在线客服

纳米医学论文实用13篇

引论:我们为您整理了13篇纳米医学论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

纳米医学论文

篇1

1.2蛋白质载体

纳米材料在诊断、药物输送、生物功能材料、生物传感器等方面得到了迅猛的发展,出现了疾病治疗、诊断、造影成像等多种功能的组合。无机纳米材料在生物大分子药物的载体,包括运载蛋白质、多肽、DNA和siRNA等方面的研究较多。纳米多孔硅有较好的生物相容性、生物可降解性和可调控的纳米粒径,可作为药物输送系统。壳聚糖修饰多孔硅后可用于运载口服给药的胰岛素,改善胰岛素的跨细胞渗透,增加与肠道细胞黏液层的表面接触,提高细胞的摄入,可用于口服递送蛋白质和多肽。纳米羟基磷灰石与蛋白质分子有高亲和性,可用作蛋白质药物缓释载体,能提供钙离子,造成肿瘤细胞过度摄入,从而抑制肿瘤细胞活性,诱导肿瘤细胞凋亡。

1.3基因载体

基因治疗是遗传性疾病的临床治疗策略,主要依赖于发展多样性的载体。无机纳米材料用于基因疗法是利用无机粒子和可生物降解的多聚阳离子合成新型的纳米药物载体,如介孔二氧化硅作为基因载体可用于肿瘤治疗,促进体外siRNA的递送。乙醛修饰的胱氨酸具有自身荧光的特点,可对pH值和谷胱甘肽进行响应。通过荧光标记类树状大分子的二氧化硅纳米载体具有分级的孔隙,不仅毒性低、基因装载率高,转染率也较高。引发谷胱甘肽二硫键裂解,可促进质粒DNA(pDNA)释放,并能使用自发荧光来实时示踪。又如,通过π-π共轭、静电作用等非共价键作用力结合,能将DNA、RNA等生物大分子和化学药物固定在氧化石墨烯上。

1.4骨移植

临床上可用自体骨移植来治疗创伤、感染、肿瘤等造成的骨缺损,由于骨移植的来源有限,且手术时间长,易导致失血过多和供骨区并发症等,应用受到限制。将异体骨用作骨移植,则存在免疫排斥反应,且易被感染。而人工骨同自体骨有相近的疗效,人工骨材料可采用钛、生物陶瓷、纳米骨、3D模拟人工骨髓等纳米材料。例如,纳米二氧化硅可替代骨组织,促进人工植入材料与肌肉组织融合。纳米羟基磷灰石与人体内的无机成分相似,其粒子有小尺寸效应、量子效应及表面效应等,可用作牙种植体或作为骨骼材料,能避免产生排斥反应,促进血液循环,促进人体骨组织的修复、整合和骨缺损后的治愈。

