在线客服

机械零件论文实用13篇

引论:我们为您整理了13篇机械零件论文范文,供您借鉴以丰富您的创作。它们是您写作时的宝贵资源,期望它们能够激发您的创作灵感,让您的文章更具深度。

机械零件论文

篇1

一、测前准备

1、阅读图纸。检验人员要通过对视图的分析,掌握零件的形体结构。首先分析主视图,然后按顺序分析其它视图。同时要把各视图由哪些表面组成,如平面、圆柱面、圆弧面、螺旋面等,组成表面的特征,如孔、槽等,它们之间的位置都要看懂、记清楚。检验人员要认真看图纸中的尺寸,通过看尺寸,可以了解零件的大小,看尺寸要从长、宽、高三个方向的设计基准进行分析,要分清定形尺寸、定位尺寸、关键尺寸,要分清精加工面、粗加工面和非加工面。在关键尺寸中,根据公差精度,表面粗糙度等级分析零件在整机中的作用,对于特殊零件,如齿轮、蜗轮蜗杆、丝杠、凸轮等有专业功能的零件,要会运用专业技术标准。掌握各类机械零件的国家标准,是检验人员的基本功。有表面需热处理的工序零件,应注意处理前后尺寸公差变化的情况。检验人员还应分析图纸中的标题栏,标题栏内标有所用材料零件名称,通过看标题栏,掌握零件所用材料规格、牌号和标准,从中分析材料的工艺性能,以及对加工质量的影响。工作中,我曾遇到这样一个问题,在铣床上加工一批不锈钢支架,因所选铣刀材料不对,造成加工表面粗糙度不好,并且效率较低,严重影响了产品精度与产品质量。我发现了问题严重性后,选择了合适材料的铣刀,试用后,速度又快,表面粗糙度又好。

2、分析工艺文件。工艺文件是加工、检验零件的指导书,一定要认真仔细查看。按照加工顺序,对每个工序加工的部位、尺寸、工序余量、工艺尺寸换算都要认真审阅,同时应了解关键工序的装夹方法,定位基准和所使用的设备、工装夹具刀具等技术要求。往往有个别操作者不按工艺中所制订的工序加工,从而对整个机械零件的加工后造成不合格的后果,这一问题常常又被检验人员所忽视。待安装时,不能使用,造成了成批产品报废。

3、合理选用量具、确定测量方法。当看清图纸和工艺文件后,下一步就是选取恰当的量具进行机械零件检测。根据被测工件的几何形状、尺寸大小、生产批量等选用。如测量圆柱台阶轴时,带公差装轴承部位,应选用卡尺、千分尺、钢板尺等;如测量带公差的内孔尺寸时,应选用卡尺、钢板尺、内径百分表或内径千分尺等。有些被测零件,用现有的量具不能直接检测,这就要求检测人员,根据一定的实践经验、书本理论知识,用现有的量具进行整改,或进行一系列检测工具的制作。

二、检测(测量)

1、合理选用测量基准。测量基准应尽量与设计基准、工艺基准重合。在任选基准时,要选用精度高,能保证测量时稳定可靠的部位作为检验的基准。如测量同轴度、圆跳动、套类零件以内孔,轴类零件以中心孔为基准;测量垂直度应以大面为基准;测量辊类零件的圆跳动以两端轴头下轴承的台阶(将两端轴承台阶放在“V”型铁上)为基准。

2、表面检测。机械零件的破坏,一般总是从表面层开始的。产品的性能,尤其是它的可靠性和耐久性,在很大程度上取决于零件表面层的质量。研究机械加工表面质量的目的就是为了掌握机械加工中各种工艺因素对加工表面质量影响的规律,以便运用这些规律来控制加工过程,最终达到改善表面质量、提高产品使用性能的目的,如磕碰、划伤、变形、裂纹等。细长轴、薄壁件注意变形、冷冲件要注意裂纹、螺纹类零件、铜材质件要注意磕碰、划伤等。对以上检测的机械零件,检测完后,都要认真作记录,特别是半成品,对合格品、返修品、报废产品要分清,并作上标记,以免混淆不清。

3、检测尺寸公差。测量时应尽量采用直接测量法,因为直接测量法比较简便,很直观,无需繁琐的计算,如测量轴的直径等。有些尺寸无法直接测量,就需用间接测量,间接测量方法比较麻烦,有时需用繁琐的函数计算,计算时要细心,不能少一个因素,如测量角度、锥度、孔心距等。当检查形状复杂,尺寸较多的零件时,测量前应先列一个清单,对要求的尺寸写在一边,实际测量的尺寸在另一边,按照清单一个尺寸一个尺寸的测量,并将测量结果直接填入实际尺寸一边。待测量完后,根据清单汇总的尺寸判断零件合格与否,这样既不会漏掉一个尺寸,又能保证检测质量。

4、检测形位公差。按国家标准规定有14种形位公差项目。对于测量形位公差时,要注意应按国家标准或企业标准执行,如轴、长方件要测量直线度,键槽要测量其对称度。

三、测量误差与原因分析

测量过程中,影响所得的数据准确性的因素非常多。测量误差可以分为三大类:随机误差、粗大误差、系统误差。

1、随机误差。在相同条件下,测量同一量时误差的大小和方向都是变化的,而且没有变化的规律,这种误差就是随机误差。引起随机误差的原因有量具或者量仪各部分的间隙和变形,测量力的变化,目测或者估计的判断误差。消除的方法主要是从误差根源予以消除(减小温度波动、控制测量力等),还可以按照正态分布概率估算随机误差的大小。

2、粗大误差。粗大误差是明显歪曲测量结果的误差。造成这种误差的原因是测量时精力不集中、疏忽大意,比如测量人员疏忽造成的读数误差、记录误差、计算误差,以及其他外界的不正常的干扰因素。含有粗大误差的测量值叫做坏值,应该剔除不用。

篇2

1对机械故障判断失误,修理人员技术不过硬、修理过程不规范

1.1不能正确判断分析故障,盲目更换零部件,一味“换件修理”造成浪费

凭着“大概、差不多”的思想盲目对机械大拆大卸,结果不但原故障未排除,而且由于维修技能和工艺较差,又出现新的问题。例如我单位一台YZ26压路机出现振动力不足、机械无法正常工作的故障,经拆卸分解振动泵和起振开关,更换振动泵和起振开关故障依旧。最后检查故障是由于液压油不足、滤网堵死导致液压油进入不到大泵,大泵因缺油而烧坏。因此,当机械出现故障后,要通过检测设备进行检测,如无检测设备,可通过“问、看、查、试”等传统的故障判断方法和手段,结合土石方机械的结构和工作原理,确定最可能发生故障的部位。在判定土石方机械故障时,一般常用“排除法”和“比较法”,按照从简单到复杂、先外表后内部、先总成再部件的顺序进行,切忌“不问青红皂白,盲目大拆大卸”。

1.2螺栓拧紧方法不当的情况较严重

土石方机械各部位固定或联接螺栓多数有拧紧力矩要求,如喷油器固定螺栓、缸盖螺栓、连杆螺栓、飞轮螺栓等,有些规定了拧紧力矩,有些规定了拧紧角度,同时还规定了拧紧顺序。一些维修人员,认为拧紧螺栓谁都会做,无关紧要,不按规定力矩及顺序拧紧(有的根本不了解有拧紧力矩和顺序要求),不使用扭力(公斤)扳手,或随意使用加力杆,凭感觉拧紧,导致拧紧力矩相差很大。力矩不足,螺栓易发生松脱,导致冲坏气缸衬垫、轴瓦松动、漏油、漏气;力矩过大,螺栓易拉伸变形,甚至断裂,有时还会损坏螺纹孔,影响了修理质量。

1.3不重视螺栓的选用,螺栓使用混乱的现象较突出

在维修土石方机械时,乱用螺栓的现象还比较突出,因螺栓性能、质量不符合技术要求,导致维修后机械故障频出。土石方机械使用的专用螺栓,如传动轴螺栓、缸盖螺栓、连杆螺栓、飞轮螺栓、喷油器固定螺栓等是用特殊材质经过特殊加工制成的,其强度大、抗剪切力强,确保联接、固定可靠。实际维修作业中,常常在拆卸时所有螺栓堆在一起,不分类堆放,但组装时随意乱装和替代,这些螺栓因材质差或加工工艺不合格,给工程机械的后期使用留下故障隐患,如EX200-5挖掘机后桥轮边减速器内连接行星轮架和轮边减速器壳体的6只螺栓承受较大的扭矩,这6只螺栓发生断裂损坏,使用其它螺栓或自行加工代用,常出现因螺栓强度不够而再次折断的情况;有些部位需用“小螺距”的“细扣自紧”螺栓、铜螺栓、镀铜螺栓,却使用普通螺栓代替,导致出现螺栓自行松脱、拆卸困难等现象,如柴油机排气歧管固定螺母多为铜制,防止受热或使用时间过长不易拆卸,但在实际维修时,却多数使用了普通螺母,时间一长拆卸十分困难;有些螺栓经使用后会出现拉伸、变形等缺陷,有些技术要求规定拆装几次后必须换新的螺栓,若不了解这些情况,多次重复使用不合格的螺栓,也易导致机械故障或事故的发生。因此,在维修工程机械时,当螺栓损坏或丢失要及时更换符合要求的螺栓,切忌乱用螺栓。

2各零部件配合间隙不能正确掌握,导致机械加快磨损

2.1维修时不注意检测零部件配合间隙

柴油机活塞与缸套配合间隙、活塞环“三隙”、活塞顶隙、气门间隙、柱塞余隙、制动蹄片间隙、主从动齿轮啮合间隙、轴承轴向和径向间隙、气门杆与气门导管配合间隙等,各类机型都有严格的要求,在维修时必须进行测量,对不符合间隙要求的零部件要进行调整或更换。实际维修工作中,不测量配合间隙而盲目装配零部件的现象为数不少,还有凭手感觉和经验装配,造成起动困难或爆燃、活塞环折断、机件撞击、漏油、漏气等故障,有时甚至会因零部件配合间隙不当,导致机械严重损坏事故的发生。

