其中就产生了感应电流,也就把声音信号转换成了电信号。其中产生的感应电流的大小和方向都在变化,变化的频率由声波振动的频率决定,变化的振幅由声波的振幅决定。

4.2 压电陶瓷式声学传感器的原理

压电效应是指一些电解质在受到某一个方向的外力作用发生形变时,由于内部电荷有极化现象,会在其表面产生出电荷的现象。

由于有压电效应,压电陶瓷能够直接将非电量转换为电量,同时,压电陶瓷的压电常数可以通过调整配方组成或者改变陶瓷片组合的方式而得到大幅度的提高,从而可有效的提高它的灵敏度。

压电陶瓷式声学传感器就是利用压电陶瓷片的压电效应,把应力转换为电压输出的装置,如图2所示。压电陶瓷片是其中关键的部件,从信号变换角度看,这里压电陶瓷片相当于一个电荷发生器。

压电陶瓷式声学传感器是由把外力传递给压电陶瓷的力学系统、压电陶瓷片以及将电荷传递给测量仪表的测量电路三个部分组成。其中,力学系统是用来安装和固定压电陶瓷的支架部分,由该部分直接和外界接触,当受到外力的作用时,支架和压电陶瓷一起发生形变。压电陶瓷由形变产生电荷输出,然后测量线路会把电荷变换为电压输出。

压电陶瓷式声学传感器的结构简单、体积小、质量轻、功耗小、寿命长,尤其是它具有很好的动态特性,因此非常适合有很宽频带的周期性作用力以及高速变化的冲击力。

4.3 电容式声学传感器的原理

电容式声学传感器是将被测的非电学量的变化转换为电容量变化的传感器。

篇9

目前,智能电网技术快速发展,其已成为全球能源发展和变革中的重大研究课题,其中各类电信号的测量技术及其传感器是实现智能电网监测、控制、分析和决策的基础,也是智能电网发展的关键。电压互感器的准确性、可靠性、便利性和快速性是电能计量和继电保护、电力系统监测诊断、电力系统故障分析中的关键技术要求。

电磁式电压互感器(Potential Transformer,PT)和电容式电压互感器(Capacitive Voltage Transformer,CVT)在电力系统中广泛应用。虽然电网中普遍使用的电容式电压互感器和电磁式电流互感器的技术成熟,而且拥有长期的运行维护经验,但它们的测量线性度较差、瞬变响应速度较慢,且电磁式电流互感器的瞬态误差特性也不理想。

传统的电磁式电压互感器存重量大和体积大的特点,而且随着特超高压电网的发展,其绝缘强度要求难度越来越大,同时由于具有铁芯,可能导致发生铁磁谐振过电压和由铁磁饱和带来的动态范围变小等缺点,已经越来越不适应当前智能化电网的发展趋势。

与电磁式电压互感器相比,电容式电压互感器具有更多的优点,其分压结构可以提高互感器的动态范围,使其更容易提高绝缘强度。但该互感器不能够及时跟踪电压变化,不能满足继保系统中的要求,而且该互感器能够捕捉到高频的过电压波形,也不能满足电力系统故障诊断与在线监测要求,而电容式电压互感器中耦合电容、补偿电抗器以及中间变压器等内部储能元件构成的RLC电路会使得电容式互感器的暂态特性会变差,使得当一次系统发生如电压跌落故障时,电容式电压互感器的输出并不能立即跟随一次侧输入变化,并且在高频过电压下,二次侧输出可能发生由铁磁谐振导致的高频振荡,无法反映一次侧输入波形。在一些不易进行直接测量的场合,如对高压套管、被绝缘层包裹的变压器绕组接头处等进行测量时,电磁式电压互感器和电容式电压互感器的使用也具受到了限制。