1.5临床诊断和治疗

磁性氧化铁纳米粒子可作为造影剂用于肿瘤诊断中,对肿瘤分子产生磁共振分子影像或多模态肿瘤分子影像,也可用于循环肿瘤细胞的分离、富集。免疫磁分离法基于磁性杂化材料可导电,在外部磁场下积累,可用于临床热疗。磁热疗以磁流体形式进入肿瘤组织,利用肿瘤细胞与正常细胞之间不同的热敏感度,将外部磁场产生的磁能转化成热能从而杀死肿瘤细胞。磁性纳米粒子还可用于生物传感器中,利用磁现象和纳米粒子从液相中分离并捕获生物分子。用绿色荧光蛋白标记,形成温敏的磁性纳米固相生物传感器,用磁性材料制成固相生物传感器的支架,在磁场作用下,响应更快,表面易于更新,可用于免疫诊断。磁性纳米氧化铁作为临床应用的磁性纳米材料,受到人们的广泛关注。Fe3O4和γ-Fe2O3的特殊磁性质使其在靶向肿瘤药物载体、磁疗、热疗、核磁共振成像、生物分离等生物医学领域中得以应用。用无机纳米材料制作激发荧光探针进行临床诊断,如用介孔二氧化硅制成的细胞荧光成像探针利用量子点良好的光稳定性、较长的荧光寿命和较高的生物相容性,结合介孔二氧化硅可特异性地识别Ramos细胞的特点,并用激光共聚焦显微镜对Ramos细胞进行荧光成像,实现了对肿瘤细胞的早期诊断、检测成像。富勒烯特殊的结构和性质使其可以广泛地应用于光热治疗、辐射化疗、癌症治疗等医学领域,也可作为核磁共振成像的造影剂用于临床诊断。但富勒烯不溶于水,对生物体存在潜在的毒性,限制了其在临床的应用。富勒烯结合含羟基的亲水性分子可改善其溶解性,羟基化富勒烯无明显毒性,可作为抗氧化剂。聚羟基富勒烯利用近红外光激活体内的纳米材料,用光热对肿瘤细胞定位,避免了金纳米粒子、碳纳米管等在体内造成聚积,利用免疫刺激作用来抑制肿瘤细胞的转移、生长,从而减小肿瘤的尺寸,最终造成肿瘤细胞凋亡。因此,改造碳纳米结构,在成像、吸附、药物装载与靶向运输等生物医学工程方面有潜在的应用价值。银纳米粒子杀菌活性远高于银离子,在杀菌抑菌方面得到广泛的应用,可用于外科手术中的伤口愈合、药学、生命科学等生物和临床医学领域。金纳米粒子有较好的生物相容性,功能化的金纳米粒子可用于生物分析、药物检测、临床诊断等生物医药领域,可作为纳米探针检测重金属离子、三聚氰胺等小分子,也可检测DNA、蛋白质等生物大分子,还可以用于对细胞表面和细胞内部的多糖、核酸、多肽等的精确定位。镍纳米粒子固定在海藻酸水凝胶中,通过热敏感粒子与镍磁纳米粒子交联形成囊状结构,组成热磁双敏感的磁性纳米粒子。在交变磁场下缓慢释放水凝胶中的镍纳米粒子,通过远程调控来激发水凝胶中成纤维细胞的凋亡。无机纳米材料的类别不同,在尺寸、形貌上有很大的变动范围,因其核心材料的量子特性,已日益成为涉及临床诊断、成像和治疗的手段,为纳米材料在生物医学上的应用提供更多的可能。

2展望

纳米技术作为新时代的疾病治疗模式,为未来的临床用药提供了新的可能,在生物医学的应用上有很大的前景。目前,癌症治疗主要包括手术、放疗和化疗等手段,而药物剂量增多会造成副作用。纳米粒子可以作为靶向药物载体、成像造影剂、化疗、热疗、磁疗系统,可通过血脑屏障,在治疗神经系统疾病中有很大的潜力,有望成为攻克癌症的新手段。无机纳米材料在药物载体、临床诊断和治疗等方面有广阔的应用前景,但目前的研究大多处于实验阶段。无机纳米材料在生物医学应用中有待解决的问题包括:

(1)提高疾病治疗的针对性、靶向性和可调控性;

(2)使无机纳米材料相对固定在肿瘤细胞表面,不至于扩散到正常组织,从而提高肿瘤部位的有效浓度,减少毒副作用;

(3)纳米材料有潜在的毒性,可降低纳米材料的毒副作用以达到临床应用的标准;

(4)寻找优质材料,优化结构,提高材料的生物相容性、生物安全性,并针对不同的药物溶解性设计特定的载体和功能材料骨架,增加细胞的摄取和利用;

篇2

1 医学生首先应了解医学科研的概念及分类

科学是知识和学 问之意,是在一定社会环境中对知识的探求,而医学是科学的分支,是一门古老的科学。医 学作为一种认识现象,是一种特殊的社会意识形式,是关于人体正常和异常的生命过程以及 同疾病作斗争和增进健康的科学知识体系,是人类长期与疾病作斗争的实践经验的总结。医 学研究是一种自然现象,它研究对象是人,它主要研究人体生命过程及其与外界环境的相互 关系规律,研究人体疾病的发生、发展、痊愈及其防治的规律,研究增进人类健康、延长人 类寿命和提高劳动能力的有效措施。根据研究对象、内容和方法的不同,把医学科学分为基 础医学、临床医学和预防医学。基础医学是研究人体的生命活动和作用于人体的致病因子、 药物、毒物以及疾病发生发展的本质和普遍规律的科学体系,是整个医学发展的基础和先导 。临床医学是研究认识疾病和治疗疾病的科学体系,是医学中的技术科学和应用科学的庞大 体系。预防医学是研究预防和消除病害、讲究卫生、增强体质、改善和创造有利于健康的生 产环境和生活条件的科学体系。以上的分类不是固定不变的,它将随着医学的发展而发展。 传统的医学分类已经不能充分地概括医学领域各分支学科的现状和全貌。基础医学、临床医 学、预防医学三者相对独立的传统界线会日益模糊,三者之间相互渗透,渐趋融合,各种新 的学科分支不断产生。