2.2不成对、成套更换偶件或组件

土石方机械上有很多偶件,如柴油机燃油系统的柱塞副、出油阀副、喷油嘴针阀副偶件;驱动桥主减速器内的主、从动齿轮;液压操纵阀中的阀块与阀杆;全液压转向器中的阀芯与阀套等,这些配合偶件在工厂制造时经过特殊加工,成对研磨而成,配合十分精密,在使用的寿命期内始终成对使用,切不可互换;一些相互配合组件,如活塞与缸套、轴瓦与轴颈、气门与气门座、连杆大头瓦盖与杆身等,经过一段时间的磨合使用,相对配合较好,在维修时,也应注意成对装配,不要弄串;柴油机连杆、活塞、风扇皮带、高压油管、挖掘机中央回转接头油封、推土机主离合器胶布节等,尤其是同时使用一套的配件,发生损坏一定要成套更换,否则由于配件质量差别大、新旧程度不同、长短尺寸不一,会导致柴油机运转不稳、液压系统漏油、载荷集中现象严重、更换的配件易早期损坏等。在实际维修工作中,为了减少开支、不了解技术要求,不成对或成套更换上述零部件的情况还不少见,降低了工程机械的维修质量,缩短了机件寿命,增加了故障发生的可能性,应引起足够的重视。

2.3装配时零部件装反

在维修土石方机械时,一些零部件装配有着严格的方向要求,只有正确安装,才能保证零部件正常工作。有些零部件外部特征不明显,正反都可以安装,在实际工作中时常出现装反的情况,导致零件早期损坏、机械不能正常工作、土石方机械损坏事故等。

3对零配件材料质量不能正确识别

不检查新件质量,装配后出现故障的问题比较常见。在更换配件前,有些维修人员对新配件不做技术检查,拿来后直接安装到工程机械上,这种做法是不科学的。目前市场上出售的零配件质量良莠不均,一些假冒伪劣配件鱼目混珠;还有一些配件由于库存时间过长,性能发生变化,如不经检测,装配后常常引起故障的发生。以为新的就是好的,结果问题仍然存在,造成更大的损失。1台ZL50装载机,柴油机机油压力过低,分析是机油滤清器堵塞,更换了一新机油滤清器,试机机油压力仍低。后检查或更换了所有可能导致机油压力低的零部件,但机油压力仍不能升高,最后在没有查到故障原因、机油压力偏低的情况下勉强使用,结果导致柴油机烧瓦抱轴、造成损失。后经检查是由于更换的机油滤清器滤芯(粗滤器)已被过多的铁锈堵塞,原因是该滤清器长时间库存保管导致内部生锈。因此,在更换新配件前一定要进行必要的检查测试,检测包括外观及性能测试,确保新配件无故障,杜绝其引起的不必要麻烦。

4在维修过程中治标不治本,只追求数量而忽视维修质量

4.1维修方法不正规,“治标不治本”仍是惯用的手段

在维修土石方机械时,一些维修人员不采取正确的维修方法,认为应急措施是万能的,以“应急”代“维修”,“治标不治本”的现象还很多。挖机旋转油压马达油封更换要将整个液压马达解体,从内向外装配,因图快从外向内装配,结果只用两三个小时又出现漏油,又要重新维修,结果维修时间增加,工作时间变少,影响设备使用率,降低效益。

4.2垫片使用不规范,随意使用的现象仍然存在

土石方机械零部件配合面间使用的垫片种类很多,常用的有石棉垫、橡胶垫、纸板垫、软木垫、毛毡垫、有色金属垫(铜垫、铝垫)、铜皮(钢皮)石棉垫、绝缘垫、弹簧垫、平垫等。一些用来防止零部件配合面间漏油、漏水、漏气、漏电,一些起紧固防松作用。每一类垫片使用的时机和场合有不同的规定和要求,在维修土石方机械时,垫片使用不规范甚至乱用的现象还比较严重,导致配合面间经常发生泄漏,螺栓、螺母自行松动、松脱,影响工程机械的正常使用。如发动机气缸垫过厚,导致压缩比降低,发动机起动困难;喷油器与气缸盖配合面间使用铜垫片,如使用石棉垫代替,易使喷油器散热不良发生烧蚀;柴油机输油泵和喷油泵结合面间垫片过厚,导致输油量及输油压力不足,柴油机功率下降;如漏装弹簧垫、锁紧垫、密封垫,致使接合不紧,易发生松动或漏油等现象;因垫片中间有孔而忘记开孔导致油道、水道堵塞,发动机烧瓦抱轴、水箱开锅的现象也经常发生。在此提醒广大维修人员维修时,切记“垫片虽小用处大”。

4.3“小件”好坏不重视,因“小”失“大”导致故障增加

在维修作业时,往往只重视喷油泵、输油泵、活塞、缸套、活塞环、液压油泵、操纵阀、制动、转向系统等零部件的维护,却忽视了对滤清器、溢流阀、各类仪表等“小件”的保养,认为这些“小件”不影响机械的工作,即使损坏也无关紧要,只要机械能动就凑合着用,孰不知,正是这些“小件”缺乏维护,导致机械发生早期磨损,缩短使用寿命。如工程机械使用的柴油滤清器、机油滤清器、空气滤清器、液压油滤清器、水温表、油温表、油压表、感应塞、传感器、报警器、预热塞、油液滤网、水箱盖、油箱盖、加机油口盖、黄油嘴、储气筒放污开关、蓄电池箱、喷油器回油接头、开口销、风扇导风罩、传动轴螺栓锁片等,这些“小件”是工程机械正常工作及维护保养必不可少的,对延长机械的使用寿命至关重要,在维修作业时,如不注意维护保养,常会“因小失大”,导致机械故障的发生。超级秘书网

4.4维修禁忌忘脑后,隐性故障频繁出

维修土石方机械时,若不了解维修中应注意的一些问题,则会导致拆装中经常出现“习惯性”的错误,影响机械的维修质量。如热车拆装发动机气缸盖,易导致缸盖变形裂纹;安装活塞销时,不加热活塞而直接把活塞销打入销孔内,导致活塞变形量增大,椭圆度增加;曲轴主轴瓦或连杆瓦背加铜垫或纸垫,易堵塞油道,导致烧瓦抱轴事故;在维修柴油机时过量刮削轴瓦,轴瓦表面的减摩合金层被刮掉,导致轴瓦钢背与曲轴直接摩擦发生早期磨损;拆卸轴承、皮带轮等过盈配合零部件时不使用拉力器,硬打硬敲,易导致零部件变形或损坏;启封新活塞、缸套、喷油嘴偶件、柱塞偶件等零件时,用火烧零件表面封存的油质或腊质,使零件性能发生变化,不利于零件的使用。

4.5零部件除污、清洗不彻底,早损、腐蚀常发生

篇3

2受力因素

在机械设备对零件的加工过程中,机械对零件的接触将使零件受到力的作用。例如有些机械加工设备过紧,它对零件产生的挤压也将成为零件所受的一种外力,加压力对零件的作用是不在加工计算范围内的,所以它的影响将直接是零件的大小产生一定的误差。一般的机械的运行都会对所加工的零件有微小的力的作用,这种看似不会影响零件精度的外力作用往往被生产零件的部门所忽视,但事实上这种运行过程中产生的力的作用会随着时间积累慢慢变大,最终产生足以影响生产零件精度的作用。

3热变因素

机械加工工艺对零件精度的热变因素分为三种,即加工工艺中存在的刀具热变、工件热变形、机床本身及其结构热变形。机械加工工艺过程中存在的刀具热变就是在进行零件加工时的必要切割过程,有些零件的尺寸较小而加工它所用的材料的尺寸却较大,这时就需要用专用刀具对材料进行机械切割。要保证所切割出的零件符合标准,在切割过程中就要反复的切割直至所切割出的材料大小正好符合要求的零件尺寸大小。反复切割的过程就是机械摩擦大量产热的过程,产生的热量会使生产出的零件发生变形,进而影响零件的精度。工件热变形的影响主要是针对长度较长的零件来讲的,在机械加工工艺中经常会加工一些对长度有要求的高精度零件,零件在机械打磨的加工工艺中因为长度过长的原因将产生工件表面温度过高的现象,而其内部的温度却还与环境的温度保持一致,这样就引发了工件的内外温差大的情况,内外存在的温差就会使零件造成严重的形变,这种形变就称之为工件热形变。机床本身及其构件的热变形就是主要针对在加工过程中机床和其它构件运行过程中会相互作用,导致机床本身部分或整体的温度升高。机床局部的温度升高会影响机床本身的结构契合度,高温状态下会使机床的一些部分结合紧密而另一些部分则将会产生结构上的细小缝隙,这样就导致了加工的零件会存在精度不准的问题。整体的机床发热问题会影响带机床本身的正常运行,机床运行的速度会因为温度的升高而下降,这就进一步影响到了所加工生产的零件品质。

二解决机械加工工艺对加工精度影响的对策

1严格控制零件制造过程

在机械加工工艺的过程中要想合理的防止几何精度的误差对零件精度产生影响,就要在选择加工机械加工设备上加以注意,一般的几何误差都来源于出厂时的机械加工设备,对所需要的机械加工设备进行严格的检验。在检验的过程中充分了解设备本身存在的误差问题,经过选择淘汰来找到最适合生产高精度零件的机械加工设备。如果对于已经工作的机械加工设备进行改造,就要对其日常工作所生产的零件进行误差的统计,对得出的数据进行系统的分析,将误差的准确值数据输入到机床的工作系统中去,让其自动的对结果进行误差的消除,生产出的零件就不会存在较大的精度误差。

2减少外力对零件的干扰

在机械加工工艺的过程中,设备对零件所产生的力的作用主要就是挤压力与摩擦力,减少外力对零件精度的影响就要从减少这两方面的力入手。日常加工工作的进行前就要对加工设备进行检查,对固定零件部位过紧的设备要进行及时的整修,减少设备对零件产生力的作用。机械加工设备的表面不可避免都会有摩擦作用,例如在一般的零件生产过程中零件与机床的接触过程中都会产生一定的摩擦力,在持续生产的过程中也会增加设备的表面摩擦力。所以在日常的设备检验过程中就要对表面进行定时的打磨,减少零件与设备接触面的摩擦力的作用,进而减少零件加工过程中产生的误差。