1 D-dot传感器测量

3 结 语

D-dot传感器是一种电场耦合的传感器,工作原理上与通过传递能量实现测量的PT和CVT有所不同,可以实现无接触测量,其结构简单、具有较大的测量带宽和动态范围、能够抑制非线性负载的感应电压过冲,为克服上述问题提供了新的途径。但是传统的D-dot传感器由于传递函数限制与积分器、衰减器的使用,其工频与高频响应会存在幅值与相位误差的同时也存在传感器体积与绝缘强度之间的矛盾,限制了其作为电力互感器的使用。通过分析D-dot传感器的工作原理及其影响因素,指出一种通过差动输入和多重电极并联的方式被引入以使互感器工作于自积分模式,使其能够作为无接触式电子式电压互感器应用于电力系统电压测量领域,具有结构简单、便捷的特点,理论上分析其在额定电压范围内线性拟合较高,而且具有很高的动态范围,幅值与相位误差能够达到计量要求,能够快速反应暂态电压变化,是未来的发展方向。

参考文献:

[1] 任晓,方春恩,李伟,等.电阻分压式电子式电压互感器的研究[J].变压器,2010,(4).

[2] 方春恩,李伟,任晓,等.基于电阻分压器的10 kV电子式电压互感器的研制[J].西华大学学报(自然科学版),2010,(2).

[3] 胡晓倩,杨菁,张莲.电阻分压器的集中参数电路模型及分析[J].重庆工学院学报(自然科学版),2008,(7).

[4] 杨学昌,陈昌渔.精密冲击电阻分压器测量误差的计算分析[J].高电压技术,1987,(2).

[5] 林明星,邱红辉,段雄英,等.10 kV电压传感器的设计与误差分析[J].四川电力技术,2008,(S1).

[6] 牛海清,迟永久.10 kV级电阻型电子式电压互感器电场计算及参数设计[J].变压器,2004,(10).

[7] 周延龄,谭成.2000千伏压缩型电阻分压器及电阻分压器响应时间的测量[J].高电压技术,1981,(2).

[8] 梁志远.10 kV电子式互感器的应用[J].广东输电与变电技术,2008,(1).

篇10

还记得手写笔是早期PDA类型设备的常用文本输入和导航控制工具吗?在那时,电阻式触摸屏技术在大多数初始触摸屏设计中占据主导地位。随着感测层位于前面板后的光滑、闪亮的电容式触摸屏的出现,手写笔的使用减少了,但是为期不长。

现在消费者将其平板电脑和智能手机看作用于创建内容的设备,而不是仅仅用于访问或使用内容。手写笔是一个自然的选择,为输入文本、做笔记和画图等任务提供了令人熟悉的精确的笔一样的体验。

图1电阻式触摸传感器,比如在普通堆栈中的那些传感器,提供了实现笔和手写笔输入的成本较低的较简单方法。然而,它们没有其他替代技术的光学清晰度和可靠性。

屏幕之下

使用电阻式技术,机械传感器安装在显示屏和嵌入式控制器的顶部(图1),传感器包括一个柔性聚酯顶层和一个刚性玻璃底层,它们使用空气和/或绝缘点分隔开来。

两层各自的内表面涂有透明的金属氧化物涂层(铟锡氧化物或ITO),施加电压时有助于在每一层形成梯度。当手写笔压下柔性薄膜时会接触到下部的电阻层,从而激活信号。

各层之间的控制电子交替电压,经过后续的X和Y坐标到达触摸屏控制器。而后,触摸屏控制器数据传输到CPU用于处理。

在电阻式触摸系统中实施手写笔功能相对简单直接,电阻式触摸传感器经设计提供用于手写笔和手指的优化性能。而现在,电容式触摸是从蜂窝电话到电子阅读器、平板电脑以及笔记本电脑的大多数移动设备的首选技术。

电容式触摸技术提供了丰富的用户体验,由于具备出色的光学特性,以及电阻式触摸系统所不具备的坚如磐石的可靠性,因此带来了更清晰、更新颖的显示性能。不过,用于电容式触摸技术的手写笔实施方案并不简单,需要考虑诸多因素。

感应技术:良好的性能,更高的成本

评估现有的潜在手写笔技术,设计工程师有三种可能的选择:感应技术,无源电容式手写笔,以及有源电容式手写笔,多年以来,感应技术方法一直非常盛行,尤其是在图形输入板和平板电脑中。