2 医学科学研究促进了医学的发展

随着社会的发展,科学在社会中地位越来越重要,医学作为科学一个分支也如此。20世纪以 来,现代医学以空前的速度向前发展,为保障人类的生命和健康作出了重大贡献。未来医学 发展前景如何?人类将遇到哪些困扰?将采取何种对策去迎接未来的挑战。这就需要医学院 校的学生打下扎实的科研基础去面对。

2.1 近代医学研究的发展

医学的产生已有4000多年,早在文艺复兴时代,比利时医生维萨里就明确宣言:“我要以人 体本身上的解剖来阐明人体的构造。”他还认为科学不应该盲从,必须从实际出发,因此不 顾教会不准解剖尸体的禁令,夜间从刑场偷回尸体,从事人体解剖的研究。1543年,维萨里 发表了《人体的构造》,奠定了人体解剖学的基础。1628年,英国医生哈维在活体实验的直 接观察的基础上,发表了《论动物的心脏运动与血液运动》,把生理学确立为科学。自此人 们由认识人体的结构形态进而认识活体的生理功能,开始了近代医学的新时代。

18、19世纪,近代医学取得了巨大进展,主要标志为实验生理学的发展,细胞病理学的 建立,科学的微生物学说的兴起。近代医学研究均以实验观察为基础,用实验中观察到的事 实来做结论。它们的特点为:分门别类,各自孤立的研究,由于分门别类的研究,积累了许 多新的事实,引起了近代医学进一步分化。例如比较生理学、病理生理学、病理解剖学、胚 胎学、微生物学等,都形成了独立的学科。

2.2 新世纪当代医学研究的发展

二十世纪当代医学发展的特点是人们的认识向微观的深入和宏观上的扩展,自然科学分科的 进一步发展,互相错综,形成一个网络式的整体系统。医学科学也随着现代科学技术的重大 成就,发生了巨大的变化,从而形成了新的历史特点。当代医学科学发展具有既高度分化又 高度综合的新特点,有力地表明了医学研究既是多样的,又是统一的。马克思早就指出了科 学统一的前景,他说:“自然科学往后将包括关于人的科学,正像关于人的科学将包括自然 科学一样,这将是一门科学”[1]。

医学的分化趋势与整体化趋势:①新技术提供现代化研究手段,对人体和疾病的研究达到分 子水平,正向量子水平前进。这就促进了学科的高度分化,例如,当今的遗传学就发展了许 多分支,诸如:毒理遗传、免疫、生态、行为遗传学等。传统外科也出现了许多分支,例如 :普外、胸外、脑外、显微外、移植外、整形外等。②整体化趋势主要表现为临床与基础的 统一,预防与临床、基础的统一,例如:环境医学、人体力学,生物材料学等。大生物学的 诞生就是当代医学高度整体化的重要标志,它是把地球上所有以生物为研究对象或研究材料 的学科集合起来,对比它们的特性、相互关系及其地球环境对它们的影响。如地球温室效应 、厄尔尼诺现象等。此外,中西医理论上的结合也变成可能。西方医学的成功是分析方法和 手段的胜利。而它的缺点主要是缺少整体观与系统论造成的。西医向更高层次的发展,将是 在实证科学的基础上,吸收系统与整体论的观点,走向生命现象的复杂系统论。这就是生物 模式向“环境-社会-心理-生物”模式转变的基础,也为中国传统医学与西方现代医学在更 高层次的结合、创立“统一医学”提供了可能性[2]。

总之,新世纪的医学科研正向两极方向高度发展,一方面向细胞分子、量子、纳米生物学深 入。另一方面,则向有关种群生态及生物圈的研究领域展开。学生必须从这些医学科研导论 中理解这些前瞻性知识对将来医学临床和科研的重要性,增加对医学的兴趣和作为医生的责 任感。新世纪医学的任务将从以防病治病为主逐步转向以维护和增强健康,提高人的生命质 量为主,未来寻求医学服务的不仅是患者,还有相当数量的正常人。寻医问诊的不仅是身体 缺欠,更多的是得到生活指导和心理咨询,医生开出的不仅是药方还有生活处方。