3合理控制温度合理控制

机械加工工艺过程的温度对加工的结果具有重大意义,温度是影响加工设备运行的重要因素,过高的温度与过低的温度都将影响设备的正常运行工作。在加工过程中如果运行的速度快引发了温度的增高就要采取冷水降温的解决措施。例如在对零件的打磨工序中,机床上高速旋转的砂轮与零件相互摩擦将产生大量的热,温度过高将使与砂轮接触的零件部分变形,避免零件变形的重要措施就是用冷水进行设备的降温处理。

篇4

传统机械零部件的设计带来了运用中出现的许多问题:零部件容易腐蚀损坏;零部件容易疲劳损坏,断裂、表面剥落等;零部件容易摩擦损坏等等。这些问题的出现,都是机械零部件传统的设计局限性所产生的。机械机械零部件设计是人类为了实现某种预期的目标而进行的一种创造性活动。传统机械机械零部件设计的特点是以长期经验积累为基础,通过力学、数学建模及试验等所形成的经验公式、图表、标准及规范作为依据,运用条件性计算或类比等方法进行设计。传统设计在长期运用中得到不断的完善和提高,目前在大多数情况下仍然是有效的设计方法,但是它有很多局限:在方案设计时凭借设计者有限的直接经验或间接经验,通过计算、类比分析等,以收敛思维方式,过早地确定方案。这种方案设计既不充分又不系统,不强调创新,因此很难得到最优方案;在机械零部件设计中,仅对重要的零部件根据简化的力学模型或经验公式进行静态的或近似的设计计算,其他零部件只作类比设计,与实际工况有时相差较远,难免造成失误;传统设计偏重于考虑产品自身的功能的实现,忽略人―机―环境之间关系的重要性;传统设计采用手工计算、绘图,设计的准确性差、工作周期长、效率低。

二、创新思维机械零部件的设计思想

机械零部件设计的本质是创造和革新。现代机械机械零部件设计强调创新设计,要求在设计中更充分地发挥设计者的创造力,利用最新科技成果,在现代设计理论和方法的指导下,设计出更具有生命力的产品。

(一)运用创造思维

设计者的创造力是多种能力、个性和心理特征的综合表现,它包括观察能力、记忆能力、想象能力、思维能力、表达能力、自控能力、文化修养、理想信念、意志性格、兴趣爱好等因素。其中想象能力和思维能力是创造力的核心,它是将观察、记忆所得信息有控制地进行加工变换,创造表达出新成果的整个创造活动的中心。创造力的开发可以从培养创新意识、提高创新能力和素质、加强创新实践等方面着手。设计者不是把设计工作当成例行公事,而是时刻保持强烈的创新愿望和冲动,掌握必要创新方法,加强学习和锻炼,自觉开发创造力,成为一个符合现代设计需要的创新人才。

(二)运用发散思维

发散思维又称辐射思维或求异思维等。它是以欲解决的问题为中心,思维者打破常规,从不同方向,多角度、多层次地考虑问题,求出多种答案的思维方式。例如,若提出“将两零部件联结在一起”的问题,常规的办法有螺纹联结、焊接、胶接、铆接等,但运用发散思维思考,可以得到利用电磁力、摩擦力、压差或真空、绑缚、冷冻等方法。发散思维是创造性思维的主要形式之一,在技术创新和方案设计中具有重要的意义。

(三)运用创新思维

创造力的核心是创新思维。创新思维是一种最高层次的思维活动,它是建立在各类常规思维基础上的。人脑在外界信息激励下,将各种信息重新综合集成,产生新的结果的思维活动过程就是创新思维。机械机械零部件设计的过程是创新的过程。设计者应打破常规思维的惯例,追求新的功能原理、新方案、新结构、新造型、新材料、新工艺等,在求异和突破中体现创新。

三、科学的进行机械零部件设计

(一)把握机械零部件设计的主要内容

机械零部件设计是机械设计的重要组成部分,机械运动方案中的机构和构件只有通过零部件设计才能得到用于加工的零部件工作图和部件装配图,同时它也是机械总体设计的基础。机械零部件设计的主要内容包括:根据运动方案设计和总体设计的要求,明确零部件的工作要求、性能、参数等,选择零部件的结构构形、材料、精度等,进行失效分析和工作能力计算,画出零部件图和部件装配图。机械产品整机应满足的要求是由零部件设计所决定的,机械零部件设计应满足的要求为:在工作能力上要求具体有强度、刚度、寿命、耐磨性、耐热性、振动稳定性及精度等;在工艺性上要求加工、装配具有良好的工艺性及维修方便;在经济性上的要求主要指生产成本要低。此外,还要满足噪声控制、防腐性能、不污染环境等环境保护要求和安全要求等。这些要求往往互相牵制,需全面综合考虑。

(二)严格计算机械零部件的失效形式

机械零部件由于各种原因不能正常工作而失效,其失效形式很多,主要有断裂、表面压碎、表面点蚀、塑性变形、过度弹性变形、共振、过热及过度磨损等。为了保证零部件能正常工作,在设计零部件时应首先进行零部件的失效分析,预估失效的可能性,采取相应措施,其中包括理论计算,计算所依据的条件称为计算准则,常用的计算准则有:一是强度准则。强度是机械零部件抵抗断裂、表面疲劳破坏或过大塑性变形等失效的能力。强度要求是保证机械零部件能正常工作的基本要求。二是刚度准则。刚度是指零部件在载荷(下转第57页)(上接第58页)的作用下,抵抗弹性变形的能力。刚度准则要求零部件在载荷作用下的弹性变形在许用的极限值之内。三是振动稳定性准则。对于高速运动或刚度较小的机械,在工作时应避免发生共振。振动稳定性准则要求所设计的零部件的固有频率与其工作时所受激振源的频率错开。四是耐热性准则。机械零部件在高温工作条件下,由于过度受热,会引起油失效、氧化、胶合、热变形、硬度降低等问题,使零部件失效或机械精度降低。因此,为了保证零部件在高温下正常工作,应合理设计其结构及合理选择材料,必要时须采用水冷或气冷等降温措施。五是耐磨性准则。耐磨性是指相互接触并运动零部件的工作表面抵抗磨损的能力。当零部件过度磨损后,将改变其结构形状和尺寸,削弱其强度,降低机械精度和效率,以致零部件失效报废。因此,机械设计时应采取措施,力求提高零部件的耐磨性。

(三)正确选择机械零部件表面粗糙度

表面粗糙度是反映零部件表面微观几何形状误差的一个重要技术指标,是检验零部件表面质量的主要依据;它选择的合理与否,直接关系到产品的质量、使用寿命和生产成本。机械零部件表面粗糙度的选择方法有3种,即计算法、试验法和类比法。在机械零部件设计工作中,应用最普通的是类比法,此法简便、迅速、有效。应用类比法需要有充足的参考资料,现有的各种机械设计手册中都提供了较全面的资料和文献。最常用的是与公差等级相适应的表面粗糙度。在通常情况下,机械零部件尺寸公差要求越小,机械零部件的表面粗糙度值也越小,但是它们之间又不存在固定的函数关系。在实际工作中,对于不同类型的机器,其零部件在相同尺寸公差的条件下,对表面粗糙度的要求是有差别的。这就是配合的稳定性问题。在机械零部件的设计和制造过程中,对于不同类型的机器,其零部件的配合稳定性和互换性的要求是不同的。在设计工作中,表面粗糙度的选择归根到底还是必须从实际出发,全面衡量零部件的表面功能和工艺经济性,才能作出合理的选择。

(四)全面优化机械零部件设计方法

要充分运用机械学理论和方法,包括机构学、机械动力学、摩擦学、机械结构强度学、传动机械学等及计算机辅助分析的不断发展,对设计的关键技术问题能作出很好的处理,一系列新型的设计准则和方法正在形成。计算机辅助设计(CAD)是把计算机技术引入设计过程,利用计算机完成选型、计算、绘图及其他作业的现代设计方法。CAD技术促成机械零部件设计发生巨大的变化,并成为现代机械设计的重要组成部分。目前,CAD技术向更深更广的方向发展,主要表现为以下基于专家系统的智能CAD;CAD系统集成化,CAD与CAM(计算机辅助制造)的集成系统(CAD/CAM);动态三维造型技术;基于并行工程,面向制造的设计技术(DFM);分布式网络CAD系统。

【参考文献】

[1]王启,等.常用机械零部件可靠性设计[M].北京:机械工业出版社,1996.

[2]隋明阳.机械设计基础[M].北京:机械工业出版社,2002.

篇5

2.1造成机械零件精密度误差的外部因素

在机械零件加工中,产生精密度误差的外部因素主要是工艺师及机器产生的加工原始误差,零件在受热时产生的误差,以及加工时受力而产生的误差。机械零件在加工过程中由于使用了相似的成型进行加工而导致了零件精密度误差,或者是使用的夹具误差影响了零件的尺寸精密度和位置精密度。此外,在使用夹具固定零件进行加工的时候常常会产生定位误差,零件在夹具中的准确位不好控制。加工刀具和机床也会造成零件的精密度误差,刀具的种类不同误差也不一样,而机床造成的精密度误差是机械零件误差的主要来源,这主要是因为机械零件一般是在机床上成型的。零件受热所产生的变形误差,主要是子机械零件的加工过程中,许多工艺都会产生一定的高温,温度超出限度时,机械零件就会产生形变,从而形成误差影响精密度。通常称这种因受热而变形的现象为热变现象。这种热变在一些精密零件加工中破坏刀具与零件的位置关系,从而产生的加工误差很严重地影响了精密零件的精密度。有时热变形产生的误差可高达总误差的百分之五十。零件在加工过程中因受力而产生变形,也会造成零件的精密度误差。在切削的外部作用力的影响下,由于自身刚度不足而产生了形变。刀具、机床的刚度是很重要的影响因素,例如加工细小的机械零件或加工口径很小的内孔,如果刀杆的刚度太差,内孔的加工精密度就会产生很大的误差。其余外部因素还有导轨误差、转动链误差以及在调整测量方面的误差等,在此便不加详述。