感应技术包括一个印刷电路板(PCB)传感器,一个混合信号IC控制器、驱动器软件,以及一个手写笔。传感器位于LCD和背光装置的下部,传感器是由铜轨道构成的,在X和Y方向提供大量的重叠的天线线圈。这些线圈发射电磁信号,可以使用带有有源或无源电路的专用电磁笔检测信号。

磁场的能量维持电路运作,将能量从传感器处转移到电磁笔中,笔的自有电路接收能量,一个电感器/电容器与频率共振以确定其数值。然后,能量反射回到传感器,作为模拟信号被接收,并传输到控制器IC,从而提供位置坐标数据。

图2除了电容式触摸传感器,还需要一个附加的传感器用于感应式有源手写笔技术。这个附加的传感器增加了成本和设备的厚度,但是提供了最商胜能的触摸和手写笔解决方案。

感应方法具有良好的性能,但其实施方案往往比较昂贵(图2),感应手写笔运作所需的额外堆叠层增加了设备的厚度,需要附加的电路,并且增加了相关的成本。

无源电容式手写笔:中等性能、低成本

无源电容式手写笔基于投射电容式场电荷转移感测技术,提供了具有中等性能水平的低成本解决方案,广泛用于蜂窝电话和较新的平板电脑设备,在手指等物体接近或触摸屏幕的表面时,投射电容式触摸屏通过测量所引起的电容的微小变化来运作。

用于电荷收集的电容至数字转换(capacitive-to-digital conversion,CDC)技术和电极结构(通常是位于显示屏顶部的透明传感器薄膜)的空间排列的组合,对于整体性能产生了很大的影响。这种组合也有助于推动方案的实施。

业界有两种安排和测量电容变化的基础方法:自电容和互电容。使得电容式触摸屏能够可靠地报告和跟踪多个同时触摸点的唯一方法,是测量传输和接收电极安排为正交组合处的互电容。

采用自电容方案,测量整行或整列的电容变化,当用户触摸两个位置时会导致位置模糊。在实际中,自电容仅适用于单一触摸或非常有限的双触摸应用。

触摸屏中的传感器包括一个或多个位于透明基板材料上(通常为PET或玻璃)的图案化透明导体层,传感器位于显示屏上。为了构建一个能够通过玻璃或塑料前面板来解析一个或多个手指触摸的传感器产品,需要采用完全的正交网格电极。

图3使用maXTouch触摸控制器来同时支持触摸和电容式手写笔的各种电容式传感器堆叠之一,这项技术提供了高性能的有源手写笔解决方案,且不会增加成本或牺牲性能。

通常情况下,图案化导体(电极)是由蚀刻图案ITO制成的,这是一种高透明性材料,既具有良好的光学清晰度,同时可保持稍低的电阻系数。ITO可以用于制造真正的传感器矩阵,唯一的触摸敏感区域是行电极和列电极相互结合位置附近。

使用插补方法,在单一触摸的中心位置可以获得相当准确的分辨率。在需要唯一确定数个邻近触摸点的时候会出现困难,因为这需要高电极密度。

这意味着行和列的间距必需达到5mm左右或更小,而这是拇指和食指两指之间指尖距离所测量出,方法是两指合在一起,然后除二再分开。广泛的测试已经证实10~12 mm的分隔距离,可以在空间分辨率和增加传感器复杂性之间建立最佳的折衷权衡。

高电极密度实现了另一个重要的特性:使用无源导电的手写笔。只要使用正确的传感器设计和非常先进的触摸追踪算法,便有可能使用一个笔尖尺寸为3~5 mm的简单无源导电手写笔。

有源手写笔:出色的性能,较低的总体成本

第三种手写笔实施方案是有源手写笔,这项技术包括投射电容式场触摸屏的出色性能和特性,集成了一个能够检测场的存在并与触摸屏控制器通信的手写笔。

例如,爱特梅尔的maXStylusmXTS100有源手写笔支持其maXTouch触摸屏控制器,这些技术的组合简化了硬件,并且降低了总体解决方案的成本,因为仅仅需要与maXTouch控制器接口的单一ITO传感器,用于检测手指触摸和手写笔接近。