3 研究方法

科学研究是以研究自然界物质运动规律为直接目的的,在实验中,人们可以根据科学研究的 目的和要求,借助一些特定的仪器和设备,造成在研究中某些对象所需要的特殊条件,控制 某些因素或排除一些不利因素,把要研究的问题进行精细地、反复地观察和研究,最后得出 科学结论。科学研究史的无数事例说明,科学研究已经成为科学知识新的源泉。医学院校学 生需要掌握以下几方面科研基础知识和研究方法。

3.1 医学研究的特点

医学研究是认识疾病,掌握它的发生和发展过程,提示健康与疾病的转化规律。因研究的对 象为人体本身,故在形态学、生理学具有生物学属性外,在语言、思维和社会生活上又具有 社会属性,因此人体现象不能笼统用一般生物学规律来解释。另外,许多医学实验和观察不 允许按研究者的意愿在人体上直接试验。

3.2 掌握医学科研的基本程序

①问题提出:爱因斯坦曾说“提出一个问题往往比解决一个问题更为重要,因为解 决一个问题也许是一个数学上或实验上的技巧。而提出新的问题,新的可能性,从新的角度 看旧问题,却需要创造性的想象力,而标志着科学的真正进步”。可见,提出科学问题,尤 其是提出概念清晰的难题,更能对科学进步起到真正的推动作用。因此,学生应培养善于观 察、发现问题的好习惯。②假说建立与验证:根据经验和知识,包括文献、大体分析对象的 内部联系,提出对该问题的可能答案或解释,这种预先答案叫假说。进行医学基础或临床实 验均需先提出假说,然后通过实验设计、观察、统计等来对假说进行验证。③结论与资料解 释:此为科研中更深刻、更有理论和实践意义的部分。对在实验和临床研究过程中收集的大 量资料和数据进行科学的整理和处理,也就是对临床观察的素材进行科学加工,对大量数据 资料进行统计分析,以便为分析判断,得出科学的结论做好准备。④形成:医学论 文是医学研究的一个重要组成部分,完备的医学论文应具有学术性、科学性和创新性。

3.3 需掌握科研课题的选定

3.3.1 掌握选题的基本要求 ①要有科学性:表现为科研设计是否严密、合理 ,研究方法是否正确、完善等。②要有创新性:科研忌无意义重复前人的工作。选题的创新 表现在研究方法、设计是否在前人的基础上有所改进、提高和创新。③具体明确:医学研究 的选题必须经过严格的核对、分析,真实明确地反映客观存在的事实。对题目的选定要明确 ,不能含糊不清。④适当实施手段:慎重考虑本人技术水平和所在单位的设备状况,不能脱 离本人和单位具体情况。

3.3.2 需掌握选题的种类 医学科研选题分为:①调查研究:流行病学、卫生 学。②实验观察:生理学、药理学,需要实验条件和观察手段。③资料分析:需要既往的医 疗卫生资料,统计分析,如死因分析等。④经验体会:在自己的研究基础上着重对某一问题 进行探讨。总之,科学研究是医学工作者的重要工作之一,然而,有关的科研方法在医学院校教育中较 少涉及,仅在研究生培养过程中作为一般内容简要介绍。因此,许多医学本科生毕业后不知 怎样进行科学研究。2000年《中华外科学杂志》的退稿率为74.49%,退稿稿件中科研方法不 正确者占76.25%[3]。表明在医学科研工作中,科研方法的不合理应用已成为一种 普遍现象。要弥补医学工作者的这一缺陷,必须加强在校医学生的医学科研能力的培养。开 设医学科研导论课程就是其中一个重要的环节,应引起各类医学院校的重视。

参考文献:

[1] 马克思,恩格斯全集.经济学哲学手稿[M].1844,42:128.

篇3

1 标准法的改进

1.1 消解方法的改进

为缩短传统的回流消解时间,早期进行的工作包括密封消解法、快速开管消解法、替代催化剂的选择等;近期的工作主要包括采用微波消解法、声化学消解法、光催化氧化法等新技术。

1.1.1替代催化剂的研究 重铬酸钾法所用的催化剂Ag2 SO4 价格昂贵,分析成本高。因此,毕业论文研究Ag2 SO4 的替代物,以求降低分析费用有一定的实用性。如以MnSO4 代替Ag2 SO4 是可行的,但回流时间仍较长。Ce ( SO4 ) 2 与过渡金属混合显示出很好的协同催化效应,如以MnSO4 - Ce ( SO4 ) 2复合催化剂代替Ag2 SO4[ 1 ] ,测定废水COD,不但可降低测定费用,还可降低溶液酸度和缩短分析时间,与重铬酸钾法无显著差异。