2.2造成机械零件精密度误差的内部因素

在影响机械零件精密度的因素中,有一种关链的内部因素,就是加工零件的内应力。内应力误差是由于零件内部存在的作用力,使得零件处于较为不稳定的状态而亟需恢复本来状态时所产生的误差。一般来说产生内应力误差的主要原因,在于机械零件加工过程产热、冷却不均匀、零件本身形状限制而壁厚不均。这种内应力是零件的物理因素,对于这种影响零件加工精密度的内在因素,主要解决方法就是在零件设计时尽量做到结构对称,在加工时克服壁厚不均的问题,从而提高其加工精密度。

3提高机械零件加工精密度的具体方法

3.1对于原始误差进行控制

控制机械加工零件的原始误差是提高机械零件加工精密度的主要方法。主要两个方面,一个是控制加工工具及机械,提供量具、工具、夹具等本身的梢度数据,另一个是控制加工过程加工方法,技师在加工时,控制零件受热受力、刀具磨损过度等因素造成的误差,对其产生的加工误差采取措施做出调整。这种原始误差控制,要求在加工之前,对于工具、机床、受热受力等多种因素的误差做出详细的分析,根据加工工具及零件的实际情况,例如提供机床刚度数据、减少夹具安装误差等方式来提出解决方案。

3.2使用误差补偿法提高机械零件加工精密度

误差补偿法适用于无法减少原始误差的情况下,根据实际的加工情形,为了弥补原始误差而人为地创造出一种新的误差。在这种情况下,合理的人为误差可以对原始误差进行弥补。但是,这种方法的使用,依赖于技师的合理判断,以及对于机械零件加工过程的全方位理解。

3.3使用误差抵消法提高机械零件加工精密度

误差抵消法与误差补偿法的区别在于,误差抵消发不创造新的误差而是使用原有的加工原始误差,使得原始之间可以实现互相抵消。

3.4使用分化误差法提高机械零件加工精密度

对于原始误差我们可以采用分化的方式,使原始误差不断减小,直至可以几乎忽略。这种方法的应用常见于加工精度要求高的零件表面,例如进行连续的试切加工。在加工中计算好原始误差,并将其分成x组,每组加工都须将精度缩小为1/x,如此一来,原始误差就可以逐步缩小。

3.5使用均化误差法提高机械零件加工精密度

均化误差法与分化误差法类似,但是略有不同,主要是通过对于零件的表面进行比较,根据其反映的差异而进行均化加工处理。

3.6使用转移误差法提高机械零件加工精密度

误差的转移是一种机械加工零件过程的优化方法,在原始误差不可抵消分化时,将误差转移到对于精密度没有关键影响的方面。例如,在大型机床加工零件时,可以通过增加一个附加横梁弥补横梁较差的缺陷,主要减轻受重力产生的变形,从而达到提高机械零件加工精密度的作用。使得原始误差向对于精密度影响不大的非敏感方向做出转移,加工零件表面的切线方向,很大程度上提升了机械零件的精密度。

篇6

全一样,同一材料在不同的载荷作用下的断裂情况不可能相同。因此,进行设计计算时应先确定该零件工作时所承受的载荷和应力的性质,并根据所选用的材料、热处理方式和使用要求,合理选择许用应力和安全系数[1]。

1.载荷和应力

4.许用应力和安全系数

安全系数(或许用应力)的选择,对零件的尺寸有很大影响。若安全系数选得过大,则许用应力过小,将使结构笨重,浪费材料;反之,安全系数选得过小,则许用应力过大,零件将不够安全[3]。

机械零件的设计,在保证机件强度的条件下,材料要耗费最少;尺寸要最小;重量要最轻。因此,在静载荷作用下,用塑性材料制造的机件,其危险断面上的实际应力大小不应超过材料的屈服极限。在变载荷作用下,机件的实际应力不应超过材料的耐久极限。

正确的选择许用应力是很复杂的问题,它与材料、载荷情况、机件形状等有关,任何一个许用应力的选择都决定了材料的消耗量及机件的使用年限,同时改变了机构的形式,所以许用应力及安全系数的正确选择,对于机械设计工程师来讲是最基本的知识,同时是最重要的知识。

参考文献:

[1]杨家军,张卫国.机械设计基础[M].华中科技大学出版社,2002.

篇7

(2)综合运用热锻模课程和其它有关选修课程的理论及生产实践的知识去分析和解决模具设计问题,并使所学专业知识得到进一步巩固和深化.

(3)通过计算和绘图,学会运用标准、规范、手册、图册和查阅有关技术资料等,培养模具设计的基本技能

(4)可以掌握锻造工艺,熟悉各种锻造各种锻造设备,熟悉掌握计算机操作以及了解deform软件的应用,并具有机械设计及制造等综合知识.

2、现实意义:随着科学技术的不断进步和工业生产的迅速发展,许多新技术,新工艺,新设备,新材料不断涌现,进一步提高锻件的性能指标;同时缩短了生产周期,降低了成本,使之在竞争中处于优势地位.

锻造是一种借助工具或模具在冲击作用下加工金属机械零件或零件毛坯的方法.锻件的最大优势是韧性高、纤维组织合理,件与件之间性能变化小;锻件内部质量与加工历史有关,不会被任何一种金属加工工艺超过.

锻件的优势是由于金属材料通过塑性变形后,消除了内部缺陷,如锻(焊)合空洞,压实疏松,打碎碳化物,非金属夹杂并使之沿变形方向分布,改善或消除成分偏析等,得到了均匀、细小的低倍和高倍组织.而铸造工艺得到的锻件,尽管能获得较准确的尺寸和比锻件更为复杂的形状,但难以消除疏松、空洞、成分偏析、非金属夹杂等缺陷;机械加工方法获得的零件,尺寸精度较高,表面光滑,但金属内部流线往往被切断,容易造成应力腐蚀,承载拉压交变应力的能力较差.

这几年,我国火车不断提速,动车、高铁相继投入运营,这也代表着以后的发展方向,这要求我们必须保证火车导轨的安全可靠行,为保证高速列车运行的平稳性和旅客的舒适性,高速铁路的平顺性是很重要的指标,国外高速铁路采用断面尺寸公差和平直度要求很高的长定尺钢轨并焊接成超长无缝线路.接头作为连接导轨的关键部件起着至关重要的作用.

模具制造技术现代化是模具工业发展的基础,性能良好的锻造设备是提高锻造生产技术水平的基本条件,高精度、高寿命、高效率的锻模模需要高精度高自动化的锻造设备相匹配.为了满足大批量高速生产的需要,目前锻造设备也由单工位、单功能、低速压力机朝着多工位、多功能、高速和数控方向发展,加之机械手乃至机器人的大量使用,使锻造生产效率得到大幅度的提高,各式各样的锻造自动线和高速自动压力机纷纷投入使用.

二、课题关键问题及难点

本课题以锻造工序的数目确定、预成形设计为重点,对比不同形状预制坯的成形过程,给出了合理的制坯工序布排和设计,实现了一火锻造.同时,开发了封闭飞边闭式锻造预锻工序,提高了材料利用率.最后,对锻造过程进行了三维有限元模拟,在40mn热模锻压力机上进行了试验和试生产,模拟和试验结果证明锻造设计符合生产要求.该锻件形状复杂,材料分布非常不均匀,其锻造工序编排和模具设计难度更大.

本课题的难点在于应用三维绘图软件和deform软件对其进行应力应变分析,通过软件规范初设数据并反复进行修改,直到得到最优的设计方案..

三、调研报告(或文献综述)

我国的经济体制发生了根本的变化,由过去的计划经济过度到现在的市场经济.锻压生产虽然生产效率高,节约原材料和机械加工工时;但生产周期较长,成本较高,处于不利的竞争地位.铸造、焊接、机械加工豆加入了竞争.锻造生产要跟上当代科学技术的发展,需不断改进技术,采用新工艺、新技术,进一步提高锻件的性能指标;同时要缩短生产周期,降低成本,使之在竞争中处于优势地位.模具的技术水平明显有了提高,一些国产优质模具的性能已接近国外同类产品的先进水平,但由于我国起步晚,许多模具不得不依赖进口,与发达国家相比差距还非常大.

当代科学技术的发展对锻压技术本身的完善和发展有着重大的影响,这主要表现在一下几个方面:

1. 对机械零件的性能要求更高.现代交通工具如汽车、飞机、机车的速度越来越高,负荷越来越大.出更换强度更高的材料外,研究和开发新的锻造技术.挖掘原有材料的潜力也是一条出路.

2 .模具计算辅助设计、制造与分析(cad/cam/cae)的研究和应用将极大地提高模具制造效率,提高模具质量,使模具设计与制造技术实现一体化.

3. 模具的标准化、商品化、机械化及专业化自动生产.

4. 工艺分析计算的现代化.它将与现代数学、计算机技术联姻,对加工零件进行计算机模拟和有限元分析,达到预测某一工艺方案对零件成形的可能性与成形过程中可能会发生的问题,供设计人员修改和选择.

目前锻造业面临的问题大概可以归纳为一下几个方面:

1.装备水平低,其主要表现是设备老化、精确度低.

2.管理体制亟待理顺,生产厂点过多,力量分散.

3.机械制造厂家封闭式经营生产,是产品缺乏竞争力.

4.科学研究投入少,接受新技术新工艺迟缓,其结果导致搞科研也搞生产,生产厂家的问题无人去解决.