通过系统驱动程序和串行接口,系统主控制器与maXTouch芯片组接口,用于触摸和手写笔数据。这种同时触摸和手写笔能力称作多重感测(multiSense)功能性。

mXTS100器件采用电容式感测来检测有源maXTouch传感器的存在,并且响应其自有的信号以指示位置、压力、按钮点击定时,以及其它信息。maXTouch控制器通过传感器接收手写笔信息,同时检测手指触摸操作。

在maXTouch控制器检测到手写笔的存在之后,激活专用算法来处理手写笔数据,从而提供高线性度和高分辨率。更多的处理提供出色的手掌抑制特性,从而带来畅顺舒适的像笔一样的手写笔书写体验。

此外,使用1 mm笔尖直径和140Hz快速帧率,maXStylus有源手写笔能够提供快速、准确的手势捕获,比如在触摸屏上的轻击。

篇11

飞机燃油油量测量系统的、可靠性、精确度、灵敏度、维护性对整体飞机性能而言有着举足轻重的作用。其中,飞机燃油油位的测量是飞机燃油测量系统中很重要的一部分。据统计,燃油测量精度每提高1%,可以多载重200公斤。因此,提高飞机燃油油位测量的准确度,进一步提高油量的检测精确度,就成为了飞机燃油系统研究工作的重要方向。

本文根据将主要讨论常见的几种测量方法,并分析其原理,包括浮子电阻式、电容式以及超声波式等。最后,比较其优缺点,并探究适用于我国飞机燃油油位测量的有效方法,以及油位检测方法的发展趋势。

1 浮子电阻式油位测量方法

浮子电阻式油位测量方法通过安装在油箱内的浮子传感器,感受油箱中油面高度来测得飞机载油量。浮子传感器由可变电阻和浮子组成,当油面高度变化时,可变电阻值随之改变,这样,就将油面高度变化的非电量变化转换成电量变化,输入仪表线路,从而测得油箱中的油量,其原理简图如下图1所示。测量总油量时,传感器则需要使用多个,对称式电桥的一个桥臂由所有传感器内的电位器互相串联而成。

该测量方法存在以下问题:测量范围小,指示误差大,传感器极易损坏,体积大,安装调试不方便等。

2 电容式油位测量方法

电容式油位测量方法是现代航空领域最常用的方法,其基本原理是空气与燃油存在介电常数特性方面存在差值。将两个同心电极管垂直或接近垂直地安排在燃油箱内构成电容时,就利用了这一现象,如图2所示。

在真空状态下,圆柱形传感器的理论电容值由下述公式给出:

式中ε0为介电常数,H为传感器高度,r1为传感器内管的外半径,r2为传感器内管的内半径。如图3所示,当燃油介质的液面在电容式传感的两同心圆筒之间变化时,引起极板间介质的高度变化,因而导致电容变化,传感器的电容量如下式计算:

式中C为总电容,C1为气体部分电容,C2为燃油部分电容,ε0为空气介电常数,ε1为燃油介电常数。由上式可以看出总电容量与燃油液面高度呈线性关系,由于油箱曲线是已知的,所以测得燃油介质的液面高度,及可得到电容传感器的电容量,进而得到燃油箱内的剩余油量。该测量方法主要问题是由于电容整体要浸入燃油内,所以因为其体积的原因,影响了原始液面的高度。

3 超声波式油位测量方法

超声波测量依赖于声波能够在液体中传播并在该液体的界面处发生反射这一声学现象。测量中的关键在于声波在燃油中的传播速度与燃油的温度成反比,并且燃油类型不同而不同。超声波测量系统的基本原理为:

1)声波通过燃油时的传播速度可由声速计进行测量;

2)声音从发射换能器通过燃油向上传播到燃油界面,然后向下传播返回接收换能器的往返时间,可用传感器测量。

3.1 超声波传感器的工作原理

超声波液位测量,是基于超声波在声阻抗率不同的媒介分界面上产生反射的特性。由超声波换能器发出的超声波在液体与气体的分界面发生反射,产生回波被换能器接接收,依据换能器发射超声波到再次接收到超声波所历经的时间可测出液位。超声传感器相对于电容传感器具有结构简单、测量精度高、测量稳定性好、抗干扰能力强等优点。如图4所示,为超声波声速计和超声波传感器的工作原理图,此处声速计利用一固定目标体起到一个声速校准的作用,而传感器则用于测量油箱内的燃油高度。