1.1.2微波消解法 如微波消解无汞盐光度法测定COD;微波消解光度法快速测定COD;无需使用HgSO4 和Ag2 SO4 测定COD 的微波消解法;氧化铒作催化剂微波消解测定生活污水COD 等。Ramon[ 2 ]等采用聚焦微波加热常压下快速消解测定COD。

与标准回流法相比,微波消解时间从2h缩短到约10min,且消解时无需回流冷却用水,耗电少,试剂用量大大降低,一次可完成12 个样品的消解,减轻了银盐、汞盐、铬盐造成的二次污染[ 3 ] 。专著[ 4 ]对此作了较全面的总结。

1.1.3声化学消解法 尽管微波消解时间短,但消解完后要等消解罐冷却至室温仍需一定时间。而超声波消解方便,设备简单,且不受污染物种类及浓度的限制,近年来已有一些应用研究[ 5 ] 。钟爱国[ 6 ]使用自制的声化学反应器对不同水样进行了声化学消解试验,提高了分析效率,减少了化学试剂用量, COD 测定范围150mg ·L - 1 ~ 2000mg·L - 1 ,标准偏差≤615% ,加标回收率96% ~120%。超声波消解时,超声波辐射频率和声强是两个重要的影响因素。试验表明,超声波辐射标准水样30min 时, 低频( 20kHz) 、适当高的声强(80W·cm- 2 )有利于水样的完全消化。

1.1.4光催化氧化法 紫外光氧化快速、高效,在常温常压下进行,不产生二次污染,因此对水和废水分析的优势特别突出。近几年来,半导体纳米材料作为催化剂消除水中有机污染物的方法已引起了人们的广泛关注。当用能量等于或大于半导体禁带宽度(312eV)的光照射半导体时,可使半导体表面吸附的羟基或水氧化生成强氧化能力的羟基自由基( ·OH) ,从而使水中的有机污染物氧化分解。艾仕云等[ 7 ]提出纳米ZnO 和KMnO4协同氧化体系,并据此建立了测定COD 的方法,所得结果的可靠性和重现性与标准法相当。他们还使用K2 Cr2O7 氧化剂、纳米TiO2 光催化剂测定COD[ 8 ] 。通过光催化还原K2 Cr2O7 生成的Cr3 +浓度变化,可以获得样品的COD值。但反应仍需恒温搅拌,反应液需离心过滤。操作烦琐,且不能在线快速分析。

1.2 测定方法的改进

1. 2. 1分光光度法 分光光度法测定COD是在强酸性溶液中过量重铬酸钾氧化水中还原性物质, Cr6 +还原为Cr3 + ,英语论文利用分光光度计测定Cr6 +或Cr3 +来实现COD 值测定。Inaga 等以Ce ( SO4 ) 2作氧化剂,加热反应后测定吸光度,计算出COD值。Konno使用自制的比色计与PC机相联测定COD,所得结果与标准法基本一致。光度法测得COD值快速、准确、成本低等。目前,国内外不少COD快速测定仪均是基于光度法原理。如美国HACH公司制造的COD测定仪是美国国家环保局认可的COD测量方法。

1. 2. 2电化学分析法

(1)库仑法 库仑法是我国测定COD的推荐方法,该法利用电解产业的亚铁离子作库仑滴定剂进行库仑滴定, 根据消耗的电量求得剩余K2 Cr2O7 量,从而计算出COD。广州怡文科技有限公司和中国环境监测总站研制的EST22001COD在线自动监测仪,采用库仑滴定原理,测量范围5mg/L~1000mg/L;测量时间30min~60min,测量误差≤±5% FS;重复误差≤±3%FS,与手动分析具有很好的相关性。