四、参考文献

【1】姚泽坤主编. 锻造工艺学与模具设计 西北工业大学出版社 XX.6

【2】卢秉恒. 机械制造技术基础. 北京: 机械工业出版社,1999.8

【3】王先奎. 机械制造工艺学. 北京:机械工业出版社,XX

【4】吴宗泽 机械零件设计手册. 北京:机械工业出版社,XX.4

【5】郑家骧 刘永田. 画法几何与机械制图. 内蒙古科技出版社,XX.8

【6】锻压手册(设备) 北京:机械工业出版社,XX

【7】锻模设计手册 北京:机械工业出版社,1991

五、研究内容及确定方案各步骤

1、研究内容:

(1)模具整体方案设计,包括零件的工艺分析、设计绘制锻件图、模具类型的确定、确定变形工步及中间坯料尺寸,压力中心计算、压力机选择、计算原坯料尺寸的确定等;

(2)模具整装配图和模具主要零件的设计;

(3)编写设计毕业论文

2、基本设计方案

本零件是属于大型锻件,首先根据相关尺寸确定其锻造工步,通过计算/r以及h/d的相关数值, 基本步骤设计如下:

1、计算毛坯尺寸

2、选择成型设备及其参数

3、用deform模拟软件进行有限元模拟并分析缺陷并加以改进

4、模具工作部分尺寸的计算

5、模具的总体设计

6、下料

7、加热

8、弯曲

9、预锻

10、终锻

11、切边

六、进度安排

第5-6周 毕业实习,撰写实习报告

第7-8周 写出不少于3000字的文献综述;根据参考文献和课题要求,提出自己拟定的可行方案;

第9-10周 写出开题报告,开题;进行总体设计

第11-12周 外文文献翻译,完成详细方案设计

篇8

近十年来,数控技术在我国机械加工行业飞速发展,数控加工技术人才需求急剧膨胀,全国各职业院校相关专业与课程应运而生,每年向社会输送数十万计的数控技术人员。《数控加工》是一门应用性、实用性非常强的课程,作为数控技术人员培训与学习的必需课程,其教学也因此备受瞩目。

传统的数控加工教学,一开始,有两门课程。一门课程为《数控加工工艺》,另一门为《数控加工编程》。在教学过程中,发现了很多不尽人意的地方,在上《数控加工工艺》课程时,同学们没有实际操作的经验,对课上涉及的理论知识,会感觉难以理解,枯燥乏味,大大降低了学习的积极性。而在《数控加工编程》这门课程的教学中,不可能只讲编程不讲工艺,所以两门的内容有所重复。并且,这两门课都是先上理论,再安排两周实训,这样的后果是同学们前面所学理论知识所记不多,教与学之间就会出现明显的脱节。两周实训等于从头学起,时间仓促,达不到教学要求。这就需要我们打破传统的教学模式,寻找一种更为合理的教学方法。

二、项目教学法

数控加工是目前机械加工企业广泛应用的一门技术。根据高职的总体培养目标要求和该课程的特点,其能力目标可确定为三个方面:一是能按加工要求正确操作几种常用的数控机床。二是能根据零件图样正确选择数控机床,能根据相应机床及工艺要求编制合理的数控加工程序。三是能对机床进行基本的维护与保养。

为满足以上能力目标的要求,学生必须达到的知识目标是:①能认识数控加工设备及其附件,懂得各设备的功用。②能正确理解各常用数控设备的加工原理、基本构造。③能正确识读零件图样,并根据图样要求进行工艺分析。④能正确认知编程需用的各项指令与符号。⑤能根据工件测量要求正确选择并使用量具。

通过多方调研,明确了这门课程是以“实现职业能力”为目标,最终将《数控加工工艺》和《数控加工编程》两门课统编为一门课《机械零件数控加工》。为了弥补《机械零件数控加工》所涉工艺内容不足,增加了一门新的课程《机械加工工艺设计》,从而很好的解决了这个问题。同时将《机械零件数控加工》由先上理论,改为“理论实际一体化”教学,即在四周的时间,120个课时,根据项目化教学,将所要求的理论知识,细化在几个任务中,每天由老师提出任务,说明理论知识,再由同学们运用在加工零件的过程中。这样操作技能和理论知识同时掌握。更重要的是,能够让同学们觉得,书本上遥不可及的理论知识,通过自己的实际操作变得容易理解,极大的增强了学生的自信,提高了学生的学习兴趣。通过这几年的教学实践,取得了明显的改革效果。我院学生参加数控车工、数控铣等职业技能鉴定的质量与数量得到了大幅提升,已进入社会参加工作的学生也反馈回了学以致用的信息。

为了达到该目标我们采用了项目教学法,完成一个项目就是完成了一个零件的加工。这个零件的加工分成了多个任务,每个任务的完成,都可掌握新的技能和新的理论知识。任务的设计都是由浅到深,由易到难,内容的多少、难易程度也保持在“适度”的前提下,不会给学生造成“怎么努力也做不完的”这样的想法。

每个任务都必须完成:识图、工艺分析、编程知识、操作、测量五个过程。例如下项目五中的任务1平面加工中,首先给同学们一张零件图,上面标注了六面体的尺寸精度,位置精度;讲解了加工方案,刀具,切削用量等工艺知识;指令中的G54,G01,M03等等;机床的操作如对刀、操作机床的注意事项等;用游标卡尺,千分尺测量等。

学生针对教学目标,带着问题学习,完成一个任务,解决一些问题,逐步接近目标,并在最后的检测中,体会到自己的成就感。

三、分组对抗式教学法

为了更好的提高上课质量,激发学生的积极性,我们在教学中采用了“对抗式教学法”。带组对抗式教学法是指教师在培养若干骨干分子,学生在骨干分子带领下分成若干组进行互学互练的一种方,基层教师们在不同程度上应用过此教学。带组教学法既是一种教学方法,又能体现教学思想。即能最大限度的发挥学生的主体作用;发展学生自身与集体智慧;培养学生的领导、管理能力;同时使学生在竞争与合作中教育学生对集体荣誉的分享与共承思想,从而提高集体主义精神,充实的道德生活。教师应采用各种引导手段,创造条件,使学生积极参与,制造良好的课堂气氛。

笔者以项目五任务1平面加工为例,简要介绍“带组对抗式教学法”的实施过程。首先组成三个大组,每个组的学生已根据学生的情况,按照优秀、中等、较差三个等级分类,将三类学生均匀分到各组,确保各组均衡。然后设计对抗项目。

在任务1中,可设立的对抗项目有:程序输入速度对抗,夹具安装速度对抗,对刀速度对抗,零件加工完成质量对抗。按这些项目制作表格,记录各组的成绩,选出各组优秀选手,再进行组与组的对抗,最后可得出该对抗项目的冠军,一周内可得出该周总冠军,及其他名次。最后奖励项目设计:要让学生们提高对抗积极性奖励设置是不可少,比如前三名可免除期末考试,其余的可奖励平时分加10分,加5分等,也可为了活跃教学气氛可以奖水果,奖糖果等。

数控加工课程,只有在教学中注重理论与实践相结合,注重学生动手能力的培养,防止一昧关注理论学习,忽略动手实践。并加以必要的奖励手段,才可提高学生的学习积极性, 从而掌握好这门课程。

参考文献:

[1]张报山,刘诗安,何春生.基于能力培养的数控加工课程教学改革研究[J].新课程研究,2009,(147)

[2]项强.体操技术动作带组对抗式教学法研究[J].杭州教育学院学报,1998,(4)

篇9

1.引言轧辊磨床是现代工业生产中不可缺少的一种重要生产设备,轧辊主要用于冶金、造纸等行业,它的磨削机理具有一般大型外圆磨床特点,但又不同于一般的外圆磨床的运动复杂得多,除砂轮与工件(轧辊)作相对回转运动(主运动)外,还要求砂轮、工件二者作相对纵向运动的同时,作一定的径向相对位移,而且这个径向位移是不同于磨削锥度的复合运动。因此,它的传动机构比较复杂,机床工作精度要求也较高。

轧辊磨削精度和表面质量除了依靠精良的轧辊磨床工作精度之外,主要还取决于对特定的加工轧辊选用与之相匹配的砂轮、冷却液和磨削工艺参数。

2.磨削加工基础知识及工艺

2.1 磨削加工的基础知识 近几年来,磨床加工有很大的发展,已广泛地应用于机械加工行业,磨削的机械零件有很高的精度和很细的表面粗糙度。论文参考。随着机制造的精度提高,一个国家的磨削工艺水平,往往地反映了国家机械制造的水平。磨床除能磨削外圆,内圆,平面、成型面外,还能磨削螺纹、齿轮、刀具、模具等复杂零件表面加工。

磨床—磨床在磨削工件时,按加工要求不同,工作台纵向运动的速度必须可以调整,能实现无极变速,并在换向时有一定的精度要求,磨床要具备这些条件,磨床的纵向往复运动采用了液压传动,液压传动在磨床的工作台驱动及横向快速进退等方面已广泛应用。

液压传动工作原理—在机床上为改善液压传动的性能,以满足生产加工中的各种要求,磨床工作的液压传动系统是由以下四部分组成:

执行部分—液压机(液压缸、液压马达)在压力油的推动下,作直线运动或回转运动,即将液体的压力能转换为机械能。

控制部分—压力控制阀,流量控制阀,方向控制阀等,用以控制液压传动系统所需要的力速度方向和工作性能的要求。

辅助部分—油箱滤油器,油管和油管接头等。其作用是创造必要的条件以保证液压系统正常工作。机床的液压传动系统能实现工作台的自动往复运动,砂轮架快速进退运动,砂轮架周期进给,尾架套筒的缩回,车轨以及其它一些动作。

2.2 磨削加工及先进的工艺方法 为了适应各类零件的磨削,磨床和砂轮的品种,性能也有了进一步的发展,在基本型谱的基础上,又生产出,精密型,高精度型,半自动型及数控型等10个系列,各类磨床的精度适应性和专门化程度均有很大提高,如适于模具制造的坐标磨应酬具有加工精度高使用寿命长等特点,近20年来,在我国超硬磨料,如人造金刚石,立方氮化硼等,已广泛地应用于各种高硬度材料的磨削。

要求精度高的机械零件的加工方法一般分为粗磨—半精磨—精磨—精密磨—超精磨五个阶段。磨削加工一般是属于零件的后道工序,即零件的精加工。困此零件的尺寸精度和相关面的位置精度以及有关表示的形状精度和表示粗糙度,都要在磨削中得到最后控制和保证,所以必须仔细分析和研究零件图及技术要求,根据对零件图的分析研究,就可以初步确定零件的加工顺序和所采用的加工方法。例如:尺寸精度IT6级,表示粗糙度为Ra0.8—0.1um时一般只需要经过粗磨,精磨或粗磨,精磨或粗磨。精磨和精密磨削,尺寸精度在IT6—IT5表示粗糙度为0.1um~Ra0.5um时,一般要经过粗磨,半精磨,精磨,高精度磨削加工。磨削加工所用的机床除特殊机床外,一般采作通用工艺装备,以降低生产成本取得良好的经济效果,成批大量生产时,可以根据零件的加工精度和技术要求,尽量采用专用夹具,专用量具,以满足高生产率的要求,砂轮的选择也应可能按照不同工序的不同要求考虑,磨料,粒度,硬度,尺寸等这样人但能保证工件的加工精度,同时对提高生产率也有利。