图5给出的时间曲线,表明采用这种布局如何可以获得燃油油面高度,参数定义如下:

TT为目标体的往返时间,TS为至油面的往返时间,D为至目标体的已知距离,L为至油面的未知距离。

通过下列公式,可由声速计导出燃油内的声速VOS,即:

VOS=2D/TT

同样,如下公式可以确定至油面的未知距离L,即:

L=VOS・(TS/2)

由上面两个公式,我们可以得到油面高度,即:

L=D(TS/TT)

超声波燃油测量方法主要存在的问题是这种技术不能通过测量无油空间的超声波的往返时间,声波在介质中传播会发生衰减,飞机处于爬升姿态时会产生气泡,影响测量。

3.2 超声波传感器的设计

如图6所示,超声波传感器由下端的换能器组件构成,并附带一个垂直固定在其上的稳定筒,传感器可由金属或者复合材料构成。对于某个给定位置,传感器的整个长度与等效的电容式传感器相同,除非留出必要的安装间隙。

换能器组件带有压电陶瓷盘器件,起到收发器的作用,产生并接收超声波。换能器组件由共振盘和电阻放电网组成,后者直接安装在此盘上,以便安全地消散由于温度或机械冲击、机械迷宫或者气泡等累积的任何非正常能量。

稳定筒的用途是准直换能器所发生和接收的声波,并提供一个进行测量的“受保护区”。稳定筒保护测量,避免出现不利现象,例如燃油晃动或大个气泡。稳定筒和换能器组件的设计必须使燃油可方便地进入稳定筒,以使得油位跟随稳定筒外面的燃油,但防止在使用中可能产生的湍流引起的大个气泡进入。在换能器组件内纳入迷宫式隔声板,可达到此目的。最后,下部安装支架应固定到防气泡罩上,上部可移动以及阻尼器,位于定位筒上。

4 结论

根据以上对各个检测方法的研究和分析,结合国内油位传感器的发展现状,未来的商用飞机应当采用电容式油位测量方法较为妥当。

国外的技术领先国内至少20年,在积极推进油位检测的发展方面,B777客机和F-22猛禽战机已经使用了超声波式油位测量方法,并取得了一定的成功。然而,我们可以看到,在最新的机型,例如波音B787梦想飞机和空客A380,以及新的超宽体机A350中全部将电容式测量作为燃油油位测量的首选技术。

究其原因,一是超声波技术的优势尚未得到充分的体现,二是燃油测量需要极高的可靠性,因为必须进入燃油箱进行维护,成本很高,三是电容式油位测量技术已经被应用多年,业界一直以其为基础来制造整个燃油测量系统。因此,对于新技术的应用,一直处于保守状态,难以取代陈旧的电容式测量法,尽管其存在电缆束连通性和水污染有关的使用问题。

对于未来油位检测技术的发展,按作者的观点,超声波式油位测量法会被广泛应用,因为技术总是会有反复推进的过程,等待技术成熟后,相信非接触式的超声波会以其明显的优势占据一席之地。未来最具发展前景的技术将是使用光和微机电技术(MEMS)的一种组合,MEMS装置可能会设计成通过光纤受光激励时,测量压力、温度、密度和加速度等传感器。因为MEMS传感器尺寸小,适合于埋置在复合材料结构内,因此这是能可靠的在不利环境下工作的,并满足当前严格条例要求的理想后续技术。

【参考文献】

[1]王细洋.航空概论[M].北京:航空工业出版社,2004.

[2]陈嵩禄.飞机设计手册第13册:动力装置系统设计[M].航空工业出版社,2006.

[3][美]罗伊・兰顿.飞机燃油系统[M].大飞机出版工程,2009.

[4]范斌.飞机燃油测量控制系统的设计与实现[D].2006.

[5]肖凝,樊玉铭.基于碳纤维复合材料的电容式燃油油位测量传感器[J].计测技术,2012(2):21-25.