(2)电解法 此法既不外加氧化剂,也不加热消解水样,而是利用电化学原理直接测量水中有机物的含量,是COD测定方法的突破。方法原理基于特殊电极电解产生的羟基自由基( ·OH)具有很强的氧化能力,可同步迅速氧化水中有机物,较难氧化的物质(如烟酸、吡啶等)也均能被·OH氧化。羟基自由基被消耗的同时,工作电极上电流将产生变化。当工作电极电位恒定时,电流的变化与水中有机物的含量成正比关系,通过计算电流变化便可测量出COD 值。作者在这方面作了一些探索工作,取得了初步的结果[ 9, 10 ] 。由于水样不需消解,极大缩短了分析流程,还克服了传统方法中“二次污染”的问题。目前,这类仪器代表产品是德国LAR公司的Elox100A型COD在线自动监测仪h[ 11 ] 。仪器测量范围从1mg/L~10000mg/L,最大可到100000mg/L,测量周期2min~6min。此仪器在欧美各国已得到较广泛的应用,在我国也获得国家质量监督检疫总局计量器具型式批准证书。

(3)其他电化学分析法 Dugin[ 12 ]提出以Ce( SO4 ) 2 为氧化剂,利用pH电极和氧化还原电极直接测定电势从而测定COD 值的方法。Belius2tiu[ 13 ]以两种不同的玻璃电极组成电池,通过直接测定电池电动势, 对水样中COD值进行测定。赵亚乾[ 14 ]以一定比例的反应溶液回流10min后,冷却稀释,用示波器指示终点进行示波电位滴定测定COD。

Westbroek等[ 15 ]提出Pt - Pt/PbO2 旋转环形圆盘电极多脉冲电流分析法,通过电化学方法产生强氧化剂,硕士论文有机污染物在圆盘电极表面直接氧化或与产生的氧化物质反应而间接被转化。伏安计时电流法和多脉冲计时电流法测COD,可在几秒中获得结果,而且可以在线监测。形成的强氧化媒介可使工作电极表面保持清洁。但方法检测限较高,不适合地表水或轻度污染水的测定。但德忠等[ 16 ]提出混合酸消解和单扫描极谱法快速测COD 的方法。该法基于用单扫描极谱法测定混合酸(H3 PO4 - H2 SO4 )消解体系中过量的Cr6 + ,从而间接测定COD。混合酸消解回流时间只需15min。Venkata等[ 17 ]使用示差脉冲阳极溶出伏安法(DPASV)进行电化学配位滴定确定有机金属络合物的络合能力,从而测定COD。

1.2.3化学发光法 根据重铬酸钾消解废水后其最终还原产物Cr3 +浓度与COD值成正比关系,以及在碱性条件下, Luminol - H2O2 - Cr3 +体系产生很强的化学发光的原理,文献[ 18, 19 ]提出一种用光电二极管做检测器测定水体化学需氧量的新方法。

1.2.4紫外吸收光谱法 紫外吸收光谱法是通过测量水样中有机物的紫外吸收光谱(一般用254nm波长) ,直接测定COD。已有工作表明,不少有机物在紫外光谱区有很强的吸收,在一定的条件下有机物的吸光度与COD 有相关性,利用这种相关性可直接测定COD。这种方法不像COD、总有机碳( TOC)方法那样明确,但在特定水体中有极高的相关性,也能真实反映有机物含量。基于紫外吸收原理测定COD 的仪器已有生产。这类方法均不需添加任何试剂、无二次污染、快速简单,但前提条件是水质组成必须相对稳定。此方法在日本已是标准方法,但在欧美各国尚未推广应用,在我国尚需开展相关的研究。

2 自动在线分析技术

流动分析( FA)用于水样COD的测定可将样品消解和测定实现一体化,留学生论文使整个过程实现在线化、自动化。Korinaga[ 20 ]提出以Ce ( SO4 ) 2 为氧化剂,采用空气整段间隔连续流动分析法对环境水样中的COD进行测定,采样频率达90次/h,但需特制的阀,且管长达18m。陈晓青等[ 21 ]提出测定COD的流动注射停流法,系统以微机控制蠕动泵的启停,并记录分光光度计检测到的信号。由于停流技术的引入,解决了慢反应中样品的过度分散问题。

Cuesta等[ 22 ]提出COD的微波消解火焰原子吸收光谱- 流动注射分析法。用微波加热消解样品,未被样品中有机物质还原的Cr6 +保留在阴离子交换树脂上, Cr6 +经洗脱后用火焰原子吸收光谱法测定。这种方法在检测中没有基体效应的影响。