大批量的机械零件生产中,零件的产生相当稳定并广泛采用专用机床的自动生产线,生产率极高,整个生产过程按一事实上节拍自动循环,操作工人只是在自动生产线的一端装上毛坯,在另一端卸成品,并监视自动线的正常运转,就可以了,我国已在汽车,拖拉机,轴承等生产中建立了许多自动线,现在的机械制造基本特征是:多品种,中、小批生产占主导地位,工厂生产的产品经常地更换,以适应市场的竞争,目前除采用先进高效,高速磨削,强力磨削外,还逐步采用先进的自动或半自动磨削,数控磨削,适应控制磨削,和成组工艺等新技术,达到较高的生产率和设备负荷率。

3.磨削温度对磨削效果的影响 大量的磨削热将会软化工件表面,使其塑性增加,有利于磨屑的形成。但对被磨工件表面质量、磨削效果和机床等也有不利的影响。

对工件的影响主要表现在工件表面质量和加工精度两方面。

磨削的高温会使工件表面层金相组织发生变化。当磨削温度未超过工件的相变温度时,工件表面层的变化主要决定于金属塑性变形所产生的强化和因磨削热作用所产生的恢复这两个过程的综合作用,磨削温度可以促使工件表面层冷作硬化的恢复;如果磨削温度超过了工件金属的相变临界温度,则在金属塑性变形的同时,还可能产生金属组织的相变。

4.怎样提高轧辊磨床磨削精度4.1磨床的检修4.1.1床身导轨的检测与修刮

床身V形导轨经检修后应达到以下精度要求:垂直平面内直线度≤0.01mm/m;水平面内直线度≤0.01mm/m;对拖板座导轨的垂直度≤0.02mm/250m;接触点要求12~14点/25mm×25mm。

床身平面导轨经检修后应达到以下精度要求:对V形导轨的平行度≤0.02mm/m;垂直平面内直线度≤0.01mm/m;接触点要求12~14点/25mm×25mm。

4.1.2 拖板座导轨的检测与修刮

拖板座V形导轨经检修后应达到以下精度要求:垂直平面内直线度在全部长度上≤0.01mm;接触点要求10~12点/25mm×25mm。

拖板座平面导轨经检修后应达到以下精度要求:对V形导轨的平行度≤0.02mm/m;接触点要求10~12点/25mm×25mm。

4.1.3 砂轮主轴与轴瓦间的间隙调整及检测

动压轴承:在砂轮主轴轴颈上涂色,与轴瓦转研,用刮刀刮研轴瓦表面,使接触点要求达到12~14点/25mm×25mm,然后进行安装调整,将砂轮主轴与轴瓦的间隙调整到0.0025~0.005mm,这样可避免磨削中工件产生棱圆。

静压轴承:检查前后轴承油腔压力是否正常。

4.2砂轮的修整 一般情况下,用只经过金刚笔修整的砂轮在普通磨床上只能磨出Ra0.4~0.8µm的表面粗糙度。为使磨削表面达到Ra0.02~0.04µm的粗糙度要求,就必须对砂轮进行精修和细修两次修整。修整方法可采用以下两种方法之一。

4.2.1用金刚笔精修、再用油石细修

砂轮粒度一般选用46#~80#。首先用锋利的单颗粒金刚石笔以微小而均匀的进给量对砂轮进行精修,以在砂轮磨粒上修整出较多的等高微刃。精修时,砂轮修整器的安装应正确合理(见图2),每次进给量应控制在5µm,纵向进给速度建议选用最低速度。在精修过程中,应注意修整发出声音的变化。论文参考。若发出均匀的沙沙声,说明修整状况正常;若发出的声音忽高忽低或渐高渐低,甚至发出不正常的嘟嘟声,则应立即检查工作台是否出现爬行,冷却是否充分,金刚笔是否锋利等,然后进行适当调整。经金刚笔精修后,再用油石(或砂条)进行细修,以在砂轮磨粒上修整出更多的等高微刃。油石需在平面磨床上磨平。细修时,油石必须与砂轮圆周表面平行,油石与砂轮轻微接触,缓慢地纵向移动2~3次即可。

4.2.2用金刚笔精修、再用精车后的砂轮细修

用金刚笔精修后,先用磨削长度与工件基本一致的芯轴进行锥度调整,然后用精车后的砂轮进行细修。

细修用砂轮可采用TL60#K~L,直径约100mm。精车砂轮时,将砂轮安装在卡盘上,将卡盘夹紧在一根自动定心的芯轴上,然后顶在精密车床的两个顶尖上进行粗、精车外圆,使砂轮外圆无偏摆。然后将精车后的砂轮顶在磨床的两顶尖上即可对磨削用砂轮进行细修。

细修时,头架带动修整用砂轮转动,选用低转速(约80~100r/min)、小进给量(往复一次约2µm),工作台往复速度应低于0.3m/min。需作多次往复修整。修整用砂轮与被修整砂轮的旋转方向应相同,即接触点两者的线速度方向相反。冷却液应充分,以冲走浮砂,防止磨削时砂轮上残留的浮砂拉毛工件表面。

5.结论

以上是对轧辊的磨削方法和加工工艺进行了总结。论文参考。这几种方法的采用有助于高精度的轧辊磨削。以上的工艺方法在实际加工过程中应用比较广泛。轧辊磨床在磨削超精磨削时,选用较好的进给量可以保证磨削精度,表面粗糙度要求选用经验磨削用量一般横向进给一般取5微米左右,纵向磨削用量选用0.3—0.5米/分。在精磨轧辊时机床应开空车30分钟,待机床热平衡稳定和液压油排静空气后,再进行磨削加工大量的磨削热将会软化工件表面,使其弹性增加,有利于磨削的形成,但对轧辊表面质量,磨料和机床有不利于的影响,影响机床的精度,对于精度高的轧辊,在无进给光磨时可以采取一边磨削一边使轧辊慢速范围内不断变换转速,以减少或打乱机床各种频率的振动对磨削圆度和磨削波纹的影响,提高轧辊磨削质量由于采用了上述的许多新技术和新设计,使现代轧辊磨床能够基本满足轧钢技术的发展需要。

参考文献

[1]吴宗泽.机械加工实用手册(第二版).北京:化学工业出版社,2003.

[2]刘超.高速切削磨削技术.机械工程师2005.

篇10

煤炭的挖掘离不开设备,由于煤炭的质地较硬,且与许多坚硬的岩石混杂在一起,挖掘时要求所用设备耐磨性高,这样才能保证生产效率和经济效益。煤矿机械零件(如图1所示)的磨损每年给国家造成直接经济损失超亿元,因此,探讨金属材料磨损现象,研究金属表面强化技术,研制新型抗磨材料具有十分重大的理论意义和现实意义。采煤机械中的重要工件是截齿,其在使用过程中由于受到煤层冲击及腐蚀,导致其齿体严重磨损而失效。更换周期长,大大影响生产率,如果全部报废,又会降低了经济效益[1-10]。本文采用火焰喷涂、中频感应重熔技术,在截齿表面制备一层高强度耐磨涂层,从而提高其使用寿命、安全性能和生产效率,为工业生产提供了科学依据。

图1 煤矿机械零件

1.试验方法

1.1试验原理

火焰喷涂的基本原理如图2所示,所用设备如图3所示。

图2 火焰喷涂的基本原理

图3 火焰喷涂设备

1.2试验材料

试验用材料的主要成分如表1所示。

1.3合金粉末

合金粉末的主要成分如表2所示。

1.4工艺参数

火焰喷涂工艺参数如表3所示。

1.5分析方法

利用Olympus BH2-UMA光学显微镜观察分析显微组织,在工况实验机上进行试验验证。

2.试验结果分析

2.1火焰喷涂后的外观形貌

火焰喷涂后的外观形貌如图4所示。

图4 外观形貌

由图可见,火焰喷涂后的耐磨层与基体结合良好,没有明显的分界线。

2.2火焰喷涂后的基体与涂层的显组织

火焰喷涂后的基体与涂层的显组织如图5和图6所示。

图5 基体组织

从图5中可以看出基体组织主要由奥氏体和铁素体组成,这样的组织有很好的韧性和抗拉强度,断后伸长率值也会很高,但耐磨性差。

a)非冶金结合 b)冶金结合

图6 结合层组织

从图6中可以看出基体组织与喷涂上的粉末有时呈分离状态,如图6a所示。在合适的工艺条件下,可以达到理想的冶金结合,如图6b所示,这样大大增强了基体与涂层的结合强度,工况试验表明:呈冶金结合的工件的耐磨性非常好,完全达到了工业生产的需要。

涂层组织如图7所示。

火焰喷涂后防护层内部气孔、未熔融粉末颗粒大量存在,涂层与基材基本无冶金结合,涂层组织如图7 a所示。为了改变这种状况,可进行感应重熔,使其达到致密的冶金结合,如图7b所示。

另外,因为火焰喷涂涂层与基体结合主要靠机械力,其对基体前处理要求较为严格,要求喷涂前基体表面必须无水、无油、清洁干燥,一般应先进行磨光、喷砂、拉毛或车制以得到粗糙度值较大的表面。这样能保证涂层与基体的良好结合。

a)不致密的涂层组织 b)致密的涂层组织

图7 涂层组织

3.结论

1)火焰喷涂可在韧性及强度较高的基体上涂敷一层耐磨性强的金属层,达到增强煤矿设备再制造的目的。

2)火焰喷涂后再进行感应重熔,能使基体与涂层达到致密的冶金结合,满足工业生产的需要。

3)火焰喷涂工艺参数为:工件表面线速度5~15 m/min,喷枪角度55°~85°,送粉量8kg/h,喷涂距离110~180 mm。

参考文献:

[1] Rosochowski A,Matuszak A.Rapid tooling:the state of the art[J].Journal of Materials Processing Technology,2000,106(3):191~197.