篇12

1工作原理和传感器组件的测试

1151电容式变送器的故障部位一般分为两类:传感器故障和电子检测及放大转换故障。传感器一般不易出现问题,正常的情况下,一般不用过多考虑问题所在,应重点检测电子电路部分。

1.1 1151电容式压力变送器的原理

1151系列电容式变送器有一个可变电容的传感组件,称为“δ”室。该传感器是一个完全封闭的组件。过程压力、差压通过隔离膜片和灌充液硅油传到传感膜片引起位移,传感膜片和电容两极板之间的电容差由电子部件转换成4 ~20 mA的二线制输出的电信号。

电子放大电路由解调器、振荡器、振荡控制放大器、电流检测器、电流控制放大器、电流限制控制器、基准电压、稳压器等组成。通过它们对电容信号进行检测,从而控制振荡频率,再将其转换为电流输出。电气原理图:

1.2传感器组件的测试

传感器有故障时,一般不能在现场修理,只有更换。如果没有发现诸如隔离膜片损坏、漏油等现象,则对传感器组件可按下列步骤来检测:

(1)小心地从插头座上拔出传感器组件引出线插座;

(2)检查内部二极管电路的正、反向偏置:一个回路是红线与黄线,另一个回路是绿线与蓝线,其原理如图1所示。用万用表正极接红线,负极接黄线,其串联回路D1、D2、D5、 D6、R4阻值之和应与测绿线和蓝线的串联回路D3、D4、D7、D8、R5的阻值之和接近或相等。

( 3)检查传感器组件外壳和此四线的电阻,也就是检查电容极板和接外壳的传感膜片之间的电阻,其阻值应大于10 M Ω,由此判断电容故障点。

2 常见故障诊断分析

2.1信号输出过大

2.1.1故障现象

在没有压力(差压)的情况下,变送器输出电流(mA)数过大,有时超量程,调整零点及量程电位器不起作用。

2. 1. 2故障分析

出现此故障的电路部分较多,目经常损坏的是电路的后极,即电流控制放大器到电流控制输出部分。其结构如图2所示。 IC3为电压放大器经V转换为mA输出。用万用表直流电压挡测IC3的3脚电位值,调节量程或零点,3脚电压有变化,说明前极回路正常。同时测量6脚输出应有放大的电压信号输出。从而判断IC3及偏置回路是否正常。若6脚电压始终很高(接近电源电压),则可判断为IC 3损坏,更换同型号LM 308即可。若IC3 正'常,则用万用表测量V17、V18是否击穿。在实际检测中,经常遇到V17、V18击穿致使输出过大。

2. 2信号输出过小或无输出

2. 2. 1故障现象

(1)增加压力,变送器信号输出值不增大;

(2)有压力,但变送器无信号输出。

2. 2. 2故障分析

先应检查引压管是否漏气或者被堵住以及对节点是否存在跑冒滴漏现象,如果确认不是,检查接线方式,如接线无误再检查电源,如电源正'常再察看传感器零位是否有输出,或者进行简单加压看输出是否变化,有变化证明传感器没有损坏;最后检查加到变压器两端的电压是否正'常;集成运算放大器两端电压是否正'常;判断振荡电路是否起振;量程、零点、电位器调节电压是否变化及15Ω量程负载电阻是否损坏。用检测输出过大的方法检测后极电路,判断后极电路是否正常。

2. 3信号输出不稳定

2.3.1故障现象

压力一定的情况下,变送器输出信号值出现不规则的跳动。

2.3.2故障分析

在排除压力源本身是一个不稳定的压力、仪表或压力传感器抗干扰能力不强、传感器接线不牢、传感器本身振动很厉害、传感器故障等因素后,应检查变压器是否有间歇性的短路、开路和多点接地的现象;检查加到变压器的电压是否稳定正常;稳压电路是否正常;检测各个稳压二极管、测试振荡频率是否稳定;电路板有无虚焊。

2. 4信号输出非线性

2. 4. 1故障现象

加压时变送器输出不变化,再加压变送器输出突然变化,泄压变送器零位回不去。

2. 4. 2故障分析

产生此现象的原因极有可能是压力传感器密封圈引起的。一般是因为密封圈规格原因(太软或太厚),传感器拧紧时,密封圈被压缩到传感器引压日里面堵塞传感器,加压时压力介质进不去,但是压力很大时突然冲开密封圈,压力传感器受到压力而变化,而压力再次降低时,密封圈又回位堵住引压日,残存的压力释放不出,因此传感器零位又下不来。排除此原因的最佳方法是将传感器卸下,直接察看零位是否正常,如果正'常更换密封圈再试。