尽管流动注射分析的优势突出,但仍免不了传统加热方式。为了提高在线消解效率,不得不加长反应管或采用停留技术,这又导致分析周期延长或低的采样频率。医学论文微波在线消解效果虽好,但去除产生的气泡使流路结构复杂化。但德忠等[ 23 ]将流动注射和紫外光氧化技术引入高锰酸盐指数的测定中,建立了紫外光催化氧化分光光度法测定高锰酸盐指数的流动分析体系,并对多种标准物质(葡萄糖、邻苯二甲酸氢钾、草酸钠等)进行了研究,反应仅需约115min,回收率8310%~11110%,检测限为016mg/L。用此方法成功测定了COD质控标准(QCSPEX - PEM - WP)和英格兰普利茅斯Tamar河水样品。

Yoon - Chang[ 24 ]将光催化剂二氧化钛铺助紫外光消解与流动分析技术联用测定化学耗氧量,获得了好的相关性。李保新等[ 25 ]把化学发光系统和流动分析法结合测定高锰酸盐指数,有机物在室温条件下发生化学氧化反应, KMnO4 还原为Mn2 +并吸附在强酸性阳离子交换树脂微型柱上,同时过量的MnO-

4 通过微型柱废弃。吸附在微型

柱上的Mn2 + 被洗脱出来使用H2O2 发光体系检测。若换用职称论文重铬酸钟氧化剂,在酸性条件下,重铬酸钾还原生成的Cr ( Ⅲ)催化Luminol - H2O2 体系产生强的化学发光可测定COD。该方法已用于地表水样COD的测定。

基于流动技术,综合电化学技术、现代传感技术、自动测量技术、自动控制技术、计算机应用技术、现代光机电技术研制的COD 在线监测仪,一般包括进样系统、反应系统、检测系统、控制系统四部分。进样系统由输液泵、定量管、电磁阀、管路、接口等组成,完成对水样的采集、输送、试剂混合、废液排除及反应室清洗等功能;反应系统主要有加热单元或(和)反应室,完成水样的消解和的反应;检测系统包括单片机(或工控机) 、时序控制和数据处理软件、键盘和显示屏等,完成在线全过程的控制、数据采集与处理、显示、储存及打印输 参考文献

[ 1 ] 杨娅,艾仕云,李嘉庆等. 用MnSO4 - Ce ( SO4 ) 2 协同催化快速测定COD的研究[ J ]. 重庆环境科学, 2003, 25(11) : 30 - 31.

[ 2 ] Ramon Ramon, Francisco Valero ,Manuel del valle. Rapid determination of chemical oxygen demand [ J ]. Analy tica chim ica Acta, 2003, 491: 9 - 109.

[ 3 ] 但德忠,杨先锋,王方强,等. COD测定的新方法- 微波消解法[ J ]. 理化检验- 化学分册, 1997, 33 ( 3) :135 - 136.

[ 4 ] 但德忠,分析测试中的现代微波制样技术[M ]. 成都:四川大学出版社, 2003年.

[ 5 ] AntonioCanals,M. del Remedio Hernandez. Ultrasound- assisted method for determination of chemical oxygen demand [ J ]. Analy tical and B ioanalyical Chem istry ,2002, 374 (6) : 1132 - 1140

篇4

一、材料与方法

1、材料伊格尔最低浓度必需介质(EMEM)培养基(美国Gibco),胎牛血清(FCS,美国Hyclone),胰酶(美国Sig-ma),PKH26及PKH67(美国Sigma),Hoechst33342(美国Sigma)。JSM—6000F扫描电镜(日本JEOL公司)。肾小管上皮细胞(HKC)由南京医科大学杨俊伟教授馈赠,血管内皮细胞(ECV304)由军事医学科学院三所细胞室赠送,转染种子细胞的rAAV2-hNanog重组病毒由北京本元正阳生物技术公司包装完成,转染rAAV2-hNanog重组病毒的2种细胞ECV304、HKC由本实验室制备并保存。

2、中空纤维上混合细胞的分布

2.1混合细胞的PKH26/PKH67标记:将转染hNanog基因的两种细胞ECV304及HKC细胞各接种在75cm塑料培养瓶中,置于37℃、体积分数为0.05的CO2孵箱中,用10%的FCSEMEM进行培养。当两种细胞各生长至汇合时,用0.25%的胰酶消化、离心并沉淀细胞后,然后再用无血清的EMEM洗涤细胞,400g/min离心,共5min,然后弃去上清,使残留上清不要超过25μl,然后在获得的细胞沉淀中加入1ml稀释剂C溶液,轻轻吹打形成细胞悬液;按照PKH26和PKH67试剂盒说明书分别配制4×10-6mol/L的PKH26溶液和4×10-6mol/L的PKH67溶液,然后把ECV304细胞悬液加入到PKH26染液、HKC细胞加入到PKH67染液中,各自吹打均匀,并于室温下放置2~5min。之后加入2ml血清,室温下放置1min,再用10%EMEM4ml稀释上述细胞悬液,25℃条件下1200r/min离心,共10min,弃去上清,去除染色液。用10%EMEM冲洗ECV304、HKC细胞4次,然后将细胞移到另一新管中,加入10ml完全培养基,离心,重悬,使两种细胞各自的密度调整在(1.0~2.0)×107/ml,然后把两种转染细胞ECV304与HKC细胞悬液等体积混合,轻轻吹打均匀,制成混合细胞悬液。