[2] 李贵轩,李新国.振兴我国煤矿机械的机遇和挑战[J].中国煤炭,2003,Vol.29(2):8~10.

[3] 徐滨士,刘世参.表面工程[M].北京:机械工业出版社,2000,1~10.

[4] 刘品强.刮板输送机中部槽的强度分析及优化[D].[硕士学位论文].天津:河北工业大学,2007.

[5] 谢敬佩,王文焱,李继文等.耐磨奥氏体锰钢[M].北京:科学出版社,2008.1~50.

[6] 王建青.等离子喷焊超厚耐磨涂层的研究[D].泰安:山东矿业学院,1999.

[7] 钱苗根.材料表面技术及其应用手册[M].北京:机械工业出版社,1998,353~372.

篇11

地方工科院校立足地方、服务地方,以培养服务地方经济和社会发展的高级应用型人才为办学宗旨。“面向工程、强化实践、贴近需求”,地方工科高校能更好地实现人才培养目标。据统计,近几年来,我校会计、工商管理专业毕业生就业于制造类企业的占就业学生数的比例均在70%左右。为适应这一新形势,我校对一些非机类专业例如工商管理、会计、工业设计等专业开设了《机械制造基础》课程。该课程的教学目的是使学生熟悉机械产品生产的一般过程,掌握一定的工程基础技能和实践知识,在处理专业问题时具有良好的机械制造知识背景。这样,本课程和先修课程《机械制图》,以及金工实习,便形成了较为系统的工程素质培养体系,为学生的专业课学习和今后从事制造业相关工作奠定了必要的基础。然而,在教学过程中,很多教师普遍感到非机类专业学生对本课程学习兴趣不强,空间想象能力、理解能力较差,存在教学吃力、教学效果不佳等状况。我在从事非机类专业《机械制造基础》教学实践中探索和总结经验,供大家参考。

2.以专业培养目标为导向,调整教学内容

非机类《机械制造基础》课程所包含的内容多,覆盖面广,包含机械工程材料、机械零件、金属切削原理、机械加工工艺、先进制造等方面内容。在有限的学时内把这些内容讲深、讲透是不可能的。课程内容的构建应该以专业培养目标为导向,优化教学内容,重在基本知识、基本理论和基本技能的传授。在本课程内容构建中,我们紧紧把握“基本工程素质教育”为目的,确立了以“机械工程材料选用、机械零件基本概念、零件加工方法、机械加工工艺”为课程教学主线,建立了符合事物认知规律的教学体系。在具体教学内容上,根据各专业的特点,特别是应按学生实际工作需要,对课程内容有所取舍,做到“有所为有所不为”。例如:对于经济管理类学生,毕业之后工作岗位不可能是一线的机械类技术工作。因此,在保证基本理论知识够用的前提下,从管理而非设计专业培养的角度,在课程内容进行了调整。机械加工工艺、先进制造技术等方面内容予以增加,降低了机械零件、刀具角度和夹具等方面的难度和深度,这与培养应用型、创新型管理人才的培养目标是相适应的。

3.以增强教学效果为目标,改进教学方法

对于非机类专业学生来说,主观上由于专业的原因学生对这门课兴趣不是太浓,客观上非机类专业特别是文科类学生空间想象能力、逻辑思维能力稍差。学生在学习本课程时感到抽象、难学,教学效果不理想。如何激发学生的学习兴趣,采用什么样的教学方法,才能够增强教学效果,是教学中必须重视的问题。

3.1重视绪论的教学,激发学生学习本课程动力。

对于一门课程来说,绪论是学好这门课程的“触发器”,绪论的教学应该引起足够的重视。内容丰富、教学方法合理的绪论教学,能够让学生充分了解本课程的内容和学习好本课程的重要性。在本课程绪论教学中,我们采用多媒体课件让学生观看我国机械制造业的过去、现状和发展方向,并对比国外的先进制造业,学生会被屏幕上丰富多彩的画面和生动的内容所吸引,再加上教师的引导和讲解,会在很大程度上激发学生的学习兴趣,特别是了解了我国与国外先进制造业的差距后,学生会增强使命感和责任感。在此基础上,教师顺势深入讲解本专业学习本课程的重要性和必要性。例如对于工业设计专业,在讲述工业设计与制造业的关系时,类比了建筑学和结构学的关系,深入浅出地阐述了工业设计和制造业的关系。通过这样的教学活动,学生的学习本课程的动力被调动起来,为整个课程的学习奠定了良好的基础。

3.2采用互动式教学方法,提高学生学习兴趣。

学习兴趣是学习的原动力。托尔斯泰说:“成功的教学所需要的不是强制,而是激发学生的兴趣。”对于非机类学生来讲,本课程相对其他课程是抽象而枯燥的,所以应该采取更灵活、更活泼的互动式教学方式。例如根据管理类、艺术类学生的思维特点,可以经常采用课堂讨论的方式进行教学活动。教师在课堂上针对教材中的基础理论或主要疑难问题,提出一步一步的问题,学生独立思考之后,共同进行讨论。教师在讨论中注意引导和辨析,讨论结束后,应当归纳与总结。在实际教学过程中,发现对于非机类专业采用互动式教学方法,能够充分发挥学生的主观能动性,激发学生的学习兴趣和参与意识,能取得较好的教学效果。

3.3把握认知规律,采用引导式教学方法。

引导式教学方法是指在教师的启发之下,让学生按照自己的观察和思考事物的方式去认知事物。引导式教学更符合学生对知识的认知规律,能够较好地实现预期的教学目标。例如在讲解铁碳合金材料性能时,首先对优质碳素钢、普通碳素钢、低碳钢、球墨铸铁等不同材料的轴类零件的强度、刚度、耐磨性,以及性价比进行比较、分析,让学生有了直观的感受,再讲解各种材料的功能和应用范围。通过这样的教学方法,学生易于接受,对所授知识有了更深刻的印象。

3.4多采用实例教学方法,提高教学效率。

本课程与实际工程密切相关,可以较多地采用实例教学方法,达到事半功倍的效果。例如讲解机床的结构时,可以采用实例教学法,带学生到实验室,针对具体的机床进行讲解,效果更理想。

4.以学生为主体,不断优化现代化教学手段

现代化的多媒体教学手段,集声音、图像、视频和文字等媒体为一体,具有形象性、多样性、新颖性等特点,能够优化课堂教学结构,提高教学效率,在教学中得到了广泛的应用。然而,在教学活动中如果由于过分依赖多媒体课件,对所讲授内容不熟悉、理解不深刻,反而无法取得良好的教学效果。例如有些青年教师把所有内容都放入课件中,讲课仅仅是从原来的“背书”改成“念书”,上课时一味播放课件,学生毫不动脑地看热闹,多媒体教学成了讲稿演示。另外,多媒体教学具有信息量大、进度快的特点,如果不注意教学策略和方法,非机类学生可能就会感到无所适从。因此,应该以学生为主体,处理好传统教学与现代化教学的关系,优化现代化教学手段,充分发挥多媒体教学的优势。

在非机类《机械制造基础》教学活动中使用现代化教学手段应该注意两个方面:一方面,在制作多媒体课件时应该考虑本专业学生的心理特征和认知结构。在突出教学重点、难点的情况下,可以适当增加图片、视频等媒体,增加课堂的趣味性和活泼性。例如在讲授铸造工艺时,我播放了多种铸造工艺的教学视频,在每种视频后对每种铸造方法的特点和使用场合进行了归纳与总结。采用这种方法不仅完成了教学目标,而且使教与学更加轻松,提高了课堂教学的实效。另一方面,在使用多媒体课件教学中,教师应该时刻注意与学生的互动,防止出现“学生盯着多媒体看,教师围着电脑转”的现象。教师要经常走下讲台,走到学生中讲解,用眼光与学生交流,感受学生的学习状况,根据学生的反映和表现随时调整教学进度和教学方法,用积极的双向交流来促进学生对知识的学习。

在利用现代化教学手段教学中强调充分发挥学生的主体作用,这并不等于老师的主导作用就消失了。目前高校教学改革的主要目标之一,就是要改变传统的以教师为中心的教学结构,建立一种既能发挥教师的主导作用,又能充分体现学生学习主体作用的新型教学结构。非机类《机械制造基础》教学中,一方面由于专业背景的限制,另一方面本课程内容繁杂,学生不容易建立系统性的知识结构。教师应当充分发挥主导作用,时刻把握教学目标,在教与学过程中的起到“领航员”的作用。

5.科学制定考核评价体系

建立科学的考核评价体系必须结合本专业、本课程的教学特点,能够充分反映学生的综合素质。我们对于非机类《机械制造基础》考核中,除了传统的考核方式外,设置了小论文形式的考核方法。这是考虑到《机械制造基础》是一门实践性很强的课程,而对于非机类专业,没有相应的实验课和课程设计,利用小论文能够考查学生综合利用知识解决实际问题的能力。在典型零件的加工方法考核小论文中,安排每组3-4人,对一零件加工工艺进行设计和编写,对于非机类学生来说,难度不小。但是学生经过查阅资料、小组讨论,甚至有的学生到机械学院找同学请教,基本完成任务。从考核结果来看,学生完成情况良好。通过这样的考核方式,不仅考查了学生的综合素质,而且提高了学生的创新能力,收到了较好的效果。

6.结语

作为工科院校非机类专业进行工程素质培养的重要课程《机械制造基础》,教师在教学实践中,应针对非机类专业学生特点、本专业课程体系特点和课程本身的特点,采用灵活多样、富有实效的教学方式和手段,充分调动学生的积极性,培养学生良好的工程素养,为他们以后从事本专业工作打下良好的基础。

参考文献:

篇12

1CAD技术的发展

CAD(ComputerAidedDesign)是计算机辅助设计的英文缩写,是利用计算机强大的图形处理能力和数值计算能力,辅助工程技术人员进行工程或产品的设计与分析,达到理想的目的,并取得创新成果的一种技术。自1950年计算机辅助设计(CAD)技术诞生以来,已广泛地应用于机械、电子、建筑、化工、航空航天以及能源交通等领域,产品的设计效率飞速地提高。现已将计算机辅助制造技术(Com-puterAidedManufacturing,CAM)和产品数据管理技术(ProductDataManagement,PDM)及计算机集成制造系统(ComputerItegratedmanufacturingsystem,CIMS)集于一体。