篇13

电容式传感器是将被测非电量的变化转换为电容量变化的一种传感器。由于它结构简单、体积小、分辨率高,可实现非接触式测量,并能在高温、辐射和强烈振动等恶劣条件下工作,目前,在自动检测中得到了广泛的应用[1]。电容式测厚仪是用于测量金属带材在轧制过程中厚度在线检测的仪器,传统的方法是采用两电容并联构成差动结构来检测金属带材的厚度,该方法会随着带材在线检测过程中波动的幅度增大而误差增大。文章提出了一种改进型电容测厚仪,采用独立电容进行检测,较原方法,误差降低。

2 差动式电容传感器

现有的这种金属带材测厚仪,其工作原理是在被测带材的上下两侧各放置一块面积相等,与带材距离相等的极板,如图1所示。这样极板与带材就构成了两个电容器C1,C2,把两块极板用导线连接起来成为一个极,而带材就是电容的另一个极,在电路中C1、C2属于并联方式,其总电容为C1+C2。金属带材在轧制过程中不断向前送进,如果带材厚度发生变化,电容测厚仪传感器将引起它与上下两个极板间距变化,从而引起电容量的变化。如果将总电容量作为交流电桥的一个桥臂,电容的变化量DC引起电桥不平衡输出,经过放大、整流、滤波即可在仪表上显示出带材的厚度。

将(4)式与(3)式进行比较发现,只要金属带材不是处于两极板中心位置,将产生的位置误差。但是,金属带材在线检测过程中必定存在上下波动,即使采取一定的措施,仍存在误差,该误差是由于两电容并联所造成的。传统的电容测厚仪测厚精度较低,并且为了使带材尽可能的处于中心位置,也加大了操作的难度。所以,这种方法并不理想。

3 独立电容传感器

在电容器两极板间的空隙中放入金属板,很明显电容器的电容值会改变,但不像改变电介质那样。当放入金属板后,金属板在匀强电场中静电平衡,成为等势体。于是,我们可以把它当作等势面而忽略厚度,厚度忽略后其板间距离可看作减少了x(x为金属板厚度),故由C的决定式可得电容增大,增大部分即由金属板厚度引起的。基于此思想,可以把金属带材假设成放入电容器两极板间的一个等势体[4]。

在被测金属带材的上、下面对应位置各安置一块电容传感器的极板,这两块极板构成一个独立的电容传感器。假设金属带材上、下极板之间的距离固定为d0(即独立电容初始极板间距离为d0),带材的上表面与上极板间距为d1,带材的下表面与下极板间距为d2,带材的厚度为x,则d0=d1+x+d2。不论被测带材是否处于中心位置,也不论被测带材上下波动如何,只要厚度x一定时,那么电容两极板间距d0-x=d1+d2即为固定值。通过测量(5)式中的Cx即可确定金属带材x的厚度。

这样,通过测量独立电容器的电容值,克服了并联式电容器存在的原理性误差的缺点,解决了金属带材传输过程存在的上下波动的问题。

由于式(5)中厚度x与输出电容Cx为非线性关系,可采用放大倍数足够大,输入阻抗足够高的运算放大器作为后续理想的测量电路,该电路将电容又转化成电压输出。不过此时,运算放大器的输出电压与带材厚度x成线性关系,解决了变极距式电容传感器的非线性问题。

4 结束语

文章提出了独立电容传感器检测金属带材厚度的原理和方法,完全消除了被测带材在测量过程中上、下波动对厚度检测的影响。由于输出的电容变化值十分微小,不能直接为目前的显示仪表所显示,所以借助运算放大器测量电路,将其转换成与厚度x成单值函数关系的电压。该方法操作简单,提高了测量精度。

参考文献

[1]陈艳红.传感器与检测技术[M].南京大学出版社.

[2]熊葵容.电容传感器检测金属板带厚度的研究[J].传感器世界.