2.2标记细胞的种植:将实验组及对照组的AV400滤器(Fresenius公司0.7m2)均用无血清的EMEM培养基冲洗,再把无血清EMEM配制的层黏连蛋白0.74mg/ml[1]注入滤器中,置于37℃孵箱中1h,之后将其抽去。然后把标记的种子细胞混合液平均分成4次注入滤器内腔,两次注射时间间隔为1h,每次注射完毕后按方向标记放置滤器,待下次注射结束后依照固定方向将滤器转动90°,总共进行4次,完成360°循环。对照组只在AV400滤器中注入不含细胞的培养基,注射方法及放置方法同实验组。最后把两组滤器的外腔注满培养基,置于37℃、体积分数为0.05的CO2孵箱中培养,滤器中培养液pH<7.2时即予以更换。于培养第5天时从两组滤器中取出中空纤维,用刀片将纤维丝纵向剖开,磷酸盐缓冲液(PBS)溶液冲洗2次,然后在荧光显微镜下观察2种转染细胞在中空纤维上的分布。

3、混合细胞在中空纤维上生长状态的观察把2种已转染人Nanog基因的ECV304、HKC置于37℃、体积分数为0.05的CO2孵箱中,用10%FCSEMEM进行培养。当两种细胞生长至汇合状态时,用0.25%的胰酶消化,并对2种种子细胞进行细胞计数。实验组及对照组所用AV400滤器仍用层黏连蛋白包被。把2种转染细胞的密度调至(1.0~2.0)×107/ml,然后把两者等体积混合,轻轻吹打均匀,制成混合细胞悬液,然后把细胞混悬液注入滤器内腔,注射方法与放置方法同2.2部分。对照组只在AV400滤器中注入不含细胞的培养基,注射方法及放置方法同实验组。最后将两组滤器外腔注满培养液,置于37℃、体积分数为0.05的CO2孵箱中培养,滤器中培养液pH<7.2时即予以置换。第7天时从两组滤器中取出中空纤维,用0.1mol/LPBS冲洗1次,然后再用2.5%戊二醛于4℃冰箱中固定2h,之后再用0.1mol/LPBS溶液冲洗,用刀片将中空纤维沿纵向剖开,再用0.1mol/LPBS溶液冲洗2次,最后把剖开的中空纤维置于1%锇酸中,4℃冰箱中固定1h。标本制作完成后,进行扫描电镜检测。

二、结果

1、中空纤维上混合细胞PKH26及PKH67标记检测:经PKH26染色的ECV304转染细胞及经PKH67染色的HKC转染细胞混合种植于聚砜膜中空纤维上后,可见两种种子细胞呈点片状分布在聚砜膜中空纤维上。荧光显微镜下,ECV304细胞呈现红色,而HKC呈现黄绿色。而对照组则无红色或黄绿色的点片状细胞群分布。

2、中空纤维上混合细胞的生长形态:转染的ECV304细胞与转染的HKC细胞混合种植于聚砜膜中空纤维内腔7d后,扫描电镜检测:对照组未见细胞生长;混合细胞在中空纤维内腔上呈片状生长,并可见细胞表面的微绒毛。

三、讨论

早期的肾脏组织工程主要是模仿肾小球的滤过功能,人们利用具有类似肾小球滤过功能的生物膜(如聚砜膜)建立了血液透析的方法。然而,血滤器在血透过程中易出现血栓,最终导致滤过功能下降。为解决血滤器中出现血栓的问题,有人将转染水蛭素基因的内皮细胞种植在生物膜材料上,制成生物人工肾小球[3,4],但这种具有抗凝功能的生物人工肾小球只能对小分子溶质进行清除和滤过,缺乏物质重吸收及内分泌等重要功能。