产品设计是决定产品命运的研究,也是最重要的环节,产品的设计工作决定着产品75%的成本。目前,CAD系统已由最初的仅具数值计算和图形处理功能的CAD系统发展成为结合人工智能技术的智能CAD系统(ICAD)(IntelligentCAD)。21世纪,ICAD技术将具备新的特征和发展方向,以提高新时代制造业对市场变化和小批量、多品种要求的迅速响应能力。

以智能CAD(ICAD)为代表的现代设计技术、智能活动是由设计专家系统完成。这种系统能够模拟某一领域内专家设计的过程,采用单一知识领域的符号推理技术,解决单一领域内的特定问题。该系统把人工智能技术和优化、有限元、计算机绘图等技术结合起来,尽可能多地使计算机参与方案决策、性能分析等常规设计过程,借助计算机的支持,设计效率有了大大地提高。

2三维CAD技术在机械设计中的优点

通过实际应用三维CAD系统软件,笔者体会到三维CAD系统软件比二维CAD在机械设计过程中具有更大的优势,具体表现在以下几点:

2.1零件设计更加方便

使用三维CAD系统,可以装配环境中设计新零件,也可以利用相邻零件的位置及形状来设计新零件,既方便又快捷,避免了单独设计零件导致装配的失败。资源查找器中的零件回放还可以把零件造型的过程通过动画演示出来,使人一目了然。

2.2装配零件更加直观

在装配过程中,资源查找器中的装配路径查找器记录了零件之间的装配关系,若装配不正确即予以显示,另外,零件还可以隐藏,在隐藏了外部零件的时候,可清楚地看到内部的装配结构。整个机器装配模型完成后还能进行运动演示,对于有一定运动行程要求的,可检验行程是否达到要求,及时对设计进行更改,避免了产品生产后才发现需要修改甚至报废。

2.3缩短了机械设计周期

采用三维CAD技术,机械设计时间缩短了近1/3,大幅度地提高了设计和生产效率。在用三维CAD系统进行新机械的开发设计时,只需对其中部分零部件进行重新设计和制造,而大部分零部件的设计都将继承以往的信息,使机械设计的效率提高了3~5倍。同时,三维CAD系统具有高度变型设计能力,能够通过快速重构,得到一种全新的机械产品。

2.4提高机械产品的技术含量和质量

由于机械产品与信息技术相融合,同时采用CADCIMS组织生产,机械产品设计有了新发展。三维CAD技术采用先进的设计方法,如优化、有限元受力分析、产品的虚拟设计、运动方针和优化设计等,保证了产品的设计质量。同时,大型企业数控加工手段完善,再采用CAD/CAPP/CAM进行机械零件加工,一致性很好,保证了产品的质量。

3CAD技术在机械设计中的应用

3.1零件与装配图的实体生成

3.1.1零件的实体建模。CAD的三维建模方法有三种,即线框模型、表面模型和实体模型。在许多具有实体建模功能的CAD软件中,都有一些基本体系。如在AutoCAD的三维实体造型模块中,系统提供了六种基本体系,即立方体、球体、圆柱体、圆锥体、环状体和楔形体。对简单的零件,可通过对其进行结构分析,将其分解成若干基本体,对基本体进行三维实体造型,之后再对其进行交、并、差等布尔运算,便可得出零件的三维实体模型。

对于有些复杂的零件,往往难以分解成若干个基本体,使组合或分解后产生的基本体过多,导致成型困难。所以,仅有基本体系还不能完全满足机器零件三维实体造型的要求。为此,可在二维几何元素构造中先定义零件的截面轮廓,然后在三维实体造型中通过拉伸或旋转得到新的“基本体”,进而通过交、并、差等得到所需要零件的三维实体造型。

3.1.2实体装配图的生成。在零件实体构造完成后,利用机器运动分析过程中的资料,在运动的某一位置,按各零件所在的坐标进行“装配”,这一过程可用CAD软件的三维编辑功能实现。

3.2模具CAD/CAM的集成制造

随着科学技术的不断发展,制造行业的生产技术不断提高,从普通机床到数控机床和加工中心,从人工设计和制图到CAD/CAM/CAE,制造业正向数字化和计算机化方向发展。同时,模具CAD/CAM技术、模具激光快速成型技术(RPM)等,几乎覆盖了整个现代制造技术。

一个完整的CAD/CAM软件系统是由多个功能模块组成的。如三维绘图、图形编辑、曲面造型、仿真模拟、数控加工、有限元分析、动态显示等。这些模块应以工程数据库为基础,进行统一管理,而实体造型是工程数据的主要来源之一。

3.3机械CAE软件的应用

机械CAE系统的主要功能是:工程数值分析、结构优化设计、强度设计评价与寿命预估、动力学/运动学仿真等。CAD技术在解决造型问题后,才能由CAE解决设计的合理性、强度、刚度、寿命、材料、结构合理性、运动特性、干涉、碰撞问题和动态特性等。

4CAD前沿技术与发展趋势

4.1图形交互技术

CAD软件是产品创新的工具,务求易学好用,得心应手。一个友好的、智能化的工作环境可以开拓设计师的思路,解放大脑,让他把精力集中到创造性的工作中。因此,智能化图标菜单、“拖放式”造型、动态导航器等一系列人性化的功能,为设计师提供了方便。此外,笔输入法草图识别、语言识别和特征手势建模等新技术也正在研究之中。

4.2智能CAD技术

CAD/CAM系统应用逐步深入,逐渐提出智能化需求.设计是一个含有高度智能的人类创造性活动。智能CAD/CAM是发展的必然方向。智能设计在运用知识化、信息化的基础上,建立基于知识的设计仓库,及时准确地向设计师提品开发所需的知识和帮助,智能地支持设计人员,同时捕获和理解设计人员意图、自动检测失误,回答问题、提出建议方案等。并具有推理功能,使设计新手也能做出好的设计来,现代设计的核心是创新设计,人们正试图把创新技法和人工智能技术相结合应用到CAD技术中,用智能设计、智能制造系统去创造性指导解决新产品、新工程和新系统的设计制造,这样才能使我们的产品、工程和系统有创造性。

4.3虚拟现实技术

虚拟现实技术在CAD中已开始应用,设计人员在虚拟世界中创造新产品,可以从人机工程学角度检查设计效果,可直接操作模拟对象,检验操作是否舒适、方便,及早发现产品结构空间布局中的干涉和运动机构的碰撞等问题,及早看到新产品的外形,从多方面评价所设计的产品.虚拟产品建模就是指建立产品虚拟原理或虚拟样机的过程.虚拟制造用虚拟原型取代物理原型进行加工、测试、仿真和分析,以评价其性能,可制造性、可装配性、可维护性和成本、外观等,基于虚拟样机的试验仿真分析,可以在真实产品制造之前发现并解决问题,从而降低产品成本.虚拟制造、虚拟工厂、动态企业联盟将成为CAD技术在电子商务时代继续发展的一个重要方向.另外,随着协同技术、网络技术、概念设计面向产品的整个生命周期设计理论和技术的成熟和发展,利用基于网络的CAD/CAPP/CAM/PDM/ERP集成技术,实现真正的全数字化设计和制造,已成为机械设计制造业的发展趋势。

参考文献

[1]黄森彬主编.机械设计基础.高等教育出版社.

[2]荣涵锐.新编机械设计CAD技术基础〔M〕.北京:机械工业出版社,2002.

篇13

1847年,德国人W?hler用旋转疲劳试验机首先对疲劳现象进行了系统研究,提出S-N曲线及疲劳极限的概念,奠定了疲劳破坏的经典强度理论基础。1874年,W. Gerber等研究平均应力的影响,画出相应的疲劳极限线图―Gerber抛物线。1929年,英国人Haigh发表了高强度钢与低碳钢有不同的缺口敏感性的论文,他所采用的缺口应变分析及“残余应力”的概念,被后人加以补充和发展。1930年,英国人Goodman简化了疲劳极限图,即用直线将纵轴上的对称循环疲劳极限点和横轴上的强度极限点连接,以此来替代Gerber抛物线;由于Goodman的疲劳极限图相对简单,所以至今仍在常规疲劳强度设计中被广泛使用。20世纪20-30年代人们已经开始研究疲劳机理,把疲劳过程划分为裂纹萌生、裂纹扩展及断裂三个阶段。1945年,M. A. Miner(US)提出了损伤与循环次数成线性关系即Palmgren-Miner线性累积损伤准则。

1953年,澳大利亚人赫德提出了疲劳裂纹扩展理论,但未经过实验验证。1957年,美国人欧文研究了中心裂纹板在垂直于裂纹方向上受拉伸的情况,基于裂纹尖端附近的弹性力学应力分析,欧文把裂纹长度的平方根与应力的乘积定义为应力强度因子。由此,应力强度因子成为了描述材料在裂纹尖端受力程度的一个重要参量。并根据应力强度因子存在一临界值,当达到或大于此临界值时,裂纹发生失稳扩展的现象,定义此临界值为断裂韧性,从而确定了断裂力学的断裂准则。1957年,美国人Paris指出,在循环载荷作用下,裂纹尖端处的应力强度因子的变化幅度是控制构件疲劳裂纹扩展速率的基本参量,Paris并于1963年提出了疲劳裂纹扩展速度的指数幂定律(Paris定律)。1968年由日本的Matsuishi M和Endo T 认为塑性的存在是造成疲劳损伤的必要条件,这种塑性性质由应力―应变迟滞回线表现出来,而一个大的应力―应变循环对材料造成的损伤,不受小的循环的影响,基于此他们提出了雨流计数法。

20世纪60年代末和70年代初,发展起来两种疲劳寿命估算方法。其一就是著名的Manson-Coffin局部应变法,此方法试图描述和预测裂纹萌生寿命,从而奠定了低周疲劳的基础,而另一种方法是基于断裂力学(如线弹性断裂力学EFM)的裂纹扩展计算方法。